1
|
Lee I, Kim HY. Lab-on-a-Chip Devices for Nucleic Acid Analysis in Food Safety. MICROMACHINES 2024; 15:1524. [PMID: 39770277 PMCID: PMC11677256 DOI: 10.3390/mi15121524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Lab-on-a-chip (LOC) devices have been developed for nucleic acid analysis by integrating complex laboratory functions onto a miniaturized chip, enabling rapid, cost-effective, and highly sensitive on-site testing. This review examines the application of LOC technology in food safety, specifically in the context of nucleic acid-based analyses for detecting pathogens and contaminants. We focus on microfluidic-based LOC devices that optimize nucleic acid extraction and purification on the chip or amplification and detection processes based on isothermal amplification and polymerase chain reaction. We also explore advancements in integrated LOC devices that combine nucleic acid extraction, amplification, and detection processes within a single chip to minimize sample preparation time and enhance testing accuracy. The review concludes with insights into future trends, particularly the development of portable LOC technologies for rapid and efficient nucleic acid testing in food safety.
Collapse
Affiliation(s)
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources, Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea;
| |
Collapse
|
2
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
3
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Wang S, Liang N, Hu X, Li W, Guo Z, Zhang X, Huang X, Li Z, Zou X, Shi J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem 2024; 447:138663. [PMID: 38489878 DOI: 10.1016/j.foodchem.2024.138663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 03/17/2024]
Abstract
The combination of carbon dots (CDs) with covalent organic frameworks (COFs) was used to design an innovative sensor based on fluorescence resonance energy transfer (FRET) for the detection of Escherichia coli O157:H7 (E. coli O157:H7) in food samples. Carbon dots were used as fluorescence donors, covalent organic frameworks as fluorescence acceptors. The antibody (Ab) specific to E. coli O157:H7 was used to form a CD-Ab-COF immunosensor by linking CDs and COFs. The antibody was specifically bound with E. coli O157:H7, which caused the connection between CDs and COFs to be interrupted, and the carbon dots exhibited fluorescence restoration. The sensor exhibited a linear detection range spanning from 0 to 106 CFU/mL, with the limit of detection (LOD) of 7 CFU/mL. The analytical performance of the developed immunosensor was evaluated using spiked food samples with different concentrations of E. coli O157:H7, validating the capability of assessing risks in food testing.
Collapse
Affiliation(s)
- Sunli Wang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Nini Liang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xuetao Hu
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Wenting Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ziang Guo
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Liu D, Yu X, Li C, Wang Y, Huang C, Li M, Huang Y, Yang C. Au-Pt Coating Improved Catalytic Stability of Au@AuPt Nanoparticles for Pressure-Based Point-of-Care Detection of Escherichia coli O157:H7. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34632-34640. [PMID: 38916478 DOI: 10.1021/acsami.4c05351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Point-of-care testing (POCT) technologies facilitate onsite detection of pathogens in minutes to hours. Among various POCT approaches, pressure-based sensors that utilize gas-generating reactions, particularly those catalyzed by nanozymes (e.g., platinum nanoparticles, PtNPs, or platinum-coated gold nanoparticles, and Au@PtNPs) have been shown to provide rapid and sensitive detection capabilities. The current study introduces Au-Pt alloy-coated gold nanoparticles (Au@AuPtNPs), an innovative nanozyme with enhanced catalytic activity and relatively high stability. For pathogen detection, Au@AuPtNPs are modified with H1 or H2 hairpin DNAs that can be triggered to undergo a hybridization chain reaction (HCR) that leads to their aggregation upon recognition by an initiator strand (Ini) with H1-/H2-complementary aptamers tethered to magnetic beads (MBs). Pathogen binding to the aptamer exposes Ini, which then binds Au@AuPtNPs and initiates a HCR, resulting in Au@AuPtNP aggregation on MBs. These Au@AuPtNP aggregates exhibit strong catalysis of O2 from the H2O2 substrate, which is measured by a pressure meter, enabling detection of Escherichia coli (E. coli) O157:H7 at concentrations as low as 3 CFU/mL with high specificity. Additionally, E. coli O157:H7 could also be detected in simulated water and tea samples. This method eliminates the need for costly, labor- and training-intensive instruments, supporting its further testing and validation for deployment as a rapid-response POCT application in the detection of bacterial contaminants.
