1
|
Li Z, Cao L, Sui J, Wang L, Lin H, Wang K. Bimetallic Fe/Ni metal organic framework-based hypoxanthine biosensor for early monitoring of freshness changes of aquatic products. Food Chem 2024; 447:138902. [PMID: 38458132 DOI: 10.1016/j.foodchem.2024.138902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
The timely detection of freshness changes of aquatic products is crucial. In this study, we have developed a reliable, cost-effective, and user-friendly method for rapidly detecting hypoxanthine using a xanthine oxidase (XOD)/nanozyme enzymatic cascade system. The nanozyme, derived from the Fe7/Ni3 metal-organic framework (Fe7Ni3MOF), exhibited good peroxidase-mimetic activity and stability. Our proposed XOD/Fe7Ni3MOF enzymatic cascade system demonstrated a linear response to hypoxanthine in the range of 3-70 μM, with a low detection limit of 1.39 μM. We also analyzed hypoxanthine in actual aquatic products, achieving spiked recoveries ranging from 90.04 % to 107.37 %. The correlation coefficient between our developed colorimetric method and the HPLC method was 0.98. Importantly, our proposed method holds several advantages over alternative techniques, particularly in terms of cost-effectiveness, precision, and speed. Consequently, this methodology shows great promise for the early detection of freshness changes in aquatic samples.
Collapse
Affiliation(s)
- Zhuoran Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Lei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China.
| |
Collapse
|
2
|
Sen S, Sarkar P. Impedance nanobiosensor based on enzyme-conjugated biosynthesized gold nanoparticles for the detection of Gram-positive bacteria. Biotechnol Prog 2024; 40:e3421. [PMID: 38160432 DOI: 10.1002/btpr.3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/02/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
In this report, gold nanoparticles (GNPS) were synthesized using cell-free extracts of seven different isolates, namely, Pseudomonas aerogenosa CEBP2, Pseudomonas sp. CEBP1, Pseudomonas pseudoalcaligenes CEB1G, Acinetobactor baumani CEBS1, Cuprividus sp. CEB3, Micrococcus luteus CUB12, and Pandoraea sp. CUB2S. The spectroscopic (UV-vis, FTIR, DLS, XRD, EDS) and microscopic (FESEM, TEM) results confirm the reduction of Au3+ to Au0 in the presence of biomolecules having reducing as well as self-stabilizing activity. In this green synthesis approach, the average particle size of biosynthesized GNPS might vary (4-60 nm) depending on the bacterial species, pH of the media, incubation time, and temperature. In this study, GSH-modified BSGNPs (Au-GSH) have shown antimicrobial activity with better stability against Gram-positive bacteria. After conjugation of lysozyme with Au-GSH (lyso@Au-GSH), the zone of inhibition was enhanced from 12 to 23 mm (Au-GSH). The TEM study shows the spherical GNP (16.65 ± 2.84) turns into a flower-shaped GNP (22.22 ± 3.12) after conjugation with lysozyme due to the formation of the protein corona. Furthermore, the nanobioconjugate (lyso@Au-GSH) was immobilized with Nafion on a glassy carbon electrode to fabricate a label-free impedance biosensor that is highly sensitive to monitor changes in the transducer surface due to biomolecular interactions. The uniquely designed biosensor could selectively detect Gram-positive bacteria in the linear range of 3.0 × 101-3 × 1010 cfu mL-1 with RE <5%. The proposed simplest biosensor exhibited good reproducibility (RSD = 3.1%) and excellent correlation (R2 = 0.999) with the standard plate count method, making it suitable for monitoring Gram-positive bacterial contamination in biofluids, food, and environmental samples.
