1
|
Liu F, Xu X, Zhu L, Zhao J, Chen L, Gu Y, Yang G, Qu LL. Signal-off based dual-mode sensing platform for ultrasensitive detection of antibiotics in food samples. Talanta 2025; 284:127248. [PMID: 39579493 DOI: 10.1016/j.talanta.2024.127248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Development of efficient and accurate detection methods for antibiotics is crucial for ensuring food safety and safeguarding human health. In this study, a dual-mode sensing platform was constructed by integrating photoelectrochemical (PEC) and surface-enhanced Raman scattering (SERS) techniques for the sensitive detection of kanamycin using an aptamer signal conversion strategy which was based on the C3N4/MXene-gold nanoparticles heterojunction. The sensitive dual-mode sensing platform enabled detection of kanamycin, with linear response ranges of 10-3 to 105 nM for PEC with a detection limit (LOD) of 0.53 pM, and 10-2 to 104 nM for SERS with a LOD of 4.8 pM. Notably, this platform exhibited excellent performance for kanamycin assays in raw milk. Furthermore, combined with various aptamer-targets, it can be easily broadened to detect more low concentration target substances in other complex matrix, showcasing its vast potential for diverse applications.
Collapse
Affiliation(s)
- Fanglei Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiaolin Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Liuhui Zhu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jiayi Zhao
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Luqing Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
2
|
Dos Santos JRN, Botelho CN, Caldas GKC, de Menezes AS, Kubota LT, Sousa JKC, Damos FS, de Cássia Silva Luz R. Photoelectrochemical determination of phloroglucinol based on a combination of a ceramic perovskite and bismuth vanadate. Mikrochim Acta 2024; 191:609. [PMID: 39297995 DOI: 10.1007/s00604-024-06668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024]
Abstract
Phloroglucinol (PL) or 1,3,5-trihydroxybenzene is a phenolic compound used therapeutically for its antispasmodic properties. However, an overdose or prolonged exposure to PL can have harmful effects on human health. This work describes for the first time the development of a photoelectrochemical (PEC) sensor to determine PL. The proposed sensor is based on a fluorine-doped tin oxide (FTO) substrate modified with bismuth calcium tantalate (CaBi2Ta2O9), a ceramic perovskite powder, and bismuth vanadate (BiVO4). Both materials were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphology of the BiVO4/CaBi2Ta2O9/FTO platform was evaluated using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The photoelectrochemical response of the platform was evaluated by exploiting with light from a 36 W LED lamp confined in a low-cost homemade box. The BiVO4/CaBi2Ta2O9/FTO sensor showed superior photocurrent response compared to the FTO modified by the individual components (BiVO4/FTO and CaBi2Ta2O9/FTO). Under optimized experimental conditions, the photoelectrochemical sensor showed two linear ranges for PL concentrations ranging from 1 up to 900 μmol L-1 and from 900 up to 2000 μmol L-1, respectively. The BiVO4/CaBi2Ta2O9/FTO sensor exhibited excellent results regarding precision, accuracy, and selectivity for PL detection. PL determination was successfully performed in water and artificial urine samples, with recovery values between 100.1 and 102.2%.
Collapse
Affiliation(s)
| | | | | | - Alan Silva de Menezes
- Department of Physics, Federal University of Maranhão, São Luís, MA, 65080-805, Brazil
| | - Lauro Tatsuo Kubota
- Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Janyeid Karla Castro Sousa
- Interdisciplinary Bachelor of Science and Technology, Federal University of Maranhão, São Luís, MA, 65080-805, Brazil
| | - Flávio Santos Damos
- Department of Chemistry, Federal University of Maranhão, São Luís, MA, 65080-805, Brazil
| | | |
Collapse
|
3
|
Wang S, Ao J, Ding S, Cheng Q, Hu M, Shu T. A hydrogen sulfide photoelectrochemical sensor based on BiVO 4/Fe 2O 3 heterojunction. Mikrochim Acta 2024; 191:509. [PMID: 39101972 DOI: 10.1007/s00604-024-06597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 μM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.
Collapse
Affiliation(s)
- Shi Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Jialin Ao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Saiwen Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Qiqing Cheng
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Mingli Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China
| | - Ting Shu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, 437100, People's Republic of China.
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, People's Republic of China.
| |
Collapse
|
4
|
He X, Jiang C, Yang J, Sheng S, Wang Y. Sensitive photoelectric sensing for 5-HMF detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3766-3773. [PMID: 38818642 DOI: 10.1039/d3ay02273k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
5-Hydroxymethylfurfural (5-HMF) is a heterocyclic compound with six carbons commonly found in heat-treated carbohydrate-rich foods. 5-HMF exceeding the specified limit is cytotoxic to the human body, and will be converted into carcinogenic substances (5-sulfoxide methyl furfural) after long-term accumulation in the body. Therefore, it is highly necessary to develop a sensitive and accurate detection method for 5-HMF in the field of food safety. In this study, a photoelectric sensing method was developed for the highly sensitive detection of 5-HMF using hollow TiO2 nanospheres successfully synthesized by template, sol-gel and lye etching methods. The structure and composition of the materials were studied by XRD, XPS, SEM and TEM. The electrochemical and photoelectrochemical properties of an h-TiO2 electrode probe based on indium tin oxide (ITO) slides were investigated. The results indicated that the linear relationship of 5-HMF is good in the concentration range of 10-11-10-7 M, and the detection limit of 5-HMF is 0.001 nM. Moreover, the PEC sensor shows high accuracy in the detection of actual samples.