Collapse
Affiliation(s)
- Dan Liu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Xingbo Yu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Congying Li
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Ying Wang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Chenyi Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Mengmeng Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Medicine, Huaqiao University, Xiamen, Fujian 362021, China
| | - Yishun Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian 361024, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, the Key Laboratory of Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
Cui S, Wei Y, Li C, Zhang J, Zhao Y, Peng X, Sun F. Visual Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid On-Site Detection of Escherichia coli O157: H7 in Milk Products. Foods 2024; 13:2143. [PMID: 38998648 PMCID: PMC11241362 DOI: 10.3390/foods13132143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: Rapid on-site testing is an effective method for the detection of Escherichia coli O157: H7(E. coli O157: H7) in food ingredients and the environment. (2) Methods: In this study, we developed colorimetric loop-mediated isothermal amplification (LAMP) and immunochromatographic test strips (ICTs) for the rapid and visual detection of E. coli O157: H7. This study designed new specific LAMP primers for E. coli O157: H7 virulence island genes. After the LAMP amplification, the double-stranded DNA target sequence labeled with digoxin and fluorescein isothiocyanate (FITC) at both ends was bound to the anti-digoxin antibody on the gold nanoparticles. Subsequently, it was further bound to the anti-FITC antibody at the T line of the ICTs, forming a positive test result. Hydroxynaphthyl blue dye was directly added to the LAMP amplification product. A blue color indicated positive results, while a purple color indicated negative results. (3) Results: Two visualization methods showed high specificity for the target strains. The visualization tests had sensitivities of 5.7 CFU mL-1, and the detection limit of the Escherichia coli O157: H7 in artificially contaminated milk samples was 5.7 × 102 CFU mL-1, which was consistent with the results of the standard method (LAMP-electrophoresis method) used in commercial inspection. (4) Conclusions: Both methods could be useful in remote and under-resourced areas.
Collapse
Affiliation(s)
- Shuangshuang Cui
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yong Wei
- Xinjiang Tianrun Dairy Co., Ltd., Wuchang Road No. 2702, Urumqi 830000, China
| | - Can Li
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Yunfeng Zhao
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xiayu Peng
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fengxia Sun
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
7
|
Hussain M, He X, Wang C, Wang Y, Wang J, Chen M, Kang H, Yang N, Ni X, Li J, Zhou X, Liu B. Recent advances in microfluidic-based spectroscopic approaches for pathogen detection. BIOMICROFLUIDICS 2024; 18:031505. [PMID: 38855476 PMCID: PMC11162289 DOI: 10.1063/5.0204987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Rapid identification of pathogens with higher sensitivity and specificity plays a significant role in maintaining public health, environmental monitoring, controlling food quality, and clinical diagnostics. Different methods have been widely used in food testing laboratories, quality control departments in food companies, hospitals, and clinical settings to identify pathogens. Some limitations in current pathogens detection methods are time-consuming, expensive, and laborious sample preparation, making it unsuitable for rapid detection. Microfluidics has emerged as a promising technology for biosensing applications due to its ability to precisely manipulate small volumes of fluids. Microfluidics platforms combined with spectroscopic techniques are capable of developing miniaturized devices that can detect and quantify pathogenic samples. The review focuses on the advancements in microfluidic devices integrated with spectroscopic methods for detecting bacterial microbes over the past five years. The review is based on several spectroscopic techniques, including fluorescence detection, surface-enhanced Raman scattering, and dynamic light scattering methods coupled with microfluidic platforms. The key detection principles of different approaches were discussed and summarized. Finally, the future possible directions and challenges in microfluidic-based spectroscopy for isolating and detecting pathogens using the latest innovations were also discussed.