Collapse
Affiliation(s)
- Sarani Sen
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, India
- National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Priyabrata Sarkar
- Department of Polymer Science and Technology, University of Calcutta, Kolkata, West Bengal, India
- Calcutta Institute of Technology, Howrah, West Bengal, India
| |
Collapse
|
3
|
Guo Y, Zhao T, Guo Q, Ding M, Chen X, Lin J. Highly sensitive detection for xanthine by combining single-band red up-conversion nanoparticles and cycle signal amplification strategy based on internal filtration effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123566. [PMID: 37871542 DOI: 10.1016/j.saa.2023.123566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
Up-conversion nanoparticles (UCNPs), especially single-band bright red UCNPs, have better penetration of biological tissues, absorb less lost energy, and have higher sensitivity and accuracy in the determination of actual biological samples in the field of biosensing. Here, a novel colorimetric and fluorescent dual-channel method based upon an internal filtration effect (IFE) quenching mechanism was proposed for the quantitative analysis of xanthine (XA) by using red UCNPs as fluorescence indicator and 3,3',5,5' -tetramethylbenzidine (TMB) as chromogenic substrate. The sensitivity of the detection system was also enhanced by a cycle signal amplification strategy based on the Fenton reaction. Under the best conditions, the detection limits of XA by fluorescent and colorimetric methods were 0.58 μM and 1.19 μM, respectively. The developed method was applied to the detection of XA in actual serum samples, and the recoveries of the spiked samples by fluorescent and colorimetric methods were in the range of 96.3-104.3 % and 94.3-105.4 %, respectively. In addition, the commercial ELISA method was used to verify the application of the proposed method and the test results of XA were close to those obtained by fluorescent and colorimetric methods, indicating that the accuracy of the developed nanosensing system was acceptable.
Collapse
Affiliation(s)
- Yingying Guo
- Department of CT/MRI, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Tianlu Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Qiaonan Guo
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mingji Ding
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Xiangrong Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Jianqing Lin
- Department of Breast and Thyroid Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| |
Collapse
|
4
|
Zhen D, Zhang S, Yang A, Li L, Cai Q, Grimes CA, Liu Y. A PEDOT enhanced covalent organic framework (COF) fluorescent probe for in vivo detection and imaging of Fe 3. Int J Biol Macromol 2024; 259:129104. [PMID: 38161014 DOI: 10.1016/j.ijbiomac.2023.129104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Simple and accurate in vivo monitoring of Fe3+ is essential for gaining a better understanding of its role in physiological and pathological processes. A novel fluorescent probe was synthesized via in situ solid-state polymerization of 3,4-ethylenedioxythiophene (PEDOT) in the pore channels of a covalent organic framework (COF). The PEDOT@COF fluorescent probe exhibited an absolute quantum yield (QY) 3 times higher than COF. In the presence of Fe3+ the PEDOT@COF 475 nm fluorescence emission, 365 nm excitation, is quenched within 180 s. Fluorescence quenching is linear with Fe3+ in the concentration range of 0-960 μM, with a detection limit of 0.82 μM. The fluorescence quenching mechanism was attributed to inner filter effect (IEF), photoinduced electron transfer (PET) and static quenching (SQE) between PEDOT@COF and Fe3+. A paper strip-based detector was designed to facilitate practical applicability, and the PEDOT@COF probe successfully applied to fluorescence imaging of Fe3+ levels in vivo. This work details a tool of great promise for enabling detailed investigations into the role of Fe3+ in physiological and pathological diseases.
Collapse
Affiliation(s)
- Deshuai Zhen
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Shaoqi Zhang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Aofeng Yang
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Le Li
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Craig A Grimes
- Flux Photon Corporation, 5950 Shiloh Road East, Alpharetta, GA 30005, United States
| | - Yu Liu
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
5
|
Wu H, Xu Z, Xiong D, Qin X, Liu G, Zhang H. Two dimensional iron metal-organic framework nanosheet with peroxidase-mimicking activity for colorimetric detection of hypoxanthine related to shrimp freshness. Talanta 2023; 265:124833. [PMID: 37348352 DOI: 10.1016/j.talanta.2023.124833] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Two dimensional iron metal-organic framework nanosheet (2D Fe MOF) was facilely synthesized at room temperature by simple stirring of iron salts and terephthalic acid ligand in a mixed solution containing triethylamine. Its morphology and structure were fully characterized by TEM, AFM, XPS and TEM element mapping. Then, its peroxidase-mimicking activity was studied by using H2O2 and 3, 3', 5, 5'- tetramethylbenzidine as substrate. Km and Vmax of 2D Fe MOF towards H2O2 were 0.02 mM and 2.08 × 10-8 M s-1, respectively. Through the formation of cascade reaction between xanthine oxidase and 2D Fe MOF, a visual method for hypoxanthine (Hx) detection was constructed to evaluate aquatic products freshness. After effective validation, this method presented wide linear range (5.0-500.0 μM), low limit of detection (3.29 μM), satisfied accuracy (recovery of 94.78-99.85%), and good selectivity. By using this method, Hx content in shrimp samples at different storage time were determined.
