1
|
Chen H, Zheng S, Zhang Y, Tang Q, Zhang R, Chen Y, Wu M, Liu L. Visual Detection of LPS at the Femtomolar Level Based on Click Chemistry-Induced Gold Nanoparticles Electrokinetic Accumulation. Anal Chem 2024; 96:6995-7004. [PMID: 38666367 DOI: 10.1021/acs.analchem.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.
Collapse
Affiliation(s)
- Hanren Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiquan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yitong Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qing Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Runhui Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yue Chen
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Meiming Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Yu W, Sun W, Guo K, Yang Y. Surface-enhanced fluorescence for lipopolysaccharide analysis based on shell-isolated nanoparticle. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123065. [PMID: 37364412 DOI: 10.1016/j.saa.2023.123065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Lipopolysaccharide (LPS) as the component of cell membrane on gram-negative bacteria played a central role on inflammatory inducer to stimulate a multi-system host response. Herein, a surface-enhanced fluorescent (SEF) sensor was developed for LPS analysis based on shell-isolated nanoparticles (SHINs). The fluorescent signal of CdTe quantum dots (QDs) was amplified by silica shell-coated Au nanoparticles (Au NPs). The 3D finite-difference time-domain (3D-FDTD) simulation revealed that this enhancement was due to local electric field amplification. This method has a linear detection range of 0.1-20 μg/mL and a detection limit of 64 ng/mL for LPS. Furthermore, the developed method was successfully applied for LPS analysis in milk and human serum sample. The results indicated that the as-prepared sensor has significant potential for selective detection of LPS in biomedical diagnosis and food safety.
Collapse
Affiliation(s)
- Weidao Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Wen Sun
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Ketong Guo
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Jiang S, Sun M, Meng P, Zhang X, Sun Y. Ultramicro and ultrasensitive detection of lipopolysaccharides based on triple-signal amplification via ultrafast ATRP and an ultramicroelectrode. Analyst 2023; 148:6359-6368. [PMID: 37966725 DOI: 10.1039/d3an01624b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Highly sensitive testing of trace lipopolysaccharides (LPS) is very important due to their high toxicity to the human body. Here, an ultrasensitive electrochemical sensor requiring only 5 μL solution was developed for LPS detection via triple-signal amplification based on ultrafast atom transfer radical polymerization (UATRP) and a Au ultramicroelectrode (UME). Firstly, the Au UME was modified with gold nanoparticles (nAu) and an LPS aptamer (Apt) in turn. When the Apt recognized LPS, the ATRP initiator of 4-(bromomethyl)phenylboronic acid (BPA) could be tethered to the electrode by covalent cross-linking between the phenylboronic acid moiety and the cis-diol site of LPS. Then UATRP was conducted for 2.5 min with nitrogen-doped carbon quantum dots (N-CQDs) as the photocatalyst and methylacrolein (MLA) as the monomer. After the electroactive probes of Ag nanoparticles (AgNPs) were formed on the surface of poly(MLA) by the silver mirror reaction, the electrochemical sensor was successfully prepared. Under the optimal conditions, the sensor exhibited a lower detection limit and a wider linear range when it was compared with a similar assay for LPS. In particular, the LOD of 7.99 × 10-2 pg mL-1 was better than that of the limulus amoebocyte lysate (LAL)-based technique, which is the gold standard for LPS detection. In the end, the sensor reported in this paper showed good selectivity and satisfactory feasibility for LPS detection in real biological samples and food products. The results obtained from the drug, blood and potable water samples laid a strong foundation for its clinical applications and application in other fields.
