1
|
Ren S, Liu X, Liu Y, Zhao J, Zhang Y, Zheng Z. Molecular imprinting sensor based on zeolitic imidazolate framework derived Co, N-doped carbon loaded on reduced graphene oxide toward the determination of dopamine. Mikrochim Acta 2024; 191:688. [PMID: 39436464 DOI: 10.1007/s00604-024-06759-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
A novel voltammetric sensor designed for dopamine (DA) detection is presented utilizing a combination of zeolitic imidazolate framework (ZIF-67) derived cobalt and nitrogen-doped carbon on reduced graphene oxide (Co-N-C/rGO). ZIF-67 cubic crystals were synthesized in situ and deposited onto the graphene oxide (GO) surface through room-temperature reactions. High-temperature calcination resulted in partially collapsed cubic and spherical carbon, while simultaneously reducing GO to rGO. A molecular imprinting resorcinol polymer (MIP) membrane was also in situ applied to the Co-N-C/rGO/glassy carbon electrode (GCE) via electropolymerization. Analyses using cyclic voltammetry, electrochemical impedance, and pulse voltammetry reveal that the modified MIP/Co-N-C/rGO/GCE electrodes show improved electroconductivity and notable electrochemical reactivity towards dopamine. After optimizing detection parameters, the sensor demonstrates a wide linear detection range of 0.01-0.5 and 0.5-100 μmol/L, with a limit of detection (LOD) of 3.33 nmol/L (S/N = 3). Additionally, the sensor displays strong robustness, including excellent selectivity, significant resistance to interference, and long-term stability. It also shows satisfactory recovery in detecting spiked real samples.
Collapse
Affiliation(s)
- Shufang Ren
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730070, China.
| | - Xiaohang Liu
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730070, China
| | - Yahui Liu
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730070, China
| | - Junpeng Zhao
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730070, China
| | - Yuan Zhang
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730070, China
| | - Zhixiang Zheng
- Key Laboratory of Evidence Science Techniques Research and Application of Gansu Province, Gansu University of Political Science and Law, Lanzhou, 730070, China
| |
Collapse
|
2
|
Theyagarajan K, Lakshmi BA, Kim YJ. Enzymeless detection and real-time analysis of intracellular hydrogen peroxide released from cancer cells using gold nanoparticles embedded bimetallic metal organic framework. Colloids Surf B Biointerfaces 2024; 245:114209. [PMID: 39255750 DOI: 10.1016/j.colsurfb.2024.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Abnormal cell growth and proliferation can lead to tumor formation and cancer, one of the most fatal diseases worldwide. Hydrogen peroxide (H2O2) has emerged as a cancer biomarker, with its concentration being crucial for distinguishing cancer cells from normal cells. Herein, a cost-effective and enzymeless electrochemical sensing system for the monitoring of intracellular H2O2 has been constructed. The sensor is fabricated using gold nanoparticles embedded bimetallic copper/nickel metal organic framework (Au-CNMOF) immobilized reduced graphene oxide (RGO) modified screen printed electrode (SPE). The synthesized materials were characterized and confirmed by XRD, FTIR, SEM with EDS, and electrochemical analysis. The fabricated sensor displayed a redox peak at a formal potential (E°) of -0.155 V, corresponding to CuII/I redox couple of CNMOF in 0.1 M phosphate buffer. Electrochemical investigations revealed that the proposed sensor has a large electrochemical active surface area (1.113 cm2) and a higher surface roughness (5.67). Additionally, the sensor demonstrated excellent electrocatalytic activity towards H2O2 at -0.3 V, over a wide linear detection range from 28.5 µM to 4.564 mM with a limit of detection of 4.2 µM (S/N=3). Furthermore, the proposed sensor exhibits excellent stability, repeatability, reproducibility, and good anti-interference activity. Ultimately, the sensor was validated through real-time analysis of H2O2 released from cancer cells, successfully quantifying the released H2O2. The developed sensor holds great promise for real-time H2O2 analysis, with potential applications in clinical diagnostics, biological research and environmental monitoring.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Buddolla Anantha Lakshmi
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea; Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
3
|
Bhattacharjya R, Kalita S, Dutta A, Basak D, Saikia H. Selective and Comparative Study of B/nZVCu-Fe and B/nZVCu-Zn Nanoparticles as Fluorescent Probe for Dopamine in Presence of its Interference Molecules. J Fluoresc 2024:10.1007/s10895-024-03873-9. [PMID: 39180575 DOI: 10.1007/s10895-024-03873-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
This work focuses on the synthesis of Bentonite supported nano zero valent bimetallic nanoparticles (B/nZVCu-M NPs) to be utilized for fast and highly sensitive, reversible, fluorescent determination of dopamine (DA) in the presence of dopamine, other biomolecules and ions. The X-ray Photoelectron Spectroscopy(XPS), Powder X-Ray Diffraction(PXRD) and Scanning Electron Microscopy(SEM) revealed the formation of nanoparticles with size ranging from 15 to 20 nm. The composition was revealed by Fourier Transform Infrared(FTIR) Spectoscopy and Energy Dispersive X-Ray (EDX) Analysis. The Limits of Detection(LOD) were noted to be 5.57nM and 6.07nM. The binding of DA is noted to be reversible with respect to EDTA2-. Furthermore, the developed sensor exhibited good repeatability, satisfactory long-term stability, and was successfully used for the selective detection of dopamine sample with desired recoveries or reversibilities. The main aim of our work is to selectively detect dopamine in presence of its major interferents and biomolecules that are normally present/ co-exist with dopamine in biological systems.