Collapse
Affiliation(s)
- Xin He
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Caiyun Jiang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Engineering Research and Development Center of Food Safety, Department of Health, Jiangsu Vocational Institute of Commerce, Nanjing 211168, China
| | - Jie Yang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Shuangchao Sheng
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Yuping Wang
- School of Chemistry and Material Science, Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Zhang W, Wang T, Jiao B, Wang X, Qu R, Han J. High performance photoelectrochemical immunosensing platform based on front-illuminated Mo:BiVO 4 photoelectrodes for procalcitonin assay. Talanta 2024; 271:125670. [PMID: 38237277 DOI: 10.1016/j.talanta.2024.125670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
The outstanding photoactive materials are the imperative for the construction of a front-illuminated photoelectrochemical (PEC) biosensor, which is crucial step for improving the detection sensitivity. Yet, the weak and unstable initial PEC signals of the photoelectrodes have limited evidently the detection performance. Herein, a front-illuminated "on-off" PEC immunosensor was constructed based on Mo:BiVO4 as photoactive matrix and Au/CeO2 as signal quencher for sensitive detection of procalcitonin (PCT). Systematic studies reveal that the Mo doped BiVO4 can increase the charge carrier density of BiVO4, leading to much higher initial signal under front illumination than back illumination. Moreover, Mo:BiVO4 was directly grown on conducting substrates, which effectively overcomes the loose combination of sensing substrate ensuring good electrical contact and continuity. Upon coupling with Au/CeO2 as signal quencher, the initial photocurrent signal can be significantly quenched. As a result, the proposed PEC immunosensor presents a wide linear range from 10 fg mL-1 to 50 ng mL-1 with a detection limit of 2.45 fg mL-1. Impressively, this study will open a new avenue for the construction of highly efficient and stable photoelectrode, as well as extend the application of PEC biosensor for biomarkers detection in early disease diagnosis.
Collapse
Affiliation(s)
- Wen Zhang
- School of Chemical Engineering, Xi'an University, Xi'an, 710065, China.
| | - Ting Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Baojuan Jiao
- School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Xiaoli Wang
- School of Chemical Engineering, Xi'an University, Xi'an, 710065, China
| | - Rong Qu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China
| | - Jing Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, China.
| |
Collapse
|
6
|
Liu S, Zhan J, Cai B. Recent advances in photoelectrochemical platforms based on porous materials for environmental pollutant detection. RSC Adv 2024; 14:7940-7963. [PMID: 38454947 PMCID: PMC10915833 DOI: 10.1039/d4ra00503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Human health and ecology are seriously threatened by harmful environmental contaminants. It is essential to develop efficient and simple methods for their detection. Environmental pollutants can be detected using photoelectrochemical (PEC) detection technologies. The key ingredient in the PEC sensing system is the photoactive material. Due to the unique characteristics, such as a large surface area, enhanced exposure of active sites, and effective mass capture and diffusion, porous materials have been regarded as ideal sensing materials for the construction of PEC sensors. Extensive efforts have been devoted to the development and modification of PEC sensors based on porous materials. However, a review of the relationship between detection performance and the structure of porous materials is still lacking. In this work, we present an overview of PEC sensors based on porous materials. A number of typical porous materials are introduced separately, and their applications in PEC detection of different types of environmental pollutants are also discussed. More importantly, special attention has been paid to how the porous material's structure affects aspects like sensitivity, selectivity, and detection limits of the associated PEC sensor. In addition, future research perspectives in the area of PEC sensors based on porous materials are presented.