Collapse
Affiliation(s)
| | - Xu He
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Chao Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichuan Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Jingjing Wang
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Mingyue Chen
- Engineering Research Center of Intelligent Theranostics Technology and Instruments, Ministry of Education, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | | | - Xinye Ni
- The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213161, China
| | | | - Xiuping Zhou
- Department of Laboratory Medicine, The Peoples Hospital of Rugao, Rugao Hospital Affiliated to Nantong University, Nantong 226500, China
| | - Bin Liu
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Shirzad H, Panji M, Nezhad SAM, Houshmand P, Tamai IA. One-pot rapid visual detection of E. coli O157:H7 by label-free AuNP-based plasmonic-aptasensor in water sample. J Microbiol Methods 2024; 217-218:106858. [PMID: 38040292 DOI: 10.1016/j.mimet.2023.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Access to clean water for irrigation and drinking has long been a global concern. The need for fast, precise, and cost-effective methods to detect harmful bacteria like Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 is high due to the potential for severe infectious diseases. Fortunately, recent research has led to developing and utilizing rapid bacterial detection methods. The creation of an aptamer-based biosensor (aptasensor) for the detection of E. coli O157:H7 using label-free aptamers and gold nanoparticles (AuNPs) is described in this study. The specific aptamers that can detect target bacteria are adsorbed on the surface of unmodified AuNPs to form the aptasensor. The detection is performed by target bacterium-induced aptasensor aggregation, which is associated with a red-to-purple color change under high-salt circumstances. We devised a quick and easy method for detecting bacteria using an anti-E. coli O157:H7 aptamer without the need for specialized equipment or pretreatment processes like cell lysis. The aptasensor could identify target bacteria with only as few as 250 colony-forming units (CFU)/ml in 15 min or less, and its specificity based on our test was 100%. This method not only provides a fast direct preparation process but also exhibits remarkable proficiency in promptly identifying the intended target with a heightened level of sensitivity and specificity. Therefore, it can serve as an intelligent tool for monitoring water reservoirs and preventing the transmission of infectious diseases associated with EHEC.
Collapse
Affiliation(s)
- Hadi Shirzad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Mohammad Panji
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Seyed Amin Mousavi Nezhad
- Research Center for Life & Health Sciences & Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran, Iran
| | - Pouya Houshmand
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
9
|
Liu M, Dou S, Vriesekoop F, Geng L, Zhou S, Huang J, Sun J, Sun X, Guo Y. Advances in signal amplification strategies applied in pathogenic bacteria apta-sensing analysis-A review. Anal Chim Acta 2024; 1287:341938. [PMID: 38182333 DOI: 10.1016/j.aca.2023.341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 01/07/2024]
Abstract
Pathogenic bacteria are primarily kinds of food hazards that provoke serious harm to human health via contaminated or spoiled food. Given that pathogenic bacteria continue to reproduce and expand once they contaminate food, pathogenic bacteria of high concentration triggers more serious losses and detriments. Hence, it is essential to detect low-dose pollution at an early stage with high sensitivity. Aptamers, also known as "chemical antibodies", are oligonucleotide sequences that have attracted much attention owing to their merits of non-toxicity, small size, variable structure as well as easy modification of functional group. Aptamer-based bioanalysis has occupied a critical position in the field of rapid detection of pathogenic bacteria. This is attributed to the unique advantage of using aptamers as recognition elements in signal amplification strategies. The signal amplification strategy is an effective means to improve the detection sensitivity. Some diverse signal amplification strategies emphasize the synthesis and assembly of nanomaterials with signal amplification capabilities, while others introduce various nucleic acid amplification techniques into the detection system. This review focuses on a variety of signal amplification strategies employed in aptamer-based detection approaches to pathogenic bacteria. Meanwhile, we provided a detailed introduction to the design principles and characteristics of signal amplification strategies, as well as the improvement of sensor sensitivity. Ultimately, the existing issues and development trends of applying signal amplification strategies in apta-sensing analysis of pathogenic bacteria are critically proposed and prospected. Overall, this review discusses from a new perspective and is expected to contribute to the further development of this field.