Collapse
Affiliation(s)
| | - Sarojmoni Kalita
- Department of Chemistry, Gauhati University, Assam, 781014, India
| | - Ananya Dutta
- Department of Chemistry, Gauhati University, Assam, 781014, India
| | - Dipanwita Basak
- Department of Chemistry, Bodoland University, Kokrajhar, Assam, 783370, India
| | - Hemaprobha Saikia
- Department of Chemistry, Bodoland University, Kokrajhar, Assam, 783370, India.
| |
Collapse
|
4
|
Tsai MD, Wu KC, Kung CW. Zirconium-based metal-organic frameworks and their roles in electrocatalysis. Chem Commun (Camb) 2024; 60:8360-8374. [PMID: 39034845 DOI: 10.1039/d4cc02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Due to their exceptional chemical stability in water and high structural tunability, zirconium(IV)-based MOFs (Zr-MOFs) have been considered attractive materials in the broad fields of electrocatalysis. Numerous studies published since 2015 have attempted to utilise Zr-MOFs in electrocatalysis, with the porous framework serving as either the active electrocatalyst or the scaffold or surface coating to further enhance the performance of the actual electrocatalyst. Herein, the roles of Zr-MOFs in electrocatalytic processes are discussed, and some selected examples reporting the applications of Zr-MOFs in various electrocatalytic reactions, including several studies from our group, are overviewed. Challenges, limitations and opportunities in using Zr-MOFs in electrocatalysis in future studies are discussed.
Collapse
Affiliation(s)
- Meng-Dian Tsai
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Kuan-Chu Wu
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan.
| |
Collapse
|
5
|
Zhang M, Wang Y, Jiang J, Jiang Y, Song D. The Role of Catecholamines in the Pathogenesis of Diseases and the Modified Electrodes for Electrochemical Detection of Catecholamines: A Review. Crit Rev Anal Chem 2024:1-22. [PMID: 38462811 DOI: 10.1080/10408347.2024.2324460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catecholamines (CAs), which include adrenaline, noradrenaline, and dopamine, are neurotransmitters and hormones that critically regulate the cardiovascular system, metabolism, and stress response in the human body. The abnormal levels of these molecules can lead to the development of various diseases, including pheochromocytoma and paragangliomas, Alzheimer's disease, and Takotsubo cardiomyopathy. Due to their low cost, high sensitivity, flexible detection strategies, ease of integration, and miniaturization, electrochemical techniques have been extensively employed in the detection of CAs, surpassing traditional analytical methods. Electrochemical detection of CAs in real samples is challenging due to the tendency of poisoning electrode. Chemically modified electrodes have been widely used to solve the problems of poor sensitivity and selectivity faced by bare electrodes. There are a few articles that provide an overview of electrochemical detection and efficient enrichment of CAs, but there is a dearth of updates on the role of CAs in the pathogenesis of diseases. Additionally, there is still a lack of systematic synthesis with a focus on modified electrodes for electrochemical detection. Thus, this review provides a summary of the recent clinical pathogenesis of CAs and the modified electrodes for electrochemical detection of CAs published between 2017 and 2022. Moreover, challenges and future perspectives are also highlighted. This work is expected to provide useful guidance to researchers entering this interdisciplinary field, promoting further development of CAs pathogenesis, and developing more novel chemically modified electrodes for the detection of CAs.
Collapse
Affiliation(s)
- Meng Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yimeng Wang
- Elite Engineer School, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yanxiao Jiang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, Shandong, China
| | - Daqian Song
- College of Chemistry, Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Wachholz Junior D, Hryniewicz BM, Tatsuo Kubota L. Advanced Hybrid materials in electrochemical sensors: Combining MOFs and conducting polymers for environmental monitoring. CHEMOSPHERE 2024; 352:141479. [PMID: 38367874 DOI: 10.1016/j.chemosphere.2024.141479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
The integration of conducting polymers (CPs) with metal-organic frameworks (MOFs) has arisen as a dynamic and innovative approach to overcome some intrinsic limitations of both materials, representing a transformative method to address the pressing need for high-performance environmental monitoring tools. MOFs, with their intricate structures and versatile functional groups, provide tuneable porosity and an extensive surface area, facilitating the selective adsorption of target analytes. Conversely, CPs, characterized by their exceptional electrical conductivity and redox properties, serve as proficient signal transducers. By combining these two materials, a novel class of hybrid materials emerges, capitalizing on the unique attributes of both components. These MOF/CP hybrids exhibit heightened sensitivity, selectivity, and adaptability, making them primordial in detecting and quantifying environmental contaminants. This review examines the synergy between MOFs and CPs, highlighting recent advancements, challenges, and prospects, thus offering a promising solution for developing advanced functional materials with tailored properties and multifunctionality to be applied in electrochemical sensors for environmental monitoring.
Collapse
Affiliation(s)
- Dagwin Wachholz Junior
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Bruna M Hryniewicz
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas - UNICAMP, 13083-970, Campinas, Brazil; National Institute of Science and Technology in Bioanalytic, Campinas, Brazil.