Collapse
Affiliation(s)
- Shiben Liu
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University 250100 Jinan China
| |
Collapse
|
7
|
Dong X, Wang H, Zhao L, Li Y, Fan D, Ma H, Wu D, Wei Q. A photoelectrochemical sensor for Hg 2+ detection with enhanced cathodic photocurrent via BiOI/Bi 2S 3 photoanode of self-sacrifice. Mikrochim Acta 2023; 190:288. [PMID: 37423906 DOI: 10.1007/s00604-023-05857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023]
Abstract
Due to the inherent merits of the anodic photoelectrochemical (PEC) sensor, it was widely utilized in the field of analytical chemistry. However, it must be noted that the anodic PEC sensor was susceptible to interference in practical applications. The situation with the cathodic PEC sensor was exactly the opposite. Therefore, this work fabricated a PEC sensor combining photoanode and photocathode that solved the defects of conventional PEC sensors in detecting Hg2+. Specifically, Na2S solution was carefully dropped on the BiOI-modified indium-tin oxide (ITO) to obtain ITO/BiOI/Bi2S3 directly by self-sacrifice method and the resulting electrode was used as photoanode. In addition, a sequential modification process was employed to decorate the ITO substrate with Au nanoparticles (Au NPs), Cu2O, and L-cysteine (L-cys), thereby realizing the fabrication of the photocathode. Moreover, the presence of Au NPs further amplified the photocurrent of the PEC platform. During the detection process, when Hg2+ is present it will bind to the L-cys, resulting in an increase in current, thus enabling sensitive detection of Hg2+. The proposed PEC platform exhibited good stability and reproducibility, providing a new idea for the detection of other heavy metal ions.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
8
|
Guo Y, Dai X, Zhang Y, Ma S, Yang L, Bu Y, Hao Y. Universal Hydrogen-Treated TiO 2 Nanorod Array/Ti 2CO X MXene PEC Aptamer Sensor Modulated by the Transport Characteristic of Photogenerated Holes. Anal Chem 2023; 95:7560-7568. [PMID: 37134286 DOI: 10.1021/acs.analchem.3c00046] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A semiconductor photoelectrochemical (PEC) aptamer sensor has been widely researched in recent years because of its broad application prospects. However, a universal PEC sensor has not been achieved, and its sensing mechanism based on a photogenerated carrier transfer process has yet to be elucidated. Herein, a novel hydrogen-treated TiO2 nanorod array one-dimensional (1D)/Ti2COX MXene two-dimensional (2D) (H-TiO2/Ti2COX) PEC aptamer sensor is presented, which achieved a record detection range of 10-9-103 μg/L and a limit of detection (LOD) of 1 fg/L for microcystic toxins-LR detection. Besides, the PEC sensor can also test serotonin (5-HT), aflatoxin-B1, and prostate-specific antigen (PSA) with high performance by changing the aptamers, exhibiting favorable application universality. Furthermore, a new phenomenon of a switchable enhanced/suppressed photocurrent detection signal was discovered from H-TiO2/Ti2COX PEC aptamer sensors through the variation of the length of the TiO2 nanorod. Meanwhile, it reveals that the steric hindrance effect determines the photogenerated hole transfer and depolarization processes, which is proposed for the first time as the predominant mechanism of the switchable enhanced/suppressed photocurrent signal for PEC sensors, giving possibilities to develop PEC sensors with higher efficiency.
Collapse
Affiliation(s)
- Yiwei Guo
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Xianying Dai
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yan Zhang
- Xi'an Mental Health Center, Xi'an 710061, China
| | - Shenhui Ma
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Liu Yang
- Xi'an Mental Health Center, Xi'an 710061, China
| | - Yuyu Bu
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| | - Yue Hao
- Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
| |
Collapse
|
9
|
Solangi NH, Mubarak NM, Karri RR, Mazari SA, Jatoi AS. Advanced growth of 2D MXene for electrochemical sensors. ENVIRONMENTAL RESEARCH 2023; 222:115279. [PMID: 36706895 DOI: 10.1016/j.envres.2023.115279] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.
Collapse
Affiliation(s)
- Nadeem Hussain Solangi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan.
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
10
|
Zhang Q, Wang C, Tian Y, Liu Y, You F, Wang K, Wei J, Long L, Qian J. Growth of AgI semiconductors on tailored 3D porous Ti 3C 2 MXene/graphene oxide aerogel to develop sensitive and selective "signal-on" photoelectrochemical sensor for H 2S determination. Anal Chim Acta 2023; 1245:340845. [PMID: 36737133 DOI: 10.1016/j.aca.2023.340845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Long term exposure to hydrogen sulfide (H2S) even in low concentration poses a serious threat to human health and the ecosystem, pointing to the significance for its effective supervision. In this study, we report a sensitive and selective "signal-on" photoelectrochemical (PEC) sensor for the determination of toxic H2S in aqueous solution by in situ growth of AgI semiconductors on tailored three-dimensional (3D) porous Ti3C2 MXene/graphene oxide aerogel (MGA). Our research demonstrated that the resultant MGA with the starting feeding mass ratio of MXene and graphene oxide (GO) of 1:8 (MGA1:8) possessed the most excellent PEC performance after the growth of AgI semiconductors than their monomers (Ti3C2 MXene and GO) and the MGAs with other starting feeding mass ratio. Such designed PEC sensor based on MGA1:8/AgI heterojunction showed dramatically strengthened PEC responses with increasing concentrations of S2-. Correspondingly, a wide linear range of 5 nM-200 μM, a low limit of detection of 1.54 nM (S/N = 3), and exclusively unique selectivity have been achieved. Our research illustrates that the PEC sensor designed with tailored MGA constitutes is an effective pathway to enhance the overall sensing performance, which will envision to boost more efforts for advanced 3D porous aerogel using in PEC sensors.