Collapse
Affiliation(s)
- Hongyuan Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhuolan Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Danni Xiong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Haizhi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
6
|
Espinoza-Araya C, Starbird R, Prasad ES, Renugopalakrishnan V, Mulchandani A, Bruce BD, Villarreal CC. A bacteriorhodopsin-based biohybrid solar cell using carbon-based electrolyte and cathode components. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148985. [PMID: 37236292 DOI: 10.1016/j.bbabio.2023.148985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
There is currently a high demand for energy production worldwide, mainly producing renewable and sustainable energy. Bio-sensitized solar cells (BSCs) are an excellent option in this field due to their optical and photoelectrical properties developed in recent years. One of the biosensitizers that shows promise in simplicity, stability and quantum efficiency is bacteriorhodopsin (bR), a photoactive, retinal-containing membrane protein. In the present work, we have utilized a mutant of bR, D96N, in a photoanode-sensitized TiO2 solar cell, integrating low-cost, carbon-based components, including a cathode composed of PEDOT (poly(3,4-ethylenedioxythiophene) functionalized with multi-walled carbon nanotubes (CNT) and a hydroquinone/benzoquinone (HQ/BQ) redox electrolyte. The photoanode and cathode were characterized morphologically and chemically (SEM, TEM, and Raman). The electrochemical performance of the bR-BSCs was investigated using linear sweep voltammetry (LSV), open circuit potential decay (VOC), and impedance spectroscopic analysis (EIS). The champion device yielded a current density (JSC) of 1.0 mA/cm2, VOC of -669 mV, a fill factor of ~24 %, and a power conversion efficiency (PCE) of 0.16 %. This bR device is one of the first bio-based solar cells utilizing carbon-based alternatives for the photoanode, cathode, and electrolyte. This may decrease the cost and significantly improve the device's sustainability.
Collapse
Affiliation(s)
- Christopher Espinoza-Araya
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Maestría en Ingeniería de Dispositivos Médicos, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Ricardo Starbird
- Centro de Investigación y de Servicios Químicos y Microbiológicos (CEQIATEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - E Senthil Prasad
- Council of Scientific & Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | - Venkatesan Renugopalakrishnan
- Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; MGB Center for COVID Innovation, Harvard Medical School, Boston, MA 02115, USA; Department of Chemistry and Chemical Biology, Center for Renewable Energy Technology, Northeastern University, Boston, MA 02138, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA; Department of Materials Science and Engineering, University of California Riverside, Riverside, CA 92521, USA; Center for Environmental Research & Technology (CE-CERT), University of California Riverside, Riverside, CA 92507, USA
| | - Barry D Bruce
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee at Knoxville, TN 37996, USA; Program in Genome Science and Technology, University of Tennessee at Knoxville, TN 37830, USA.
| | - Claudia C Villarreal
- Escuela de Ciencia e Ingeniería de Materiales, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica; Centro de Investigación y Extensión en Ingeniería de Materiales (CIEMTEC), Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica.
| |
Collapse
|
7
|
Guo M, Li F, Ran Q, Zhu G, Liu Y, Han J, Wang G, Zhao H. Facile fabrication of Zr-based metal-organic framework/Ketjen black-carbon nanotubes composite sensor for highly sensitive detection of methyl parathion. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
8
|
Felicia WXL, Rovina K, ‘Aqilah NMN, Vonnie JM, Yin KW, Huda N. Assessing Meat Freshness via Nanotechnology Biosensors: Is the World Prepared for Lightning-Fast Pace Methods? BIOSENSORS 2023; 13:217. [PMID: 36831985 PMCID: PMC9954215 DOI: 10.3390/bios13020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In the rapidly evolving field of food science, nanotechnology-based biosensors are one of the most intriguing techniques for tracking meat freshness. Purine derivatives, especially hypoxanthine and xanthine, are important signs of food going bad, especially in meat and meat products. This article compares the analytical performance parameters of traditional biosensor techniques and nanotechnology-based biosensor techniques that can be used to find purine derivatives in meat samples. In the introduction, we discussed the significance of purine metabolisms as analytes in the field of food science. Traditional methods of analysis and biosensors based on nanotechnology were also briefly explained. A comprehensive section of conventional and nanotechnology-based biosensing techniques is covered in detail, along with their analytical performance parameters (selectivity, sensitivity, linearity, and detection limit) in meat samples. Furthermore, the comparison of the methods above was thoroughly explained. In the last part, the pros and cons of the methods and the future of the nanotechnology-based biosensors that have been created are discussed.