Collapse
Affiliation(s)
- Shipeng Jiang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Mingyang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Peiran Meng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Xiaoyu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
4
|
Zhu R, Qin F, Zheng X, Fang S, Ding J, Wang D, Liang L. Single-molecule lipopolysaccharides identification and the interplay with biomolecules via nanopore readout. Biosens Bioelectron 2023; 240:115641. [PMID: 37657310 DOI: 10.1016/j.bios.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Lipopolysaccharides (LPS) are the major constituent on the cell envelope of all gram-negative bacteria. They are ubiquitous in air, and are toxic inflammatory stimulators for urinary disorders and sepsis. The reported optical, thermal, and electrochemical sensors via the intermolecular interplay of LPS with proteins and aptamers are generally complicated methods. We demonstrate the single-molecule nanopore approach for LPS identification in distinct bacteria as well as the serotypes discrimination. With a 4 nm nanopore, we achieve a detection limit of 10 ng/mL. Both the antibiotic polymyxin B (PMB) and DNA aptamer display specific binding to LPS. The identification of LPS in both human serum and tap water show good performance with nanopore platforms. Our work shows a highly-sensitive and easy-to-handle scheme for clinical and environmental biomarkers determination and provides a promising screening tool for early warning of contamination in water and medical supplies.
Collapse
Affiliation(s)
- Rui Zhu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China; Chongqing Jiaotong University, Chongqing, 400014, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Xinchuan Zheng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Shaoxi Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China
| | - Jianjun Ding
- Southwest University, Chongqing, 400715, PR China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China.
| |
Collapse
|
5
|
Yan Y, Zhou F, Wang Q, Huang Y. A sensitive electrochemical biosensor for quinolones detection based on Cu2+-modulated signal amplification. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
6
|
Ashley J, Potts IG, Olorunniji FJ. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology. Chembiochem 2023; 24:e202200510. [PMID: 36342345 DOI: 10.1002/cbic.202200510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Indexed: 11/09/2022]
Abstract
The use of polymerase enzymes in biotechnology has allowed us to gain unprecedented control over the manipulation of DNA, opening up new and exciting applications in areas such as biosensing, polynucleotide synthesis, and DNA storage, aptamer development and DNA-nanotechnology. One of the most intriguing enzymes which has gained prominence in the last decade is terminal deoxynucleotidyl transferase (TdT), which is one of the only polymerase enzymes capable of catalysing the template independent stepwise addition of nucleotides onto an oligonucleotide chain. This unique enzyme has seen a significant increase in a variety of different applications. In this review, we give a comprehensive discussion of the unique properties and applications of TdT as a biotechnology tool, and the application in the enzymatic synthesis of poly/oligonucleotides. Finally, we look at the increasing role of TdT enzyme in biosensing, DNA storage, synthesis of DNA nanostructures and aptamer development, and give a future outlook for this technology.
Collapse
Affiliation(s)
- Jon Ashley
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Indiia G Potts
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| | - Femi J Olorunniji
- School of Pharmaceutical and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, 3 Byrom St, Liverpool, L3 3AF, UK
| |
Collapse
|
7
|
Yang X, Li J, Tan X, Yang X, Song P, Ming D, Yang Y. Ratiometric fluorescence probe integrated with smartphone for visually detecting lipopolysaccharide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121961. [PMID: 36265302 DOI: 10.1016/j.saa.2022.121961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A portable instrument-free detection method for lipopolysaccharide (LPS) analysis was developed based on dual-emission ratiometric fluorescence sensing system. Herein, red-emitting Au nanoclusters (Au NCs) were as reference probe, while blue-emitting fluorescent silica quantum dots (Si QDs) were as response probe. Additionally, the aptamer of LPS was covalently grafted to the surface of Si QDs in order to specific recognize the LPS. According to the changes of fluorescence intensityratio (FL ratio, I461 nm/I643 nm) with the concentrations of LPS, the linear equation was fitted with the range of 50-3000 ng/mL, and the limit of detection (LOD) was 29.3 ng/mL. As a practical application, this method was employed to analyze LPS in normal saline with the recovery rate of 97.7-103.8 %. The color picker platform in the smartphone was used to transform the detection picture to the process of Red, Green and Blue (RGB) for visual detection of LPS. The low-cost and easy-carry method reported here presents broad merits for the visually quantitative detection of LPS.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jiayi Li
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xinhui Tan
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xuejiao Yang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, PR China
| | - Ping Song
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Dengming Ming
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
8
|
Jiang J, Huang B, Li N, An C, Sun C, Shen Y, Gooneratne R, Cui H, Zhan S, Wang Y. Simple and fast colorimetric detection of lipopolysaccharide based on aptamer and SYBR Green I mediated aggregation of gold nanoparticles. Int J Biol Macromol 2022; 223:231-239. [PMID: 36347371 DOI: 10.1016/j.ijbiomac.2022.10.276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Lipopolysaccharide (LPS) poses a considerable threat to food safety and human health. A colorimetric assay for LPS detection based on LPS binding aptamer (LBA) and SYBR Green I (SG) mediated aggregation of gold nanoparticles (AuNPs) was established. In the absence of LPS, the LBA was absorbed onto the AuNPs surface which prevented SG-induced aggregation of AuNPs, and the sensing system exhibited red color. When LPS was added, it interacted with the LBA, forming a complex. At higher LPS concentration, many LBAs were exhausted resulting in SG-induced aggregation of AuNPs, and color change from red to blue. The range of colorimetric detection of LPS was linear in 0-12 EU/mL, with a limit of detection of 0.1698 EU/mL. Spiked LPS in real samples and interfering substances were also identified. This assay ingeniously using the fluorescent dye SG as an effective trigger of AuNPs aggregation, is rapid and facile than most of those earlier reported LBA-based LPS assays, and there is potential to be modified to construct assays for other targets.