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Chengquan Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Yunmeng Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Fuheng You
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lingliang Long
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
11
|
Park J, Yoon KY, Kwak MJ, Kang J, Kim S, Chaule S, Ha SJ, Jang JH. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH) x Co-Catalyzed Hematite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9341-9349. [PMID: 36749965 DOI: 10.1021/acsami.2c20524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of oxygen evolution co-catalysts (OECs) with hematite photoanodes has received much attention because of the potential to reduce surface charge recombination. However, the low surface charge transfer and bulk charge separation rate of hematite are not improved by decorating with OECs, and the intrinsic drawbacks of hematite still limit efficient photoelectrochemical (PEC) water splitting. Here, we successfully overcame the sluggish oxygen evolution reaction performance of hematite for water splitting by inserting zero-dimensional (0D) nanofragmented MXene (NFMX) as a hole transport material between the hematite and the OEC. The 0D NFMX was fabricated from two-dimensional (2D) MXene sheets and deposited onto the surface of a three-dimensional (3D) hematite photoanode via a centrifuge-assisted method without altering the inherent performance of the 2D MXene sheets. Among many OECs, NiFe(OH)x was selected as the OEC to improve hematite PEC performance in our system because of its efficient charge transport behavior and high stability. Because of the great synergy between NFMX and NiFe(OH)x, NiFe(OH)x/NFMX/Fe2O3 achieved a maximum photocurrent density of 3.09 mA cm-2 at 1.23 VRHE, which is 2.78-fold higher than that of α-Fe2O3 (1.11 mA cm-2). Furthermore, the poor stability of MXene in an aqueous solution for water splitting was resolved by uniformly coating it with NiFe(OH)x, after which it showed outstanding stability for 60 h at 1.23 VRHE. This study demonstrates the successful use of NFMX as a hole transport material combined with an OEC for highly efficient water splitting.
Collapse
Affiliation(s)
- Juhyung Park
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Ki-Yong Yoon
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Myung-Jun Kwak
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Jihun Kang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Suhee Kim
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Sourav Chaule
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Seong-Ji Ha
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| | - Ji-Hyun Jang
- School of Energy and Chemical Engineering, Department of Energy Engineering, Graduate School of Carbon Neutrality, UNIST, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Li M, An S, Wu Y, Yan Z, Chai Y, Yuan R. Self-Supplied Electron Photoelectrochemical Biosensor with PTB7-Th as a Photoelectric Material and Biotin as an Efficient Quencher. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53398-53404. [PMID: 36378492 DOI: 10.1021/acsami.2c14921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, a self-supplied electron photoelectrochemical (PEC) biosensor for sensitive determination of Pb2+ was established by utilizing donor-acceptor (D-A)-type PTB7-Th (poly{4,8-bis[5-(2-ethylhexyl) thiophen-2-yl]benzo[1,2-b,4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]-thiophene-4,6-diyl}) as a photoelectric material coupled with biotin as an efficient signal quencher. Impressively, compared with the traditional PEC signal quenchers, biotin was first applied as a PEC signal quencher in this work and it effectively avoided a cumbersome preparation process, complex DNA sequence design, and extra reagent assistance and greatly simplified experimental steps, which could achieve an efficient PEC signal quenching toward PTB7-Th. In addition, the execution of a DNAzyme-assisted Pb2+ recycling amplification reaction could release the quencher biotin, leading to the recovery of the PEC signal, thereby realizing the quantitative detection of Pb2+. Resultantly, the submitted self-supplied electron PEC biosensor presented an extensive coverage of assay Pb2+ (50 fM to 500 nM) along with a low determination limit (16.7 fM), which exhibited the advantages of high selectivity and excellent stability. Importantly, this work provided a powerful alternative to traditional heavy metal-ion assessment methods and possessed the potential for application in environment, biomedicine, and food-safety fields.