Collapse
Affiliation(s)
- Wen Xia Ling Felicia
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nasir Md Nur ‘Aqilah
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Joseph Merillyn Vonnie
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Koh Wee Yin
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Locked Bag No. 3, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
9
|
Erdoğan Kablan S, Yılmaz A, Kervan Ü, Özaltın N, Nemutlu E. Electrochemically based targeted metabolomics for uric acid, xanthine, and hypoxanthine in plasma samples for early diagnosis of acute renal failure after cardiopulmonary bypass using rGO-GCE. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Fabrication of Niobium Metal Organic Frameworks anchored Carbon Nanofiber Hybrid Film for Simultaneous Detection of Xanthine, Hypoxanthine and Uric Acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Sea-urchin-like cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Sen S, Roy A, Sanyal A, Devi PS. A nonenzymatic reduced graphene oxide-based nanosensor for parathion. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:730-744. [PMID: 35957670 PMCID: PMC9344548 DOI: 10.3762/bjnano.13.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 06/08/2023]
Abstract
Organophosphate-based pesticides (e.g., parathion (PT)) have toxic effects on human health through their residues. Therefore, cost-effective and rapid detection strategies need to be developed to ensure the consuming food is free of any organophosphate-residue. This work proposed the fabrication of a robust, nonenzymatic electrochemical-sensing electrode modified with electrochemically reduced graphene oxide (ERGO) to detect PT residues in environmental samples (e.g., soil, water) as well as in vegetables and cereals. The ERGO sensor shows a significantly affected electrocatalytic reduction peak at -0.58 V (vs Ag/AgCl) for rapid quantification of PT due to the amplified electroactive surface area of the modified electrode. At optimized experimental conditions, square-wave voltammetric analysis exhibits higher sensitivity (50.5 μA·μM-1·cm-2), excellent selectivity, excellent stability (≈180 days), good reproducibility, and repeatability for interference-free detection of PT residues in actual samples. This electrochemical nanosensor is suitable for point-of-care detection of PT in a wide dynamic range of 3 × 10-11-11 × 10-6 M with a lower detection limit of 10.9 pM. The performance of the nanosensor was validated by adding PT to natural samples and comparing the data via absorption spectroscopy. PT detection results encourage the design of easy-to-use nanosensor-based analytical tools for rapidly monitoring other environmental samples.
Collapse
Affiliation(s)
- Sarani Sen
- Functional Materials and Devices Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- National Institute of Technology Durgapur, Mahatma Gandhi Road, A-Zone, Durgapur, West Bengal 713209, India
| | - Anurag Roy
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Ambarish Sanyal
- Functional Materials and Devices Division, CSIR-Central Glass & Ceramic Research Institute, 196 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Parukuttyamma Sujatha Devi
- Chemical Sciences and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala 695019, India
| |
Collapse
|
13
|
Sen S, Sarkar P. An interference-free new xanthine biosensor based on immobilized enzyme-nanogold conjugate on carbon nanotube doped poly(3,4-Ethylenedioxythiophene) composite film. Int J Biol Macromol 2022; 199:275-286. [PMID: 34998885 DOI: 10.1016/j.ijbiomac.2021.12.094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Abstract
A new design of biosensor based on polymeric nano(bio)composite has been proposed for the selective detection of xanthine to be used in the clinical analysis as well as food quality control. The xanthine oxidoreductase (XOR) gene ofPseudomonas aerogenosastrain CEBP1 wascloned to obtainpurifiedenzyme through affinity chromatography. fMWCNTdoped PEDOTwas electrodeposited on the working electrodeto enhance the sensitivity and selectivity of the biosensor. Bio-synthesized gold nanoparticles conjugated XOR (Au-XOR) was covalently immobilized on the polymeric nanocomposite. The enzymatic activity was enhanced 1.12 times with increased substrate affinity. The surface morphology and structural properties of the polymeric layer were investigated using SEM, FESEM, TEM. Electrochemical characteristics were performed by cyclic voltammetry, differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy. Xanthine was oxidized (pH 7.0) on the uniquely designed polymeric nano(bio)composite modified electrode at a lower anodic potential of + 0.446 V vs. Ag/AgCl (3 M NaCl)at optimized DPV conditions. The simple, newly designed Au-XOR/fMWCNT-PEDOT/GCE exhibited interference-free reproducibility and stability (∼4 months) with excellent sensitivity of 16.075 µA.µM-1.cm-2for the quantification of xanthine in biological samples such as blood, tissue, urine. The applicability of thebiosensor was validatedby comparing the sensing results for the real biological fluidic solutions with HPLC data (RE = 0.5-3.1%).