| |
Collapse
|
7
|
Balasubramaniyan NG, Perumal P. Highly efficient electrochemical detection of H 2O 2 utilizing an innovative copper porphyrinic nanosheet decorated bismuth metal-organic framework modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:624-638. [PMID: 38198128 DOI: 10.1039/d3ay01804k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The ability to detect hydrogen peroxide is important due to the presence in biological systems. Researchers are highly interested in developing efficient electrochemical hydrogen peroxide sensors. Metal-organic frameworks (MOFs) with their composites, an emerging class of porous materials, are ideal candidates for heterogeneous catalysts because of their versatile functionalities. Using a facile solvothermal reaction, we fabricated a 2D Cu-TCPP nanosheet uniformly grown on a 3D Bi-MOF. The process takes advantage of the large surface area and pore volume of the Bi-MOF while maintaining the crystallinity of Bi-BTC when Cu-TCPP is added to the surface. The sensor was fabricated by depositing the Bi-BTC-Cu-TCPP nanocomposites on a glassy carbon electrode to conduct electrochemical measurements such as cyclic voltammetry and electrochemical impedance spectroscopy. Finally, differential pulse voltammetry was utilized to investigate the effect of hydrogen peroxide on the electrochemical activity of Bi-BTC-Cu-TCPP deposited on a glassy carbon electrode. This electrode showed high electrochemical performance activity for the reduction of hydrogen peroxide. The sensor showed a linear response to H2O2 in the 10-120 μM concentration range, with a detection limit of 0.20 μM. The sensor was also stable and selective for H2O2 in the presence of other interfering species. This work demonstrates the potential of nanocomposite-based electrochemical sensors for sensitive and selective detection of H2O2. Besides, the modified electrode has many advantages, including remarkable catalytic activity, long-term stability, good reproducibility, and a good signal response during H2O2 reduction.
Collapse
Affiliation(s)
- Nandha Gopal Balasubramaniyan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| | - Panneerselvam Perumal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India.
| |
Collapse
|
8
|
Tan G, Wang S, Yu J, Chen J, Liao D, Liu M, Nezamzadeh-Ejhieh A, Pan Y, Liu J. Detection mechanism and the outlook of metal-organic frameworks for the detection of hazardous substances in milk. Food Chem 2024; 430:136934. [PMID: 37542961 DOI: 10.1016/j.foodchem.2023.136934] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
Milk has a high nutritional value. However, milk is easily contaminated in the production, processing, and storage processes, which harms consumers' health. Therefore, the harmful substances' detection in milk is important. Metal-organic frameworks (MOFs) have proven high potential in food safety detection due to their unique porous structure, large effective surface area, large porosity, and structural tunability. This article systematically describes the detection mechanism of fluorescence, electrochemical, colorimetric, and enzyme-linked immunosorbent assay based on MOFs. The progress of the application of MOFs in the detection of antibiotics, harmful microorganisms and their toxins, harmful ions, and other harmful substances in milk in recent years is reviewed. The structural tunability of MOFs enables them to be functionalized, giving the ability to be applied to different detection methods or substances. Therefore, MOFs can be used as an advantageous sensing material for detecting harmful substances in the complex environment of milk.
Collapse
Affiliation(s)
- Guijian Tan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Sanying Wang
- Department of Pain, Dalang Hospital, Dongguan 523770, China
| | - Jialin Yu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Jiahao Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Miao Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| |
Collapse
|
9
|
Zhou Y, Tian M, Li R, Zhang Y, Zhang G, Zhang C, Shuang S. Ultrasensitive Electrochemical Platform for Dopamine Detection Based on CoNi-MOF@ERGO Composite. ACS Biomater Sci Eng 2023; 9:5599-5609. [PMID: 37656436 DOI: 10.1021/acsbiomaterials.3c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
An electrochemical sensor applied for dopamine (DA) detection was constructed. An easy static way was used to synthesize bimetallic CoNi-MOF. Next, it was mixed with graphene oxide (GO) under ultrasound to get a uniform suspension. Subsequently, the solution was coated on the glassy carbon electrode (GCE) to form CoNi-MOF@ERGO/GCE by the electrochemical reduction method. The interaction between CoNi-MOF and electrochemically reduced graphene oxide (ERGO) enhances the electrocatalytic performance for DA detection. CoNi-MOF@ERGO/GCE has a wider linear range (0.1-400 μM) and a lower detection limit (0.086 μM) under optimum conditions. Furthermore, it has been applied to test DA in human serum samples. The results reveal that the DA sensor shows excellent performance, which will provide a novel idea for more sensitive and quicker DA detection.
Collapse
Affiliation(s)
- Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Min Tian
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ruichun Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Bindra AK, Wang D, Zhao Y. Metal-Organic Frameworks Meet Polymers: From Synthesis Strategies to Healthcare Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300700. [PMID: 36848594 DOI: 10.1002/adma.202300700] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs) have been at the forefront of nanotechnological research for the past decade owing to their high porosity, high surface area, diverse configurations, and controllable chemical structures. They are a rapidly developing class of nanomaterials that are predominantly applied in batteries, supercapacitors, electrocatalysis, photocatalysis, sensors, drug delivery, gas separation, adsorption, and storage. However, the limited functions and unsatisfactory performance of MOFs resulting from their low chemical and mechanical stability hamper further development. Hybridizing MOFs with polymers is an excellent solution to these problems, because polymers-which are soft, flexible, malleable, and processable-can induce unique properties in the hybrids based on those of the two disparate components while retaining their individuality. This review highlights recent advances in the preparation of MOF-polymer nanomaterials. Furthermore, several applications wherein the incorporation of polymers enhances the MOF performance are discussed, such as anticancer therapy, bacterial elimination, imaging, therapeutics, protection from oxidative stress and inflammation, and environmental remediation. Finally, insights from the focus of existing research and design principles for mitigating future challenges are presented.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Dongdong Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