Collapse
Affiliation(s)
- Jiajun Jiang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bingna Huang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ningjun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changcheng An
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changjiao Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yue Shen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Haixin Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shenshan Zhan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
9
|
Hu Q, Feng W, Liang Y, Liang Z, Cao X, Li S, Luo Y, Wan J, Ma Y, Han D, Niu L. Boronate Affinity-Amplified Electrochemical Aptasensing of Lipopolysaccharide. Anal Chem 2022; 94:17733-17738. [PMID: 36475636 DOI: 10.1021/acs.analchem.2c05004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As lipopolysaccharide (LPS) is closely associated with sepsis and other life-threatening conditions, the point-of-care (POC) detection of LPS is of significant importance to human health. In this work, we illustrate an electrochemical aptasensor for the POC detection of low-abundance LPS by utilizing boronate affinity (BA) as a simple, efficient, and cost-effective amplification strategy. Briefly, the BA-amplified electrochemical aptasensing of LPS involves the tethering of the aptamer receptors and the BA-mediated direct decoration of LPS with redox signal tags. As the polysaccharide chain of LPS contains hundreds of cis-diol sites, the covalent crosslinking between the phenylboronic acid group and cis-diol sites can be harnessed for the site-specific decoration of each LPS with hundreds of redox signal tags, thereby enabling amplified detection. As it involves only a single-step operation (∼15 min), the BA-mediated signal amplification holds the significant advantages of unrivaled simplicity, rapidness, and cost-effectiveness over the conventional nanomaterial- and enzyme-based strategies. The BA-amplified electrochemical aptasensor has been successfully applied to specifically detect LPS within 45 min, with a detection limit of 0.34 pg/mL. Moreover, the clinical utility has been validated based on LPS detection in complex serum samples. As a proof of concept, a portable device has been developed to showcase the potential applicability of the BA-amplified electrochemical LPS aptasensor in the POC testing. In view of its simplicity, rapidness, and cost-effectiveness, the BA-amplified electrochemical LPS aptasensor holds broad application prospects in the POC testing.