Collapse
Affiliation(s)
- Mengyue Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shouyi Dou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Frank Vriesekoop
- Department of Food, Land and Agribusiness Management, Harper Adams University, Newport, United Kingdom
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Shuxian Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong, 255049, China.
| |
Collapse
|
10
|
Zhao J, Guo Y, Ma X, Liu S, Sun C, Cai M, Chi Y, Xu K. The Application of Hybridization Chain Reaction in the Detection of Foodborne Pathogens. Foods 2023; 12:4067. [PMID: 38002125 PMCID: PMC10670596 DOI: 10.3390/foods12224067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 11/26/2023] Open
Abstract
Today, with the globalization of the food trade progressing, food safety continues to warrant widespread attention. Foodborne diseases caused by contaminated food, including foodborne pathogens, seriously threaten public health and the economy. This has led to the development of more sensitive and accurate methods for detecting pathogenic bacteria. Many signal amplification techniques have been used to improve the sensitivity of foodborne pathogen detection. Among them, hybridization chain reaction (HCR), an isothermal nucleic acid hybridization signal amplification technique, has received increasing attention due to its enzyme-free and isothermal characteristics, and pathogenic bacteria detection methods using HCR for signal amplification have experienced rapid development in the last five years. In this review, we first describe the development of detection technologies for food contaminants represented by pathogens and introduce the fundamental principles, classifications, and characteristics of HCR. Furthermore, we highlight the application of various biosensors based on HCR nucleic acid amplification technology in detecting foodborne pathogens. Lastly, we summarize and offer insights into the prospects of HCR technology and its application in pathogen detection.
Collapse
Affiliation(s)
- Jinbin Zhao
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yulan Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Xueer Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Shitong Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Chunmeng Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Ming Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyang Chi
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun 130021, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha 410013, China;
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha 410013, China
| |
Collapse
|
11
|
Zhou J, Wang TY, Lan Z, Yang HJ, Ye XJ, Min R, Wang ZH, Huang Q, Cao J, Gao YE, Wang WL, Sun XL, Zhang Y. Strategy of functional nucleic acids-mediated isothermal amplification for detection of foodborne microbial contaminants: A review. Food Res Int 2023; 173:113286. [PMID: 37803599 DOI: 10.1016/j.foodres.2023.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 10/08/2023]
Abstract
Foodborne microbial contamination (FMC) is the leading cause of food poisoning and foodborne illness. The foodborne microbial detection methods based on isothermal amplification have high sensitivity and short detection time, and functional nucleic acids (FNAs) could extend the detectable object of isothermal amplification to mycotoxins. Therefore, the strategy of FNAs-mediated isothermal amplification has been emergingly applied in biosensors for foodborne microbial contaminants detection, making biosensors more sensitive with lower cost and less dependent on nanomaterials for signal output. Here, the mechanism of six isothermal amplification technologies and their application in detecting FMC is firstly introduced. Then the strategy of FNAs-mediated isothermal amplification is systematically discussed from perspectives of FNAs' versatility including recognition elements (Aptamer, DNAzyme), programming tools (DNA tweezer, DNA walker and CRISPR-Cas) and signal units (G-quadruplex, FNAs-based nanomaterials). Finally, challenges and prospects are presented in terms of addressing the issue of nonspecific amplification reaction, developing better FNAs-based sensing elements and eliminating food matrix effects.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Teng-Yu Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhi Lan
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Han-Jie Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing-Jian Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Min
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhao-Hui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qing Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jing Cao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu-E Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Lan Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Buttkewitz MA, Heuer C, Bahnemann J. Sensor integration into microfluidic systems: trends and challenges. Curr Opin Biotechnol 2023; 83:102978. [PMID: 37531802 DOI: 10.1016/j.copbio.2023.102978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
The combination of sensors and microfluidics has become a promising approach for detecting a wide variety of targets relevant in biotechnology. Thanks to recent advances in the manufacturing of microfluidic systems, microfluidics can be manufactured faster, cheaper, and more accurately than ever before. These advances make microfluidic systems very appealing as a basis for constructing sensor systems, and microfluidic devices have been adapted to house (bio)sensors for various applications (e.g. protein biomarker detection, cell culture oxygen control, and pathogen detection). This review article highlights several successfully integrated microfluidic sensor systems, with a focus on work that has been published within the last two years. Different sensor integration methods are discussed, and the latest trends in wearable- and smartphone-based sensors are described.