Collapse
Affiliation(s)
- Sarani Sen
- Department of Polymer Science and Technology, University of Calcutta, 92 APC Road, Kolkata 700009, India; Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Banitabla, Uluberia, Howrah 711316, India.
| | - Priyabrata Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92 APC Road, Kolkata 700009, India; Calcutta Institute of Technology, Banitabla, Uluberia, Howrah 711316, India.
| |
Collapse
|
14
|
Wang C, Zhu F, Yu Z, Zhou X, Cheng W, Yang F, Zhang X. A poly(3,4-ethylenedioxythiophene)/carbon nanotube hybrid film for electrocatalytic determination of tertiary butylhydroquinone. Analyst 2021; 146:6846-6851. [PMID: 34617079 DOI: 10.1039/d1an01342d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of ideal sensing materials is of great significance for the realization of high-performance electrochemical analysis. However, in previous methods, most electrode materials are firstly synthesized and dispersed, finally dropped on the electrode surface, which led to complicated operation and poor adhesion between the materials and electrode surface. In this study, a PEDOT-CNT hybrid film has been prepared by combining carboxylated carbon nanotubes as dopants with PEDOT through scalable and easy-to-operate electrochemical deposition. The PEDOT-CNT modified electrode shows excellent performance for the determination of tertiary butylhydroquinone, with a wide linear range of 0.5-820 μM, a low detection limit of 0.12 μM, high stability and reproducibility. In addition, the mechanism of electrodeposition of CNTs and tertiary butylhydroquinone has also been discussed briefly. The PEDOT-CNT hybrid film possesses the preeminent sensing capacity in monitoring tertiary butylhydroquinone, providing research clues for the design and development of new electrode materials in the future.
Collapse
Affiliation(s)
- Cunli Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Fudan Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Zhe Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Xian Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Wenjing Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Fengchun Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| | - Xin Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry & Material Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
15
|
Hou C, Xiao G, Amakye WK, Sun J, Xu Z, Ren J. Guidelines for purine extraction and determination in foods. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chuanli Hou
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Ganhong Xiao
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - William Kwame Amakye
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Jing Sun
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Zhenzhen Xu
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| | - Jiaoyan Ren
- School of Food Science and Engineering South China University of Technology Guangzhou People's Republic of China
| |
Collapse
|
16
|
A photoelectrochemical sensor based on Z-Scheme TiO 2@Au@CdS and molecularly imprinted polymer for uric acid detection. Mikrochim Acta 2021; 188:188. [PMID: 33991252 DOI: 10.1007/s00604-021-04841-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/02/2021] [Indexed: 10/21/2022]
Abstract
A novel photoelectrochemical (PEC) sensor based on "Z-scheme" TiO2@Au@CdS and molecularly imprinted polymer (MIP) was developed for the non-invasive detection of uric acid (UA). The "Z-scheme" material, consisting of an electron-transfer system (Au) and two isolated photochemical systems (CdS, TiO2), was synthesized by chemical deposition method and it worked as a substrate for electro-polymerization of MIP. Due to the high photoelectric conversion efficiency provided by TiO2@Au@CdS and specific imprinting effect afforded by MIP, the sensor displayed desirable sensing performance with the merits of sensitivity, selectivity, repeatability, and stability. The linear range for UA detection is from 1 nM to 9 μM with the detection limit of 0.3 nM (S/N = 3). Moreover, the assay was successfully utilized to measure UA in human tears and offered a reliable result. The incorporation of MIP and "Z-scheme" material into a PEC sensor system is expected to provide a promising strategy for detecting other small molecules.