11
|
Jiang Q, Wang J, Liu T, Ying S, Kong Y, Chai N, Yi FY. UiO-66-Derived PBA Composite as Multifunctional Electrochemical Non-Enzymatic Sensor Realizing High-Performance Detection of Hydrogen Peroxide and Glucose. Inorg Chem 2023; 62:7014-7023. [PMID: 37126666 DOI: 10.1021/acs.inorgchem.3c00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this work, a highly efficient multifunctional non-enzymatic electrochemical sensor is successfully fabricated based on a facile two-step synthetic strategy. It resolves two important challenges of poor stability and low reproducibility compared to conventional electrochemical enzyme-based sensors. Herein, a metal-organic framework (UiO-66) is selected as a sacrificial template to construct the corresponding Prussian blue analogue (PBA) target to improve its stability and conductivity, namely, PBA/UiO-66/NF. Target PBA/UiO-66/NF exhibits excellent electrochemical sensing performance as hydrogen peroxide (H2O2) and glucose sensors with ultrahigh sensitivity of up to 1903 μA mM-1 cm-2 for H2O2 and 22,800 μA mM-1 cm-2 for glucose, as well as a very low detection limit of 0.02 μM (S/N = 3) for H2O2 and 0.28 μM for glucose. Especially, extremely high stability can be observed, which will be beneficial for practical application.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
12
|
Su Z, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. An electrochemical determination strategy for miRNA based on bimetallic nanozyme and toehold-mediated DNA replacement procedure. Mikrochim Acta 2023; 190:149. [PMID: 36952059 DOI: 10.1007/s00604-023-05720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
An electrochemical strategy based on bimetallic nanozyme in collaboration with toehold-mediated DNA replacement effect is proposed for the sensitive determination of miRNA-21. The AuPt nanoparticles (AuPt NPs) are prepared as a catalytic beacon; it shows favorable peroxidase properties with a Michaelis contant (Km) of 0.072 mM for H2O2, which is capable of catalyzing H2O2 to induce an intense redox reaction, and causing a measurable electrochemical signal. To further enhance the strength of the signal response, a novel toehold-mediated DNA replacement strategy is employed. DNA strands with specific sequences are modified on electrodes and AuPt NPs, respectively. In the presence of miRNA-21, a cyclic substitution effect is subsequently activated via a specific toehold sequence and leads to a large accumulation of AuPt NPs on the electrodes. Subsequently, a strong signal depending on the amount of miRNA-21 is obtained after adding a small amount of H2O2. The analytical range of this determination method is from 0.1 pM to 1.0 nM, and the LOD is 84.1 fM. The spike recoveries for serum samples are 95.0 to 102.4% and the RSD values are 3.7 to 5.8%. The results suggests a promising application of the established method in clinical testing and disease diagnosis.
Collapse
Affiliation(s)
- Zhanying Su
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Li Zhang
- School of Environmental and Chemical Engineering, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
13
|
Sohrabi H, Maleki F, Khaaki P, Kadhom M, Kudaibergenov N, Khataee A. Electrochemical-Based Sensing Platforms for Detection of Glucose and H 2O 2 by Porous Metal-Organic Frameworks: A Review of Status and Prospects. BIOSENSORS 2023; 13:347. [PMID: 36979559 PMCID: PMC10046199 DOI: 10.3390/bios13030347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Establishing enzyme-free sensing assays with great selectivity and sensitivity for glucose and H2O2 detection has been highly required in biological science. In particular, the exploitation of nanomaterials by using noble metals of high conductivity and surface area has been widely investigated to act as selective catalytic agents for molecular recognition in sensing platforms. Several approaches for a straightforward, speedy, selective, and sensitive recognition of glucose and H2O2 were requested. This paper reviews the current progress in electrochemical detection using metal-organic frameworks (MOFs) for H2O2 and glucose recognition. We have reviewed the latest electrochemical sensing assays for in-place detection with priorities including straightforward procedure and manipulation, high sensitivity, varied linear range, and economic prospects. The mentioned sensing assays apply electrochemical systems through a rapid detection time that enables real-time recognition. In profitable fields, the obstacles that have been associated with sample preparation and tool expense can be solved by applying these sensing means. Some parameters, including the impedance, intensity, and potential difference measurement methods have permitted low limit of detections (LODs) and noticeable durations in agricultural, water, and foodstuff samples with high levels of glucose and H2O2.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Fatemeh Maleki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Pegah Khaaki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz 51666-16471, Iran
| | - Mohammed Kadhom
- Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad 10081, Iraq
| | - Nurbolat Kudaibergenov
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
14
|
Cortés P, Castroagudín M, Kesternich V, Pérez-Fehrmann M, Carmona E, Zaragoza G, Vizcarra A, Hernández-Saravia LP, Nelson R. Ligand influence in electrocatalytic properties of Cu(II) triazole complexes for hydrogen peroxide detection in aqueous media. Dalton Trans 2023; 52:1476-1486. [PMID: 36645272 DOI: 10.1039/d2dt03549a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this work, electrocatalytic changes of Cu(II) triazole complexes (Cu(L)2) resulting from inductive effects were evaluated to fabricate a sensor for hydrogen peroxide (H2O2) determination. Three copper(II) complexes with electronically differentiated ligands were synthesized by slow diffusion method and characterized by X-ray crystallography, Fourier transformed infrared (FTIR), UV-Vis, scanning electron microscopy (SEM) and voltammetry cyclic (CV). Cu(LOMe)2/GC, Cu(LBr)2/GC and Cu(LNO2)2/GC sensors were then prepared. Under optimal conditions (pH = 11), the optimal sensor presented a response at -0.5 V, good linear range of 1-32 μM, reproducibility (1.7%), repeatability (1.2%), LOD of 0.0246 μM (S/N = 5), LOQ of 0.0747 μM (S/N = 5) and selectivity. Additionally, Cu(LNO2)2/GC sensor has been successfully applied in commercial substances, such as mouthwash, milk and tea.
Collapse
Affiliation(s)
- Paula Cortés
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile.
| | - Mariña Castroagudín
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile.