Collapse
Affiliation(s)
- Mengjie Li
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Siyu An
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Ying Wu
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Zhitao Yan
- School of Civil Engineering and Architecture, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
- Institute for Health and Environment, Chongqing University of Science & Technology, Chongqing 401331, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
13
|
Gao L, Zhou Y, Cao L, Cui X, Zheng Y, Yin H, Ai S. Photoelectrochemical Biosensor for Histone Deacetylase Sirt1 Detection Based on Polyaspartic Acid-Engaged and Triggered Redox Cycling Amplification and Enhanced Photoactivity of BiVO 4 by Gold Nanoparticles and SnS 2. Anal Chem 2022; 94:16936-16944. [PMID: 36416225 DOI: 10.1021/acs.analchem.2c04380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A photoelectrochemical (PEC) biosensor was established for histone deacetylase Sirt1 detection based on the polyaspartic acid (PASP)-mediated redox cycling amplification and Sirt1 catalysis deacetylation-triggered recognition of the deacetylated substrate peptide, using PASP as the recognition reagent. After BiVO4 was composited with gold nanoparticles and SnS2, the photoactivity of the composite was greatly enhanced due to the matched energy band structure. Under the catalysis of Sirt1 enzyme, the acetylated substrate peptide was deacetylated to obtain a positive peptide, which was recognized by negative PASP. In addition to the recognition function, PASP also played other triple roles. First, PASP interacted with the positive peptide to form a double-stranded structure, which led to the electrode interface changing from irregular to regular, resulting in an improved PEC response. Second, PASP was involved into redox cycle amplification due to its reduction to dehydroascorbic acid. Further, it was used for repeated preparation of ascorbic acid to provide electron donors. This process enhanced the PEC response. Third, based on the matched energy band with BiVO4, PASP effectively improved the photoactivity of BiVO4. With multiplex signal amplification, the PEC biosensor showed a wide linear range (1.83-1830 pM) and high detection sensitivity with a low detection limit of 0.732 pM (S/N = 3). The applicability of this method was evaluated by studying the effects of a known inhibitor of nicotinamide and the heavy metal ions of Cd2+ and Pb2+ on Sirt1 enzyme activity, and the results showed that this method not only provided a new platform for screening Sirt1 enzyme inhibitors but also provided new biomarkers for evaluating the ecotoxicological effects of environmental pollutants.
Collapse
Affiliation(s)
- Lanlan Gao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Lulu Cao
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Xiaoting Cui
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Yulin Zheng
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Huanshun Yin
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian, Shandong271018, People’s Republic of China
| |
Collapse
|
14
|
Wang Q, Guo L, Gao W, Li S, Hao L, Wang Z, Wang C, Wu Q. Facile synthesis of BiOI/MXene heterostructure as a superior photoelectrochemical sensor for sensitive detection of glucose. Anal Chim Acta 2022; 1233:340511. [DOI: 10.1016/j.aca.2022.340511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 11/01/2022]
|
15
|
Li L, Chen J, Xiao C, Luo Y, Zhong N, Xie Q, Chang H, Zhong D, Xu Y, Zhao M, Liao Q. Recent advances in photoelectrochemical sensors for detection of ions in water. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Ali I, Faraz Ud Din M, Gu ZG. MXenes Thin Films: From Fabrication to Their Applications. Molecules 2022; 27:4925. [PMID: 35956874 PMCID: PMC9370612 DOI: 10.3390/molecules27154925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022] Open
Abstract
Two-dimensional MXenes possessed exceptional physiochemical properties such as high electrical conductivity (20,000 Scm-1), flexibility, mechanical strength (570 MPa), and hydrophilic surface functionalities that have been widely explored for energy storage, sensing, and catalysis applications. Recently, the fabrication of MXenes thin films has attracted significant attention toward electronic devices and sensor applications. This review summarizes the exciting features of MXene thin film fabrication methods such as vacuum-assisted filtration (VAF), electrodeposition techniques, spin coating, spray coating, dip-coating methods, and other physical/chemical vapor deposition methods. Furthermore, a comparison between different methods available for synthesizing a variety of MXenes films was discussed in detail. This review further summarizes fundamental aspects and advances of MXenes thin films in solar cells, batteries, electromagnetic interference shielding, sensing, etc., to date. Finally, the challenges and opportunities in terms of future research, development, and applications of MXenes-based films are discussed. A comprehensive understanding of these competitive features and challenges shall provide guidelines and inspiration for further growth in MXenes-based functional thin films and contribute to the advances in MXenes technology.
Collapse
Affiliation(s)
- Israt Ali
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Zhi-Gang Gu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Li M, Wu Y, An S, Yan Z. Au NP-Decorated g-C 3N 4-Based Photoelectochemical Biosensor for Sensitive Mercury Ions Analysis. ACS OMEGA 2022; 7:19622-19630. [PMID: 35721978 PMCID: PMC9202297 DOI: 10.1021/acsomega.2c01335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Herein, an efficient and feasible photoelectrochemical (PEC) biosensor based on gold nanoparticle-decorated graphitic-like carbon nitride (Au NPs@g-C3N4) with excellent photoelectric performance was designed for the highly sensitive detection of mercury ions (Hg2+) . The proposed Au NPs@g-C3N4 was first modified on the surface of the electrode, which possessed a remarkable photocurrent conversion efficiency and could produce a strong initial photocurrent. Then, the thymine-rich DNA (S1) was immobilized on the surface of the modified electrode via Au-N bonds. Subsequently, 1-hexanethiol (HT) was added to the resultant electrode to block nonspecific binding sites. Finally, the target Hg2+ was incubated on the surface of the modified glassy carbon electrode (GCE). In the presence of target Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) structure formed due to the selective capture capability of thymine base pairs toward Hg2+, resulting in the significantly decrease of the photocurrent. Thereafter, the proposed PEC biosensor was successfully used for sensitive Hg2+ detection, as it possessed a wide linear range from 1 pM to 1000 nM with a low detection limit of 0.33 pM. Importantly, this study demonstrates a new method of detecting Hg2+ and provides a promising platform for the detection of other heavy metal ions of interest.