Collapse
Affiliation(s)
- Marc A Buttkewitz
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Christopher Heuer
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; Institute of Physics, University of Augsburg, 86159 Augsburg, Germany
| | - Janina Bahnemann
- Institute of Physics, University of Augsburg, 86159 Augsburg, Germany; Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, 86159 Augsburg, Germany.
| |
Collapse
|
13
|
Xing G, Shang Y, Ai J, Lin H, Wu Z, Zhang Q, Lin JM, Pu Q, Lin L. Nanozyme-Mediated Catalytic Signal Amplification for Microfluidic Biosensing of Foodborne Bacteria. Anal Chem 2023; 95:13391-13399. [PMID: 37610722 DOI: 10.1021/acs.analchem.3c03232] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Early detection of foodborne bacteria is urgently needed to ensure food quality and to avoid the outbreak of foodborne bacterial diseases. Here, a kind of metal-organic framework (Zr-MOF) modified with Pt nanoparticles (Pt-PCN-224) was designed as a peroxidase-like signal amplifier for microfluidic biosensing of foodborne bacteria. Taking Escherichia coli (E. coli) O157:H7 as a model, a linear range from 2.93 × 102 to 2.93 × 108 CFU/mL and a limit of detection of 2 CFU/mL were obtained. The whole detection procedure was integrated into a single microfluidic chip. Water, milk, and cabbage samples were successfully detected, showing consistency with the results of the standard culture method. Recoveries were in the range from 90 to 110% in spiked testing. The proposed microfluidic biosensor realized the specific and sensitive detection of E. coli O157:H7 within 1 h, implying broad prospects of MOF with biomimetic enzyme activities for biosensing.
Collapse
Affiliation(s)
- Gaowa Xing
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuting Shang
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiebing Ai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haifeng Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiaosheng Pu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Abbas N, Song S, Chang MS, Chun MS. Point-of-Care Diagnostic Devices for Detection of Escherichia coli O157:H7 Using Microfluidic Systems: A Focused Review. BIOSENSORS 2023; 13:741. [PMID: 37504139 PMCID: PMC10377133 DOI: 10.3390/bios13070741] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Bacterial infections represent a serious and global threat in modern medicine; thus, it is very important to rapidly detect pathogenic bacteria, such as Escherichia coli (E. coli) O157:H7. Once treatments are delayed after the commencement of symptoms, the patient's health quickly deteriorates. Hence, real-time detection and monitoring of infectious agents are highly critical in early diagnosis for correct treatment and safeguarding public health. To detect these pathogenic bacteria, many approaches have been applied by the biosensors community, for example, widely-used polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), culture-based method, and adenosine triphosphate (ATP) bioluminescence. However, these approaches have drawbacks, such as time-consumption, expensive equipment, and being labor-intensive, making it critical to develop ultra-sensitive and highly selective detection. The microfluidic platform based on surface plasmon resonance (SPR), electrochemical sensing, and rolling circle amplification (RCA) offers proper alternatives capable of supplementing the technological gap for pathogen detection. Note that the microfluidic biochip allows to develop rapid, sensitive, portable, and point-of-care (POC) diagnostic tools. This review focuses on recent studies regarding accurate and rapid detection of E. coli O157:H7, with an emphasis on POC methods and devices that complement microfluidic systems. We also examine the efficient whole-body detection by employing antimicrobial peptides (AMPs), which has attracted growing attention in many applications.