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile.
| | - Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile.
| | - Erico Carmona
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Guillermo Zaragoza
- Unidade de Difracción de Raios X, RIAIDT, Universidade de Santiago de Compostela, Campus VIDA, Santiago de Compostela 15782, Spain
| | - Arnoldo Vizcarra
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile.
| | | | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte, Avda. Angamos 0610, Antofagasta 1270709, Chile.
| |
Collapse
|
15
|
Liu X, Zheng J. Highly sensitive dopamine electrochemical sensing method based on hollow dodecahedron zinc-cobalt bimetallic sulfide. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Daniel M, Mathew G, Anpo M, Neppolian B. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: An overview. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Pourmadadi M, Eshaghi MM, Ostovar S, Shamsabadipour A, Safakhah S, Mousavi MS, Rahdar A, Pandey S. UiO-66 metal-organic framework nanoparticles as gifted MOFs to the biomedical application: A comprehensive review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Carvalho da Silva VN, Farias EADO, Araújo AR, Xavier Magalhães FE, Neves Fernandes JR, Teles Souza JM, Eiras C, Alves da Silva D, Hugo do Vale Bastos V, Teixeira SS. Rapid and selective detection of dopamine in human serum using an electrochemical sensor based on zinc oxide nanoparticles, nickel phthalocyanines, and carbon nanotubes. Biosens Bioelectron 2022; 210:114211. [PMID: 35468419 DOI: 10.1016/j.bios.2022.114211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 12/29/2022]
Abstract
Composite materials have gained significant attention owing to the synergistic effects of their constituent materials, thereby facilitating their utilization in new applications or in improving the existing ones. In this study, a composite based on nickel phthalocyanine (NiTsPc), zinc oxide nanoparticles (ZnONPs), and carbon nanotubes (CNT) was developed and subsequently immobilized on a pyrolytic graphite electrode (PGE). The PGE/NiTsPc-ZnONPs-CNT was identified as a selective catalytic hybrid system for detection of neurotransmitter dopamine (DA). The electrochemical and morphological characterizations were conducted using atomic force microscopy (AFM). Chronoamperometry and differential pulse voltammetry (DPV) were used to detect DA and detection limits of 24 nM and 7.0 nM was found, respectively. In addition, the effects of some possible DA interferents, such as ascorbic acid, uric acid, and serotonin, on DA response were evaluated. Their presence did not show significant variations in the DA electrochemical response. The high specificity and sensitivity of PGE/NiTsPc-ZnONPs-CNT for DA enabled its direct detection in human serum without sample pretreatment as well as in DA-enriched serum samples, whose recovery levels were close to 100%, thereby confirming the effectiveness of the proposed method. In general, PGE/NiTsPc-ZnONPs-CNT is a promising candidate for future applications in clinical diagnosis.
Collapse
Affiliation(s)
- Valécia Natália Carvalho da Silva
- Laboratório de Neuroinovação Tecnológica & Mapeamento Cerebral - NITLAB, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil.
| | - Emanuel Airton de O Farias
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil.
| | - Alyne R Araújo
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| | - Francisco Elezier Xavier Magalhães
- Laboratório de Neuroinovação Tecnológica & Mapeamento Cerebral - NITLAB, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| | - Jacks Renan Neves Fernandes
- Laboratório de Neuroinovação Tecnológica & Mapeamento Cerebral - NITLAB, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| | - Jéssica Maria Teles Souza
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| | - Carla Eiras
- Laboratório de Pesquisa e Desenvolvimento de Novos Materiais e Sistemas Sensores - MATSENS, Centro de Tecnologia, Universidade Federal do Piauí, Teresina, PI 64049-550, Brazil.
| | - Durcilene Alves da Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| | - Victor Hugo do Vale Bastos
- Laboratório de Mapeamento e Funcionalidade Cerebral - LAMCEF, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| | - Silmar Silva Teixeira
- Laboratório de Neuroinovação Tecnológica & Mapeamento Cerebral - NITLAB, Universidade Federal do Delta do Parnaíba, Parnaíba, PI 64202-020, Brazil
| |
Collapse
|
19
|
A sensitive hydrogen peroxide biosensor based on a new electron mediator 1-aminoethoxy-5-ethylphenazine dioctyl sulfosuccinate. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Dong Y, Zheng J, Xing J, Zhao T, Peng S. In situ synthesis of gold nanoparticle on MIL-101(Cr)-NH2 for non-enzymatic dopamine sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Zhang T, Guo H, Yang M, Sun L, Zhang J, Wang M, Yang F, Wu N, Yang W. Electrochemical sensor based on UiO-66-NH2/COCl-MWCNT/CB for simultaneous detection of dihydroxybenzene isomers in different water samples. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
23
|
Liu H, He Y, Mu J, Cao K. Structure engineering of silicon nanoparticles with dual signals for hydrogen peroxide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120421. [PMID: 34624814 DOI: 10.1016/j.saa.2021.120421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Fluorescent silicon nanoparticles (SiNPs) were synthesized by a one-step, simple, and green method with 3-Aminopropyltriethoxysilane (APTES) and ascorbic acid (AA) as reaction agents. Subsequently, the SiNPs and AgNPs nanocomplex (SiNPs@AgNPs) was constructed as the probe for hydrogen peroxide (H2O2) detection. The fluorescence of SiNPs was quenched due to the surface plasmonic-enhanced energy transfer between SiNPs and AgNPs. Meanwhile, the color tends to be yellow due to the existence of AgNPs. As the AgNPs were etched by H2O2, the fluorescence recovers and color fadings. Based on the well-designed structure, the "off-on" fluorescence sensing and "on-off" color sensing platforms for H2O2 were fabricated. The as-synthesized materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Fluorescence and UV-vis absorption spectra were used to evaluate the optical performance. The fabricated sensor exhibited a linear range of 1.0-100.0 μM, with a limit of detection of 0.36 μM for the fluorescence sensing of H2O2. Additionally, a linear range of 1.0-50.0 μM and a limit of detection of 0.45 μM were displayed for the detection of H2O2 by colorimetric assay. The feasibility in complex medium of the fabricated fluorescent and colorimetric dual-signal sensor was evaluated by the detection of H2O2 in phosphate buffer saline (PBS) and lake water samples.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Yanan He
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Jiping Mu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Kangzhe Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
24
|
Zhu K, Cai X, Luo Y, Liu B, Zhang Q, Hu T, Liu Z, Wu H, Zhang D. Facile synthesis of flower-like CePO 4 with a hierarchical structure for the simultaneous electrochemical detection of dopamine, uric acid and acetaminophen. NEW J CHEM 2022. [DOI: 10.1039/d1nj04308k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flower-like CePO4 with a hierarchical structure was hydrothermally prepared for electrochemical sensing of dopamine, uric acid and acetaminophen.