Collapse
Affiliation(s)
- Mengjie Li
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Ying Wu
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Siyu An
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| | - Zhitao Yan
- School
of Civil Engineering and Architecture, Chongqing
University of Science and Technology, Chongqing 401331, China
- Institute
for Health and Environment, Chongqing University
of Science and Technology, Chongqing 401331, PR China
| |
Collapse
|
18
|
Wang H, Wang H, Li Y, Wang H, Ren X, Wei Q, Wu D. Construction of a photoelectrochemical immunosensor based on CuInS 2 photocathode and BiVO 4/BiOI/Ag 2S photoanode and sensitive detection of NSE. Biosens Bioelectron 2022; 211:114368. [PMID: 35597146 DOI: 10.1016/j.bios.2022.114368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 01/10/2023]
Abstract
In this paper, a photoelectrochemical (PEC) immunosensor was constructed to detect neuron-specific enolase (NSE) with ITO/BiVO4/BiOI/Ag2S as photoanode and ITO/CuInS2 as photocathode. Due to its excellent photocurrent response, Ag2S sensitized BiVO4/BiOI composite was selected to provide stable photocurrent in place of the traditional Pt electrode. ITO/CuInS2 electrode was used to immobilize biomolecules, which solved the deficiency of poor anti-interference ability of single photoanode. Under the optimal experimental conditions, the PEC immunosensor had outstanding linear relationship within the range of NSE concentration from 5 pg/mL-200 ng/mL, and the detection limit was 1.2 pg/mL. The constructed PEC immunosensor had two advantages. On the one hand, the PEC immunosensor was built on the photocathode, which had better anti-interference ability because of the separation of light capture and biomolecular recognition process. On the other hand, the introduction of photoanode increased the photocurrent response and reduced the detection limit of target antigen. The PEC immunosensor had good stability, reproducibility and specificity, and provided a broad prospect for the detection of other molecules.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hanyu Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
19
|
Zhong C, Shang Z, Zhao C, Luo H, Cao Y, Yan D, You K. Co-Catalyst Ti3C2TX MXene-Modified ZnO Nanorods Photoanode for Enhanced Photoelectrochemical Water Splitting. Top Catal 2022. [DOI: 10.1007/s11244-022-01619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Rizwan K, Rahdar A, Bilal M, Iqbal HMN. MXene-based electrochemical and biosensing platforms to detect toxic elements and pesticides pollutants from environmental matrices. CHEMOSPHERE 2022; 291:132820. [PMID: 34762881 DOI: 10.1016/j.chemosphere.2021.132820] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Fabricating new biosensing constructs with high selectivity and sensitivity is the most needed environmental detection tool. In this context, several nanostructured materials have been envisaged to construct biosensors to achieve superior selectivity and sensitivity. Among them, MXene is regarded as the most promising to develop biosensors due to its fascinating attributes, like high surface area, excellent thermal resistance, good hydrophilicity, unique layered topology, high electrical conductivity, and environmentally-friendlier properties. MXenes-based materials have emerged as a prospective for catalysis, energy storage, electronics, and environmental sensing and remediation applications thanks to the above-mentioned exceptional characteristics. This review elaborates on the contemporary and state-of-the-art advancements in MXene-based electrochemical and biosensing tools to detect toxic elements, pharmaceutically active residues, and pesticide contaminants from environmental matrices. At first, the surface functionalization/modification of MXenes is discussed. Afterwards, a particular focus has been devoted to exploiting MXene to construct electrochemical (bio) sensors to detect various environmentally-related pollutants. Lastly, current challenges in this arena accompanied by potential solutions and directions are also outlined.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 35856-98613, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
21
|
Qin Y, Wen J, Wang X, Jiao L, Wei X, Wang H, Li J, Liu M, Zheng L, Hu L, Gu W, Zhu C. Iron Single-Atom Catalysts Boost Photoelectrochemical Detection by Integrating Interfacial Oxygen Reduction and Enzyme-Mimicking Activity. ACS NANO 2022; 16:2997-3007. [PMID: 35147022 DOI: 10.1021/acsnano.1c10303] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The investigations on the generation, separation, and interfacial-redox-reaction processes of the photoinduced carriers are of paramount importance for realizing efficient photoelectrochemical (PEC) detection. However, the sluggish interfacial reactions of the photogenerated carriers, combined with the need for appropriate photoactive layers for sensing, remain challenges for the construction of advanced PEC platforms. Here, as a proof of concept, well-defined Fe single-atom catalysts (Fe SACs) were integrated on the surface of semiconductors, which amplified the PEC signals via boosting oxygen reduction reaction. Besides, Fe SACs were evidenced with efficient peroxidase-like activity, which depresses the PEC signals through the Fe SACs-mediated enzymatic precipitation reaction. Harnessing the oxygen reduction property and peroxidase-like activity of Fe SACs, a robust PEC sensing platform was successfully constructed for the sensitive detection of acetylcholinesterase activity and organophosphorus pesticides, providing guidelines for the employment of SACs for sensitive PEC analysis.