Collapse
Affiliation(s)
- Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sehyeon Song
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy & Dental Research Institute, Seoul National University School of Dentistry, Jongno-gu, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mi-Sook Chang
- Laboratory of Stem Cell & Neurobiology, Department of Oral Anatomy & Dental Research Institute, Seoul National University School of Dentistry, Jongno-gu, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Neuroscience, Seoul National University College of Natural Sciences, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Myung-Suk Chun
- Sensor System Research Center, Advanced Materials Research Division, Korea Institute of Science and Technology (KIST), Seongbuk-gu, Seoul 02792, Republic of Korea
- Biomedical Engineering Division, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
15
|
Zhou Q, Natarajan B, Kannan P. Nanostructured biosensing platforms for the detection of food- and water-borne pathogenic Escherichia coli. Anal Bioanal Chem 2023:10.1007/s00216-023-04731-6. [PMID: 37169938 DOI: 10.1007/s00216-023-04731-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Pathogenic bacterial infection is one of the principal causes affecting human health and ecosystems. The accurate identification of bacteria in food and water samples is of significant interests to maintain safety and health for humans. Culture-based tests are practically tedious and may produce false-positive results, while viable but non-culturable microorganisms (NCMs) cannot be retrieved. Thus, it requires fast, reliable, and low-cost detection strategies for on-field analysis and point-of-care (POC) monitoring. The standard detection methods such as nucleic acid analysis (RT-PCR) and enzyme-linked immunosorbent assays (ELISA) are still challenging in POC practice due to their time-consuming (several hours to days) and expensive laboratory operations. The optical (surface plasmon resonance (SPR), fluorescence, and surface-enhanced Raman scattering (SERS)) and electrochemical-based detection of microbes (early stage of infective diseases) have been considered as alternative routes in the emerging world of nanostructured biosensing since they can attain a faster and concurrent screening of several pathogens in real samples. Moreover, optical and electrochemical detection strategies are opening a new route for the ability of detecting pathogens through the integration of cellphones, which is well fitted for POC analysis. This review article covers the current state of sensitive mechanistic approaches for the screening and detection of Escherichia coli O157:H7 (E. coli) pathogens in food and water samples, which can be potentially applied in clinical and environmental monitoring.
Collapse
Affiliation(s)
- Qiang Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China
| | - Bharathi Natarajan
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| | - Palanisamy Kannan
- Department of Endocrinology, First Hospital of Jiaxing (Affiliated Hospital of Jiaxing University), 1882 Zhonghuan South Road, Jiaxing, Zhejiang Province, 314001, People's Republic of China.
| |
Collapse
|
16
|
Liu X, Li W, Sun J, Dai S, Wang X, Yang J, Li Q, Li Y, Ge H, Zhao J, Li J. A point-of-care detection platform for Escherichia coli O157:H7 by integration of smartphone and the structural colour of photonic microsphere. Food Chem 2023; 423:136339. [PMID: 37192558 DOI: 10.1016/j.foodchem.2023.136339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/18/2023]
Abstract
A smartphone-based sensitive, rapid, label-free and high-throughput detection platform for Escherichia coli O157:H7 was established. The specific recognition capability of this platform was dependent of the aptamer modified on the silica photonic microsphere (SPM), whose structural colour was utilized for the quantification of the target bacterium. Gold nanoparticles and silver staining technique were employed to improve the sensitivity of the detection platform. Such smartphone-based detection platform gave a wide linear detection range of 102 ∼ 108 CFU/mL with a low limit of detection (LOD) of 68 CFU/mL and high specificity for Escherichia coli O157:H7. Moreover, the recovery rates of the detection method were measured in the range of 99 ∼ 108% in the milk, pork and purified water samples. Furthermore, the developed detection platform did not require complex sample pretreatment and could be easily manipulated, displaying great application potential in the fields of food safety, environmental monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Xiaomeng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangdong 510630, China