Collapse
Affiliation(s)
- Kai Zhu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Xinqin Cai
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Yuhui Luo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Botao Liu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Qingyu Zhang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Tongtong Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Zunzheng Liu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Haiying Wu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| | - Dongen Zhang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu province, China
| |
Collapse
|
25
|
Jiang J, Zhang Z, Yang C, Wang R, Wu Z. Facile preparation of urchin-like NiCo 2O 4 microspheres for efficient hydrogen peroxide detection. RSC Adv 2022; 12:35199-35205. [DOI: 10.1039/d2ra05778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
The fabricated NiCo2O4 microspheres acted as excellent sensors for H2O2, with much better performance than the reported NiCo2O4-based H2O2 sensors.
Collapse
Affiliation(s)
- Jiaojiao Jiang
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, P. R. China
| | - Zhixuan Zhang
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, P. R. China
| | - Chong Yang
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, P. R. China
| | - Rui Wang
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, P. R. China
| | - Zhouling Wu
- School of Public Health, Zunyi Medical University, Zunyi 563000, Guizhou, P. R. China
| |
Collapse
|
26
|
Nagarajan RD, Sundaramurthy A, Sundramoorthy AK. Synthesis and characterization of MXene (Ti 3C 2T x)/Iron oxide composite for ultrasensitive electrochemical detection of hydrogen peroxide. CHEMOSPHERE 2022; 286:131478. [PMID: 34303904 DOI: 10.1016/j.chemosphere.2021.131478] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Due to the widespread usage of hydrogen peroxide (H2O2) in various consumer and industrial products (Examples: fuel cells and antibacterial agents), it became important to accurately detect H2O2 concentration in environmental, medical and food samples. Herein, titanium carbide Ti3C2Tx (MXene) was synthesized by using Ti, Al and C powders at high-temperature. Then, nanocrystalline iron oxide (α-Fe2O3) was obtained from a single solid-phase method. Using Ti3C2Tx and Fe2O3 powders, Ti3C2Tx-Fe2O3 nanocomposite was prepared by ultrasonication. As-synthesized, Ti3C2Tx-Fe2O3 composite had been characterized by UV-Visible (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Raman spectroscopy. The Fe2O3 nanoparticles (NPs) were decorated on the surface of Ti3C2Tx as observed by high resolution scanning electron microscopy (HR-SEM) and high resolution transmission electron microscopy (HR-TEM). The Ti3C2Tx nanosheets were formed with the average size of 400-500 nm. HR-SEM images of α-Fe2O3 showed that the coral-like particles with the average length ~5 μm were obtained. The electrochemical properties of the individual (Ti3C2Tx and α-Fe2O3) and composite materials (Ti3C2Tx-Fe2O3) were investigated by cyclic voltammetry (CV). Ti3C2Tx-Fe2O3 nanocomposite modified electrode had exhibited potent electro-catalytic activity for H2O2 reduction by reducing the overpotential about 320 mV and a linear response was recorded from 10 nM to 1 μM H2O2. The optimization of various parameters such as material composition ratio, amount of catalyst, effects of pH, scan rate and interference effects with other biomolecules were carried out. In addition, the kinetic parameters such as rate constant, diffusion coefficient and the active surface area of the electrodes were calculated. Moreover, the Ti3C2Tx-Fe2O3 composite modified electrode was used successfully to detect H2O2 in food and urine samples. We believe that Ti3C2Tx-Fe2O3 composite based materials could be used for the fabrication of non-enzymatic H2O2 sensors for medical diagnosis, food safety and environmental monitoring applications.