Collapse
Affiliation(s)
- Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jing Wen
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Xiaosi Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lei Jiao
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Xiaoqian Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
22
|
CdS/Ti3C2 heterostructure–based photoelectrochemical platform for sensitive and selective detection of trace amount of Cu2+. Anal Bioanal Chem 2022; 414:3571-3580. [DOI: 10.1007/s00216-021-03870-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/30/2022]
|
23
|
Chen Z, Asif M, Wang R, Li Y, Zeng X, Yao W, Sun Y, Liao K. Recent Trends in Synthesis and Applications of porous MXene Assemblies: A Topical Review. CHEM REC 2021; 22:e202100261. [PMID: 34913570 DOI: 10.1002/tcr.202100261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/01/2021] [Indexed: 02/06/2023]
Abstract
MXene possesses high conductivity, excellent hydrophilicity, rich surface chemistry, hence holds great potential in various applications. However, MXene materials have low surface area utilization due to the agglomeration of ultrathin nanosheets. Assembling 2D MXene nanosheets into 3D multi-level architectures is an effective way to circumvent this issue. Incorporation of MXene with other nanomaterials during the assembly process could rationally tune and tailor the specific surface area, porosity and surface chemistry of the MXene assemblies. The complementary and synergistic effect between MXene and nanomaterials could expand their advantages and make up for their disadvantages, thus boost the performance of 3D porous MXene composites. Herein, we summarize the recent progress in fabrication of porous MXene architectures from 2D to 3D, and also discuss the potential applications of MXene nanostructures in energy harvesting systems, sensing, electromagnetic interference shielding, water purification and photocatalysis.
Collapse
Affiliation(s)
- Zhenyu Chen
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Muhammad Asif
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ruochong Wang
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yong Li
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xu Zeng
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wentao Yao
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yimin Sun
- Hubei key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Kin Liao
- Department of Aerospace Engineering, Khalifa University of Science and Technology, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
24
|
Li X, Lu Y, Liu Q. Electrochemical and optical biosensors based on multifunctional MXene nanoplatforms: Progress and prospects. Talanta 2021; 235:122726. [PMID: 34517594 DOI: 10.1016/j.talanta.2021.122726] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides (MXene) have emerged as a rising family of atomic layered nanomaterials which undergoes intensive investigations in interdisciplinary applications. The large surface-to-volume ratio, excellent mechanical strength, desirable biocompatibility, along with tunable electronic and optical properties, render 2D MXenes exceptional attractive as versatile nanoplatforms for biosensing. Herein, advanced progress and novel paradigms of MXene-based biosensors are reviewed, focusing on the combination of MXenes with various detection techniques that promotes target recognition and signal transducing. Regarding the nature of transducing signals, MXene-based biosensors are categorized into two groups where MXenes serve as electrical platforms or optical platforms, respectively. The merits of MXenes are critically compared with other 2D materials to illustrate the distinctive advantages of MXenes in biosensing, while challenges such as environmental vulnerability was discussed to guide the sensor design. Facing with the rapid development of wearable electronics and internet of medical things, as well as escalating demanding in precision medicine, perspectives are provided to elucidate the potential of MXenes in propelling advances in these trending biomedical applications.
Collapse
Affiliation(s)
- Xin Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
25
|
Zhu L, Hao H, Ding C, Gan H, Jiang S, Zhang G, Bi J, Yan S, Hou H. A Novel Photoelectrochemical Aptamer Sensor Based on CdTe Quantum Dots Enhancement and Exonuclease I-Assisted Signal Amplification for Listeria monocytogenes Detection. Foods 2021; 10:2896. [PMID: 34945447 PMCID: PMC8701101 DOI: 10.3390/foods10122896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
To achieve the rapid detection of Listeria monocytogenes, this study used aptamers for the original identification and built a photoelectrochemical aptamer sensor using exonuclease-assisted amplification. Tungsten trioxide (WO3) was used as a photosensitive material, was modified with gold nanoparticles to immobilize complementary DNA, and amplified the signal by means of the sensitization effect of CdTe quantum dots and the shearing effect of Exonuclease I (Exo I) to achieve high-sensitivity detection. This strategy had a detection limit of 45 CFU/mL in the concentration range of 1.3 × 101-1.3 × 107 CFU/mL. The construction strategy provides a new way to detect Listeria monocytogenes.