Collapse
|
17
|
Brahma B, Sen S, Sarkar P, Sarkar U. Interference-free electrocatalysis of p-chloro meta xylenol (PCMX) on uniquely designed optimized polymeric nanohybrid of P(EDOT-co-OPD) and fMWCNT modified glassy carbon electrode. Anal Chim Acta 2021; 1168:338595. [PMID: 34052000 DOI: 10.1016/j.aca.2021.338595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022]
Abstract
p-Chloro-meta-Xylenol (PCMX) is an environmentally hazardous phenolic compound having biocidal and antiseptic activity. Very few research publications addressed monitoring this contaminant. This paper presents a rapid sensing system to quantify it in waste water samples. The electrochemical activity of PCMX was exploited through a unique polymeric nanocomposite modified transducer for its quantification. Poly[(3,4-Ethylenedioxythiophene)-co-(o-phenylenediamine)] [P(EDOT-co-OPD)] was deposited through one-step electropolymerization technique on the glassy carbon electrode (GCE) modified by functionalized multi-wall carbon nanotubes (fMWCNTs). An optimized combination of these constituents was evaluated using response surface methodology (RSM) based Box-Behnken experimental design. This maximized the response for PCMX using differential pulse voltammetry (DPV). The sensing matrix was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The structural and morphological study of the modified film was conducted by Fourier transform-infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), and field emission scanning electron microscope (FESEM). The anodic peak current could be read from a wide range of 0.5-225 μM calibration curve with a detection limit of 0.2545 μmol L-1. Interestingly this work did not use any biomaterial in the modification but achieved interference-free response with excellent selectivity, sensitivity (0.4668 μA μM-1 cm-2), reproducibility (RSD = 2.2%), and repeatability. The sensing platform showed good stability (85.7%) of 3 months even after 150 times repetitive use. Its applicability for real samples was established by good correlation with standard methods.
Collapse
Affiliation(s)
- Bhanupriya Brahma
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, A.P.C. Road, Kolkata, 700009, West Bengal, India; Pollution Control Laboratory, Department of Chemical Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Kolkata, 700032, West Bengal, India.
| | - Sarani Sen
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, A.P.C. Road, Kolkata, 700009, West Bengal, India.
| | - Priyabrata Sarkar
- Biosensor Laboratory, Department of Polymer Science and Technology, University of Calcutta, A.P.C. Road, Kolkata, 700009, West Bengal, India; Calcutta Institute of Technology, Uluberia, Howrah, 711316, India.
| | - Ujjaini Sarkar
- Pollution Control Laboratory, Department of Chemical Engineering, Jadavpur University, 188, Raja Subodh Chandra Mallick Road, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
18
|
Lee CW, Chia ZC, Hsieh YT, Tsai HC, Tai Y, Yu TT, Huang CC. A facile wet-chemistry approach to engineer an Au-based SERS substrate and enhance sensitivity down to ppb-level detection. NANOSCALE 2021; 13:3991-3999. [PMID: 33503079 DOI: 10.1039/d0nr06537d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A two-dimensional flexible surface-enhanced Raman scattering (SERS) filter substrate provides an alternative strategy for the highly sensitive portable detection of various toxic molecules and biomaterials. Herein, we developed a solid-liquid interfacial reduction reaction to post-engineer a solid Au nanostructure surface on filter paper to improve the SERS effect. Among four reductants (ascorbic acid, l-dopamine, hydroquinone (HQ), and formaldehyde), HQ possessed a larger oxidation overpotential and facilitated homogeneous growth, forming small Au branch-structure nanoparticles from HAuCl4 solution. Due to the surface effect by exposing abundant -OH groups and intrinsic aromatic rings from TNA/HQ on nano-gold, the SERS effect on positively charged analytes near the plasmonic Au surface was enhanced, while forming a protective layer against severe water interruption. The resulting SERS substrate with branched nano-gold provided several SERS-enhanced sites, increased the enhancement by more than 6 times compared to original SERS sensing, and displayed a 1.4-7.4 × 105 analytical enhancement factor, which leads to a limit of detection down to several ppb. Less than 6% of deviation in the SERS intensity at different sensing sites was observed. We successfully improved the primary SERS substrate using a high overpotential reductant. Owing to its soft and flexible properties, the paper-based SERS substrate can be used conveniently in different sizes, pasting on curved materials, detecting additives in fish, and preventing the coffee-ring effect, showing high practicality and potential commercial value in the future.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Department of Photonics, Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan70101, Taiwan.
| | - Zi Chun Chia
- Department of Photonics, Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan70101, Taiwan.
| | - Yi-Ting Hsieh
- Department of Chemistry, Soochow University, Taipei 11102, Taiwan
| | - Hsiao-Chieh Tsai
- Department of Chemistry, Soochow University, Taipei 11102, Taiwan
| | - Yenpo Tai
- Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Teng-To Yu
- Department of Resources Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chih-Chia Huang
- Department of Photonics, Center of Applied Nanomedicine, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan70101, Taiwan.
| |
Collapse
|
19
|
Qi H, Huang J, Tang L, Ma M, Deng W, Zhang C. Confined pulverization promoting durable pseudocapacitance for FeOOH@PEDOT anode in Li-ion battery. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|