Collapse
Affiliation(s)
- Qiong Hu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wenxing Feng
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yiyi Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhiwen Liang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Xiaojing Cao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Shiqi Li
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yilin Luo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jianwen Wan
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Yingming Ma
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
10
|
Label-free detection of endotoxin and gram-negative bacteria from water using copper (I) oxide anchored reduced graphene oxide. Anal Chim Acta 2022; 1237:340597. [DOI: 10.1016/j.aca.2022.340597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/15/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
11
|
Gao ZF, Zheng LL, Dong LM, Li JZ, Shen Y, Chen P, Xia F. Label-Free Resonance Rayleigh Scattering Amplification for Lipopolysaccharide Detection and Logical Circuit by CRISPR/Cas12a-Driven Guanine Nanowire Assisted Non-Cross-Linking Hybridization Chain Reaction. Anal Chem 2022; 94:6371-6379. [DOI: 10.1021/acs.analchem.2c00848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhong Feng Gao
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, People’s Republic of China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Lin Lin Zheng
- Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, People’s Republic of China
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Lu Ming Dong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Jin Ze Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi 276005, People’s Republic of China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People’s Republic of China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L3G1, Canada
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, People’s Republic of China
| |
Collapse
|
12
|
Mobed A, Hasanzadeh M. Environmental protection based on the nanobiosensing of bacterial lipopolysaccharides (LPSs): material and method overview. RSC Adv 2022; 12:9704-9724. [PMID: 35424904 PMCID: PMC8959448 DOI: 10.1039/d1ra09393b] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide (LPS) or endotoxin control is critical for environmental and healthcare issues. LPSs are responsible for several infections, including septic and shock sepsis, and are found in water samples. Accurate and specific diagnosis of endotoxin is one of the most challenging issues in medical bacteriology. Enzyme-linked immunosorbent assay (ELISA), plating and culture-based methods, and Limulus amebocyte lysate (LAL) assay are the conventional techniques in quantifying LPS in research and medical laboratories. However, these methods have been restricted due to their disadvantages, such as low sensitivity and time-consuming and complicated procedures. Therefore, the development of new and advanced methods is demanding, particularly in the biological and medical fields. Biosensor technology is an innovative method that developed extensively in the past decade. Biosensors are classified based on the type of transducer and bioreceptor. So in this review, various types of biosensors, such as optical (fluorescence, SERS, FRET, and SPR), electrochemical, photoelectrochemical, and electrochemiluminescence, on the biosensing of LPs were investigated. Also, the critical role of advanced nanomaterials on the performance of the above-mentioned biosensors is discussed. In addition, the application of different labels on the efficient usage of biosensors for LPS is surveyed comprehensively. Also, various bio-elements (aptamer, DNA, miRNA, peptide, enzyme, antibody, etc.) on the structure of the LPS biosensor are investigated. Finally, bio-analytical parameters that affect the performance of LPS biosensors are surveyed.
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences Iran
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz 51664 Iran
- Nutrition Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
13
|
Deng Y, Sun Z, Wang L, Wang M, Yang J, Li G. Biosensor-based assay of exosome biomarker for early diagnosis of cancer. Front Med 2021; 16:157-175. [PMID: 34570311 DOI: 10.1007/s11684-021-0884-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Cancer imposes a severe threat to people's health and lives, thus pressing a huge medical and economic burden on individuals and communities. Therefore, early diagnosis of cancer is indispensable in the timely prevention and effective treatment for patients. Exosome has recently become an attractive cancer biomarker in noninvasive early diagnosis because of the unique physiology and pathology functions, which reflects remarkable information regarding the cancer microenvironment, and plays an important role in the occurrence and evolution of cancer. Meanwhile, biosensors have gained great attention for the detection of exosomes due to their superior properties, such as convenient operation, real-time readout, high sensitivity, and remarkable specificity, suggesting promising biomedical applications in the early diagnosis of cancer. In this review, the latest advances of biosensors regarding the assay of exosomes were summarized, and the superiorities of exosomes as markers for the early diagnosis of cancer were evaluated. Moreover, the recent challenges and further opportunities of developing effective biosensors for the early diagnosis of cancer were discussed.