Collapse
Affiliation(s)
- Liangliang Zhu
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Chao Ding
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hanwei Gan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Shuting Jiang
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Gongliang Zhang
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Jingran Bi
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| | - Shuang Yan
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian 116034, China; (L.Z.); (C.D.); (H.G.); (S.J.); (S.Y.)
| | - Hongman Hou
- Liaoning Key Lab for Aquatic Processing Quality and Safety, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (G.Z.); (J.B.); (H.H.)
| |
Collapse
|
26
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Jin Y, Luan Y, Wu Z, Wen W, Zhang X, Wang S. Photocatalytic Fuel Cell-Assisted Molecularly Imprinted Self-Powered Sensor: A Flexible and Sensitive Tool for Detecting Aflatoxin B1. Anal Chem 2021; 93:13204-13211. [PMID: 34528807 DOI: 10.1021/acs.analchem.1c02074] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The self-powered electrochemical sensor has gained big achievements in energy and devices, but it is challenging in analytical application owing to its low energy conversion efficiency and limited selectivity caused by the plentiful interference in actual samples. Herein, a new self-powered biosensor was constructed by the integration of a photocatalytic fuel cell (PFC) with a molecular imprinting polymer (MIP) to achieve sensitive and specific detection of aflatoxin B1 (AFB1). Compared with other fuel cells, the PFC owns the advantages of low cost, high energy, good stability, and friendly environment by using light as the excitation source. MoS2-Ti3C2Tx MXene (MoS2-MX) served as the photoanode material for the first time by forming a heterojunction structure, which can enhance the photocurrent by about 3-fold and greatly improve the photoelectric conversion efficiency. Aiming at the poor selectivity of the self-powered sensor, the MIP was introduced to achieve the specific capture and separation of targets without sample pretreatment. Using the MIP and PFC as recognition and signal conversion elements, respectively, the proposed self-powered biosensor showed a wide dynamic range of 0.01-1000 ng/mL with a detection limit of 0.73 pg/mL, which opened opportunities to design more novel self-powered biosensors and promoted its application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Yunxia Jin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yang Luan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhen Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
28
|
Wu X, Ma P, Sun Y, Du F, Song D, Xu G. Application of MXene in Electrochemical Sensors: A Review. ELECTROANAL 2021. [DOI: 10.1002/elan.202100192] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xinzhao Wu
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
| | - Pinyi Ma
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Ying Sun
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Fangxin Du
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Daqian Song
- College of Chemistry Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments Jilin University Qianjin Street 2699 Changchun Jilin 130012 P.R. China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
29
|
Geng H, Chen X, Sun L, Qiao Y, Song J, Shi S, Cai Q. ZnCuInSe/Au/TiO 2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin. Anal Chim Acta 2021; 1146:166-173. [PMID: 33461712 DOI: 10.1016/j.aca.2020.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/01/2022]
Abstract
A highly selective and sensitive photoelectrochemical (PEC) sensing platform was developed for kanamycin assay based on the aptamer modified sandwich-structured ZnCuInSe/Au/TiO2 nanowires. Sandwiched between the TiO2 nanowires and the ZnCuInSe quantum dot (QDs) layer, the Au nanoparticles (Au NPs) serves as a plasmonic photosensitizer and an electron relay, which expand the light absorption range and facilitates the charge transfer. Also, ZnCuInSe QDs, a broad spectrum photosensitizer can capture visible light, which enhance the photocurrent density response. Through the Au-S bond and Cu-S bond, the HS-aptamer were immobilized on the ZnCuInSe/Au/TiO2 nanowires as a recognition unit for kanamycin. The proposed sensing platform showed excellent assay performance for kanamycin with a linear response range from 0.2 to 250 nM, and high selectivity. By changing the recognizers, the proposed sensing platform could be easily extended to detect other biomolecules, and may have a promising application in bioanalysis.
Collapse
Affiliation(s)
- Hongchao Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaoxu Chen
- Shenma Tire Cord Development Co. Ltd, Pingdingshan, 467000, PR China
| | - Leilei Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yan Qiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jie Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Sisi Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
30
|
|
31
|
|
32
|
MXenes: Are they emerging materials for analytical chemistry applications? - A review. Anal Chim Acta 2020; 1143:267-280. [PMID: 33384123 DOI: 10.1016/j.aca.2020.08.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
MXenes are an emerging class of 2D materials that exhibit unique properties of high conductivity and hydrophilicity. They can be easily functionalized with other materials due to the abundance of surface terminated functionalities. The versatile chemistry of MXenes allows fine-tuning their properties for different analytical chemistry applications such as electrochemical and optical sensing. MXenes may also be useful adsorbents for analytical extractions due to their exceptional surface chemistry, high surface areas, and ease of functionalization as per the nature of the target compounds. The features of the MXenes that can make them excellent materials for analytical applications are listed and critically appraised. The emerging applications of MXenes in electrochemical and optical sensing are discussed with the pertinent examples. The potential of MXene-based sorbents for analytical extractions is highlighted based on the current literature that describes their applications in adsorptive removal and environmental remediation. In the end, limitations, challenges, and future opportunities are briefly presented.
Collapse
|