| | - Jialong Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yao Li
- Shannxi Xifeng Jiu Co., Ltd., Fengxiang, Shannxi 721406, China
| | - Hongyu Ge
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianning Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
17
|
Functionalized screen-printed electrodes for the thermal detection of Escherichia coli in dairy products. Food Chem 2023; 404:134653. [DOI: 10.1016/j.foodchem.2022.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
18
|
Wu T, Li XY. An instrument-free visual quantitative detection method based on clock reaction: the detection of thrombin as an example. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:48-55. [PMID: 36448577 DOI: 10.1039/d2ay01786e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Instrument-free visual quantitative detection in chemical and biochemical analysis is of great significance in practical applications especially in point-of-care testing and in places where resources are limited. In this paper, we report the development of a time-based instrument-free visual quantitative detection method by employing a clock reaction, a type of chemical reaction displaying characteristic clocking behavior. The feasibility of the method was illustrated by the quantitative detection of thrombin in buffer solution using the lapse of time as the readout signal. The linear range of detection was from 1.3 to 43 nM (r2 = 0.990, n = 3) with a LOD of 0.9 nM, which is lower than the physiological concentrations of thrombin in the resting and activated blood, which range from low nanomolar to low micromolar, respectively. This method was also validated by detecting thrombin in the serum and a good recovery of nearly 100 ± 8.0% was obtained. To the best of our knowledge, this work is the first report that uses the characteristic time of a clock reaction as the readout signal in instrument-free colorimetry for quantitative bioanalysis.
Collapse
Affiliation(s)
- Tianxiang Wu
- Department of Chemistry, The Hong Kong University of Science and Technology, ClearWater Bay, Kowloon, Hong Kong S.A.R., People's Republic of China.
| | - Xiao-Yuan Li
- Department of Chemistry, The Hong Kong University of Science and Technology, ClearWater Bay, Kowloon, Hong Kong S.A.R., People's Republic of China.
| |
Collapse
|
19
|
Pang L, Pi X, Yang X, Song D, Qin X, Wang L, Man C, Zhang Y, Jiang Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review. Crit Rev Food Sci Nutr 2022; 64:5398-5413. [PMID: 36476145 DOI: 10.1080/10408398.2022.2154073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
20
|
Liu M, Zhang M, Chen J, Yang R, Huang Z, Liu Z, Li N, Shui L. Liquid crystal-based optical aptasensor for the sensitive and selective detection of Gram-negative bacteria. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
A microfluidic chemiluminescence biosensor based on multiple signal amplification for rapid and sensitive detection of E. coli O157:H7. Biosens Bioelectron 2022; 212:114390. [DOI: 10.1016/j.bios.2022.114390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/18/2022]
|
22
|
Kim DM, Yoo SM. Colorimetric Systems for the Detection of Bacterial Contamination: Strategy and Applications. BIOSENSORS 2022; 12:bios12070532. [PMID: 35884335 PMCID: PMC9313054 DOI: 10.3390/bios12070532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 12/19/2022]
Abstract
Bacterial contamination is a public health concern worldwide causing enormous social and economic losses. For early diagnosis and adequate management to prevent or treat pathogen-related illnesses, extensive effort has been put into the development of pathogenic bacterial detection systems. Colorimetric sensing systems have attracted increasing attention due to their simple and single-site operation, rapid signal readout with the naked eye, ability to operate without external instruments, portability, compact design, and low cost. In this article, recent trends and advances in colorimetric systems for the detection and monitoring of bacterial contamination are reviewed. This article focuses on pathogen detection strategies and technologies based on reaction factors that affect the color change for visual readout. Reactions used in each strategy are introduced by dividing them into the following five categories: external pH change-induced pH indicator reactions, intracellular enzyme-catalyzed chromogenic reactions, enzyme-like nanoparticle (NP)-catalyzed substrate reactions, NP aggregation-based reactions, and NP accumulation-based reactions. Some recently developed colorimetric systems are introduced, and their challenges and strategies to improve the sensing performance are discussed.