Collapse
Affiliation(s)
- Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhaowei Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
14
|
Wang L, Deng Y, Huang Y, Wei J, Ma J, Li G. Template-free multiple signal amplification for highly sensitive detection of cancer cell-derived exosomes. Chem Commun (Camb) 2021; 57:8508-8511. [PMID: 34351331 DOI: 10.1039/d1cc03640h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, we have designed a template-free multiple signal amplification method for the highly sensitive detection of cancer cell-derived exosomes. In this design, DNase I serves as a bridge to link the DNA-based amplification approach and terminal deoxynucleotidyl transferase (TdT)-mediated polymerization reaction. Consequently, a detection limit of 10 particles per μL can be achieved, while a complex nucleic acid sequence design can be avoided. This method also exhibits good performance in a complicated matrix and enables the differentiation of healthy individuals from colorectal cancer (CRC) patients.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | | | |
Collapse
|
15
|
Wang L, Deng Y, Wei J, Huang Y, Wang Z, Li G. Spherical nucleic acids-based cascade signal amplification for highly sensitive detection of exosomes. Biosens Bioelectron 2021; 191:113465. [PMID: 34218177 DOI: 10.1016/j.bios.2021.113465] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Exosomes are regarded as a promising biomarker in the diagnosis of disease due to their close relationship with the change of physiology and pathology. However, it is still a hard challenge to come up with a highly sensitive method for the exosomes detection. Herein, we propose a spherical nucleic acids (SNAs)-based cascade signal amplification strategy for the exosomes detection with high sensitivity. In this method, SNAs anchoring on exosomes membrane can be extended to form polyT sequence by terminal deoxynucleotidyl transferase (TdT), generating a template strand for the Exo III-catalyzed excision of the designed signal probe (probe A), which may finally induce significant decrease of electrochemical signal due to the consumption of probe A. Benefiting from the SNAs-based cascade signal amplification, this fabricated biosensor achieves a limit of detection for exosomes as low as 44 particles/μL. Moreover, this method shows good performance in the differentiation of healthy and malignancy colorectal cancer patients. Therefore, without complicated nucleic acids sequences design, our approach provides a cascade signal amplification strategy for the highly sensitive detection of exosomes and shows the potential applications in clinical diagnosis.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Juan Wei
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, PR China
| | - Yue Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Zhaoxia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
16
|
Hydrazone ligation assisted DNAzyme walking nanomachine coupled with CRISPR-Cas12a for lipopolysaccharide analysis. Anal Chim Acta 2021; 1174:338747. [PMID: 34247734 DOI: 10.1016/j.aca.2021.338747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
In this work, hydrazone ligation assisted DNAzyme walking nanomachine is explored to couple with CRISPR-Cas12a trans-cleavage. Hydrazone ligation with high efficiency can mediate signal input which can be induced by target binding, thereby regulating the performance of DNAzyme walking nanomachine. The product strand from DNAzyme walking nanomachine can further activate the trans-cleavage of Cas12a. So, cascade signal amplification can be achieved to enhance the sensitivity for target detection. Subsequently, hydrazone ligation assisted DNAzyme walking nanomachine coupled with CRISPR-Cas12a has been further developed as a biosensor to analyze lipopolysaccharides. The developed biosensor exhibits a linear range from 0.05 ng/mL to 106 ng/mL and a lowest limit of detection of 7.31 fg/mL. This research provides a new mode for the signal output of DNAzyme walking nanomachine, so as to sensitively analyze different biomolecules.
Collapse
|
17
|
Posha B, Kuttoth H, Sandhyarani N. Layer-by-Layer Assembly of Polycations and Polyanions for the Sensitive Detection of Endotoxin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:257-265. [PMID: 33356305 DOI: 10.1021/acs.langmuir.0c02852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial endotoxin detection is an essential safety requisite in biomedical, food, and pharmaceutical industries. Endotoxin in a sufficient concentration on entering the human bloodstream causes detrimental effects such as septic shock, which can lead to death. Hence, the sensitive and selective detection of endotoxin also known as lipopolysaccharide (LPS) is of paramount importance. Herein, a layer-by-layer (LBL) assembly of gold-chitosan nanocomposite (CGNC)-poly(acrylic acid) (PAA)-polymyxin B (PmB) on gold (Au) electrode is employed for the sensitive and selective detection of endotoxin. The surface electric charge studies using dynamic contact mode electrostatic force microscopy (DC-EFM) revealed the successful formation of each layer on the Au electrode. The polycationic PmB is a specific bioreceptor of LPS, which binds with high affinity to the anionic groups of the carbohydrate portions of LPS molecules and facilitates the selective electrochemical detection. This surface modification method presented a sensitive and selective detection of endotoxin down to the attogram level.
Collapse
Affiliation(s)
- Biyas Posha
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | - Haritha Kuttoth
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| | - N Sandhyarani
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Calicut 673601, Kerala, India
| |
Collapse
|