Collapse
Affiliation(s)
- Ramila D Nagarajan
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
27
|
Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS OMEGA 2021; 6:33149-33158. [PMID: 34901666 PMCID: PMC8655944 DOI: 10.1021/acsomega.1c05529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
The development of novel electrode materials for rapid and sensitive detection of neurotransmitters in the human body is of great significance for early disease diagnosis and personalized therapy. Herein, gold nanorod@zeolitic imidazolate framework-8 (AuNR@ZIF-8) core-shell nanostructures were prepared by controlled encapsulation of gold nanorods within a ZIF-8 assembly. The designed AuNR@ZIF-8 nanostructures have uniform morphology, good dispersion, a large specific surface area, and an average size of roughly 175 nm. Compared with individual ZIF-8 and AuNR-modified electrodes, the obtained core-shell-structured AuNR@ZIF-8 nanocomposite structure-modified electrode shows excellent electrocatalytic performance in the determination of dopamine (DA) and serotonin (ST). The designed AuNR@ZIF-8 exhibited a wide linear range of 0.1-50 μM and low detection limit (LOD, 0.03 μM, S/N = 3) for the determination of DA, as well as a linear range of 0.1-25 μM and low LOD (0.007 μM, S/N = 3) for monitoring ST. The improved performance is attributed to the synergistic effect of the high conductivity of AuNRs and multiple catalytic sites of ZIF-8. The good electroanalytical ability of AuNR@ZIF-8 for detection of DA and ST can provide a guide to efficiently and rapidly monitor other neurotransmitters and construct novel electrochemical sensors.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Guiming Niu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Fucheng Gao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Kaida Lu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Zhiwei Sun
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Hui Li
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Martina Stenzel
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao Liu
- Department
of Oromaxillofacial Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People’s Hospital, Shanghai 200011, P. R. China
| | - Yanyan Jiang
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
28
|
|
29
|
Hira SA, Yusuf M, Annas D, Nagappan S, Song S, Park S, Park KH. Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shamim Ahmed Hira
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Mohammad Yusuf
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Dicky Annas
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Saravanan Nagappan
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Kang Hyun Park
- Department of Chemistry, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
30
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
31
|
Bimetallic MOFs-derived coral-like Ag-Mo 2C/C interwoven nanorods for amperometric detection of hydrogen peroxide. Mikrochim Acta 2021; 188:234. [PMID: 34160693 DOI: 10.1007/s00604-021-04888-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Coral-like Ag-Mo2C/C-I and blocky Ag-Mo2C/C-II composites were obtained from one-step in situ calcination of [Ag(HL)3(Mo8O26)]n·nH2O [L: N-(pyridin-3-ylmethyl) pyridine-2-amine] under N2/H2 and N2 atmospheres, respectively. The coral-like morphology of Ag-Mo2C/C-I is composed of interwoven nanorods embedded with small particles, and the nano-aggregate of Ag-Mo2C/C-II is formed by cross-linkage of irregular nanoparticles. The above composites are decorated on glassy carbon electrode (GCE) drop by drop to generate two enzyme-free electrochemical sensors (Ag-Mo2C/C/GCE) for amperometric detection of H2O2. In particular, the coral-like Ag-Mo2C/C-I/GCE sensor possesses rapid response (1.2 s), high sensitivity (466.2 μA·mM-1·cm-2), and low detection limit (25 nM) towards trace H2O2 and has wide linear range (0.08 μM~4.67 mM) and good stability. All these sensing performances are superior to Ag-Mo2C/C-II/GCE, indicating that the calcining atmosphere has an important influence on microstructure and electrochemical properties. The excellent electrochemical H2O2 sensing performance of Ag-Mo2C/C-I/GCE sensor is mainly attributed to the synergism of unique microstructure, platinum-like electron structure of Mo2C, strong interaction between Mo and Ag, as well as the increased active sites and conductivity caused by co-doped Ag and carbon. Furthermore, this sensor has been successfully applied to the detection of H2O2 in human serum sample, contact lens solution, and commercial disinfector, demonstrating the potential in related fields of environment and biology. Graphical abstract.
Collapse
|
32
|
Jin X, Li G, Xu T, Su L, Yan D, Zhang X. Ruthenium‐based Conjugated Polymer and Metal‐organic Framework Nanocomposites for Glucose Sensing. ELECTROANAL 2021. [DOI: 10.1002/elan.202100148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaofeng Jin
- School of Biomedical Engineering Shenzhen University, Shenzhen Guangdong 518060 China
| | - Guanhua Li
- Shenzhen Refresh Intelligent Technology Co., Ltd., Shenzhen Guangdong 518060 China
| | - Tailin Xu
- School of Biomedical Engineering Shenzhen University, Shenzhen Guangdong 518060 China
| | - Lei Su
- School of Biomedical Engineering Shenzhen University, Shenzhen Guangdong 518060 China
| | - Dan Yan
- Shenzhen Refresh Intelligent Technology Co., Ltd., Shenzhen Guangdong 518060 China
| | - Xueji Zhang
- School of Biomedical Engineering Shenzhen University, Shenzhen Guangdong 518060 China
| |
Collapse
|
33
|
Zhu F, Wang X, Yang X, Zhao C, Zhang Y, Qu S, Wu S, Ji W. Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2512-2518. [PMID: 34002739 DOI: 10.1039/d1ay00568e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sensitive detection of H2O2 in the nano- to micromolar range is critical for health monitoring and disease diagnosis. Two-dimensional transition metal carbides or/and nitrides (called MXenes, MXs) have excellent potential applications in the electrochemical field due to their outstanding electrical conductivity and catalytic properties. In this work, Ti3C2Tx (MX) was employed for the construction of a sensitive and enzyme-free electrochemical sensing interface for the detection of hydrogen peroxide (H2O2) through a simple and effective method. Prussian blue (PB) was electrochemically deposited on the surface of a glassy carbon electrode (GCE). Chitosan (CS) and MX were sequentially dripped onto the PB modified GCE surface. The reasonable fabrication of the MX/CS/PB/GCE sensing interface presented good electrochemical sensing performance towards H2O2 with a low limit of detection (4 nM), a wide linear range from 50 nM to 667 μM and good selectivity. The proposed MX/CS/PB/GCE has been proven to monitor H2O2 in food samples and biological samples with recoveries between 94.7% and 100.3%. This work has made a beneficial attempt and research for exploring and expanding the application of MXs in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Fenghui Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang T, Wu Y, She J, Xu Y, Zhang Y, Zhao A, Manoj D, Xi J, Sun Y, Ren J, Xiao F. 3D nitrogen-doped carbon nanofoam arrays embedded with PdCu alloy nanoparticles: Assembling on flexible microelectrode for electrochemical detection in cancer cells. Anal Chim Acta 2021; 1158:338420. [PMID: 33863406 DOI: 10.1016/j.aca.2021.338420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/02/2021] [Accepted: 03/13/2021] [Indexed: 11/18/2022]
Abstract
In this work, we developed a novel and facile strategy for the synthesis of a highly active and stable electrocatalyst based on PdCu alloy nanoparticles (PdCu-ANPs) embedded in 3D nitrogen-doped carbon (NC) nanofoam arrays (NFAs), which were assembled on flexible carbon fiber (CF) microelectrode for in situ sensitive electrochemical detection of biomarker H2O2 in cancer cells. Our results showed that NC-NFAs support possessed a unique hierarchically porous architecture by integrating the macrospores in arrays scaffold within mesopores in individual NC nanofoam, which offered exceptionally large surface area for embedding high-density PdCu-ANPs in it as well as facilitated the mass transfer and molecular diffusion during the electrochemical reaction. Taking the advantages of the unique structural merit of NC-NFAs support and excellent electrocatalyitc properties of PdCu-ANPs that embedded in it, the resultant PdCu-ANPs/NC-NFAs modified CF microelectrode exhibited good electrochemical sensing performances towards H2O2 including a wide linear range from 2.0 μM to 3.44 mM, a low detection limit of 500 nM, as well as good reproducibility, stability and anti-interference ability. When used in real-time in situ tracking H2O2 secreted from different types of human colorectal cancer cells, i.e., HCT116, HT29, SW48 and LoVo, it can distinguish the types of cancer cells by measuring the number of extracellular H2O2 molecules released per cell, which demonstrates its great promise in cancer diagnose and management.