Collapse
Affiliation(s)
- Dong-Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Seung-Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
- Correspondence:
| |
Collapse
|
23
|
Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022; 54:872-881. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.
Collapse
Affiliation(s)
- Indrajit Patra
- An Independent Researcher, Ex Research Scholar at National Institute of Technology Durgapur, Durgapur, India
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Huda Sabah Jabr
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Babylon, Iraq
| |
Collapse
|
24
|
Xu R, Cheng Y, Li X, Zhang Z, Zhu M, Qi X, Chen L, Han L. Aptamer-based signal amplification strategies coupled with microchips for high-sensitivity bioanalytical applications: A review. Anal Chim Acta 2022; 1209:339893. [DOI: 10.1016/j.aca.2022.339893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
|
25
|
Xi J, Cui G, Dong M, Sun C, Wang Y, Xu N, Zhang J, Wang L. Bioinspired fabrication of bifunctional antibody-enzyme co-assembled nanocomposites for chemiluminescence immunoassays of E. coli O157:H7. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1414-1419. [PMID: 35311849 DOI: 10.1039/d2ay00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunoassays based on enzyme-labeled antibodies have been widely used in the food safety field. However, the production process of enzyme-labeled antibodies is complicated and the low storage stability limits their application. Herein, antibody-horseradish peroxidase (HRP) co-assembled nanocomposites (AHC NCs) with outstanding advantages such as enhanced stability, lower cost, and substrate affinity were successfully prepared via a one-pot green method. Then the AHC NCs were employed as an alternative to traditional enzyme-labeled antibodies to develop a chemiluminescence enzyme immunoassay (CLEIA) toward Escherichia coli (E. coli) O157:H7. Under optimal conditions, E. coli O157:H7 can be detected in a linear range from 1 × 103 CFU mL-1 to 5 × 106 CFU mL-1, while the limit of detection (LOD) is as low as 2.2 × 102 CFU mL-1 (3σ). A series of repeatability studies showed reproducible results with a coefficient of variation of less than 7%. In addition, the proposed CLEIA was successfully applied to the analysis of spiked samples (tap water) and gave quantitative recoveries from 93.72% to 100.72%. This work demonstrates that the developed CLEIA can be applied as a universal platform for specific detection of diversified analytes.
Collapse
Affiliation(s)
- Jinnan Xi
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, P. R. China.
| | - Guihua Cui
- Jilin Medical University, Jilin, 132013, P. R. China.
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P. R. China.
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P. R. China.
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P. R. China.
| | - Na Xu
- Jilin Medical University, Jilin, 132013, P. R. China.
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, P. R. China.
| | - Longtao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, P. R. China.
| |
Collapse
|
26
|
Xing G, Zhang W, Li N, Pu Q, Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Microfluidic aptasensor POC device for determination of whole blood potassium. Anal Chim Acta 2022; 1203:339722. [DOI: 10.1016/j.aca.2022.339722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
|
28
|
A novel electrochemical aptamer biosensor based on tetrahedral DNA nanostructures and catalytic hairpin assembly for CEA detection. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
29
|
Huang Y, Su Z, Li W, Ren J. Recent Progresses on Biosensors for Escherichia coli Detection. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02129-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Ng HY, Lee WC, Kung CT, Li LC, Lee CT, Fu LM. Recent Advances in Microfluidic Devices for Contamination Detection and Quality Inspection of Milk. MICROMACHINES 2021; 12:558. [PMID: 34068982 PMCID: PMC8156775 DOI: 10.3390/mi12050558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.
Collapse
Affiliation(s)
- Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chia-Te Kung
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan;
| | - Lung-Chih Li
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833, Taiwan; (H.-Y.N.); (W.-C.L.); (L.-C.L.); (C.-T.L.)
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
31
|
ZHANG T, TAO Q, BIAN XJ, CHEN Q, YAN J. Rapid Visualized Detection of Escherichia Coli O157:H7 by DNA Hydrogel Based on Rolling Circle Amplification. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|