Collapse
Affiliation(s)
- Taoqun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Ying Wu
- Wuhan Hospital of Integrated Chinese & Western Medicine, Wuhan, 430033, China
| | - Jun She
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Yun Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Yan Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China
| | - Anshun Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Devarajan Manoj
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yimin Sun
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Jinghua Ren
- Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430022, China.
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China.
| |
Collapse
|
35
|
Morozova S, Sharsheeva A, Morozov M, Vinogradov A, Hey-Hawkins E. Bioresponsive metal–organic frameworks: Rational design and function. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Li B, Liu LH, Zhang XF, Gao Y, Deng ZP, Huo LH, Gao S. Novel neuron-network-like Cu-MoO 2/C composite derived from bimetallic organic framework for highly efficient detection of hydrogen peroxide. Anal Chim Acta 2020; 1143:73-83. [PMID: 33384132 DOI: 10.1016/j.aca.2020.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Fabrication of non-enzymatic electrochemical sensors based on metal oxides with low valence-state for nanomolar detection of H2O2 has been a great challenge. In this work, a novel neuron-network-like Cu-MoO2/C hierarchical structure was simply prepared by in-situ pyrolysis of 3D bimetallic-organic framework [Cu(Mo2O7)L]n [L: N-(pyridin-3-ylmethyl)pyridine-2-amine] crystals. Meanwhile, the MoO2/C nano-aggregates were also obtained by liquid phase copper etching. Subsequently, two non-enzymatic electrochemical sensors were fabricated by simple drop-coating of the above two materials on the surface of glassy carbon electrode (GCE). Electrochemical measurements indicate that the Cu-MoO2/C/GCE possesses highly efficient electrocatalytic H2O2 property during wider linear range of 0.24 μM-3.27 mM. At room temperature, the Cu-MoO2/C composite displays higher sensitivity (233.4 μA mM-1 cm-2) and lower limit of detection (LOD = 85 nM), which are 1 and 2.5 times larger than those of MoO2/C material, respectively. Such excellent ability for trace H2O2 detection mainly originates from the synergism of neuron-network-like structure, enhanced electrical conductivity and increased active sites caused by low valence-state MoO2 and co-doping of Cu and carbon, and even the interaction between Cu and Mo. In addition, the H2O2 detection in spiked human serum and commercially real samples indicates that the Cu-MoO2/C/GCE sensor has certain potential application in the fields of environment and biology.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China; College of Science, Heihe University, Heihe, 164300, China
| | - Li-Hong Liu
- College of Science, Heihe University, Heihe, 164300, China
| | - Xian-Fa Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yuan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Zhao-Peng Deng
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| | - Li-Hua Huo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Shan Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
37
|
Wang Q, Gu C, Fu Y, Liu L, Xie Y. Ultrasensitive Electrochemical Sensor for Luteolin Based on Zirconium Metal-Organic Framework UiO-66/Reduced Graphene Oxide Composite Modified Glass Carbon Electrode. Molecules 2020; 25:E4557. [PMID: 33028038 PMCID: PMC7582780 DOI: 10.3390/molecules25194557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/15/2022] Open
Abstract
Luteolin is a kind of natural flavonoid with many bioactivities purified from a variety of natural herbs, fruits and vegetables. Electrochemical sensing has become an outstanding technology for the detection of luteolin in low concentration due to its fast response, easy operation and low cost. In this study, electroreduced graphene oxide (ErGO) and UiO-66 were successively modified onto a glassy carbon electrode (UiO-66/ErGO/GCE) and applied to the detection of luteolin. A combination of UiO-66 and ErGO showed the highest promotion in the oxidation peak current for luteolin compared with those of a single component. The factors affecting the electrochemical behavior of UiO-66/ErGO/GCE were evaluated and optimized including pH, accumulation potential, accumulation time and scan rate. Under optimum conditions, UiO-66/ErGO/GCE showed satisfactory linearity (from 0.001 μM to 20 μM), reproducibility and storage stability. The detection limit of UiO-66/ErGO/GCE reached 0.75 nM of luteolin and was suitable for testing real samples. Stable detection could be provided at least eight times by one modified electrode, which guaranteed the practicability of the proposed sensor. The fabricated UiO-66/ErGO/GCE showed a rapid electrochemical response and low consumption of materials in the detection of luteolin. It also showed satisfactory accuracy for real samples with good recovery. In conclusion, the modification using MOFs and graphene materials made the electrode advanced property in electrochemical sensing of natural active compounds.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Chunmeng Gu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
| | - Yafen Fu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
| | - Yixi Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Q.W.); (C.G.); (Y.F.)
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|