1
|
Adrar N, Gulsunoglu-Konuskan Z, Ceylan FD, Capanoglu E. Overview and trends in electrochemical sensors, biosensors and cellular antioxidant assays for oxidant and antioxidant determination in food. Talanta 2025; 283:127058. [PMID: 39509903 DOI: 10.1016/j.talanta.2024.127058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
Screening and quantifying antioxidants from food samples, their antioxidant activity, as well as the assessment of food oxidation is critical, not only for ensuring food quality and safety, but also to understand and relate these parameters to the shelf life, sensory attributes, and health aspects of food products. For this purpose, several methods have been developed and used for decades, which regardless of their effectiveness, present a certain number of drawbacks mainly related to extensive sample preparation and technical complexity, time requirements, and the use of hazardous chemicals. Electrochemical sensors and biosensors are gaining popularity in food analysis due to their high sensitivity, specificity, rapid response times, and potential for miniaturisation and portability. Furthermore, other modern methods using whole living cells such as the cellular antioxidant activity assay, the antioxidant power 1 assay, and the catalase-like assays, may interpret more realistic antioxidant results rather than just reporting the ability to scavenge free radicals in isolated systems with extrapolation to reality. This paper provides an overview of electrochemical sensors, biosensors, and cellular antioxidant assays, and reviews the latest advancements and emerging trends in these techniques for determining oxidants and antioxidants in complex food matrices. The performances of different strategies are described for each of these approaches to provide insights into the extent to which these methods can be exploited in the field and inspire new research to fill the current gaps.
Collapse
Affiliation(s)
- Nabil Adrar
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, 34469, Maslak, Istanbul, Turkey.
| | - Zehra Gulsunoglu-Konuskan
- Istanbul Aydin University, Faculty of Health Science, Nutrition and Dietetics Department, 34295, Kucukcekmece, Istanbul, Turkey
| | - Fatma Duygu Ceylan
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, 34469, Maslak, Istanbul, Turkey
| | - Esra Capanoglu
- Istanbul Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, 34469, Maslak, Istanbul, Turkey.
| |
Collapse
|
2
|
Patil ND, Bains A, Sridhar K, Sharma M, Dhull SB, Goksen G, Chawla P, Inbaraj BS. Recent advances in the analytical methods for quantitative determination of antioxidants in food matrices. Food Chem 2025; 463:141348. [PMID: 39340911 DOI: 10.1016/j.foodchem.2024.141348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/20/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Antioxidants are crucial in reducing oxidative stress and enhancing health, necessitating precise quantification in food matrices. Advanced techniques such as biosensors and nanosensors offer high sensitivity and specificity, enabling real-time monitoring and accurate antioxidant quantification in complex food systems. These technologies herald a new era in food analysis, improving food quality and safety through sophisticated detection methods. Their application facilitates comprehensive antioxidant profiling, driving innovation in food technology to meet the rising demand for nutritional optimization and food integrity. These are complemented by electrochemical techniques, spectroscopy, and chromatography. Electrochemical methods provide rapid response times, spectroscopy offers versatile chemical composition analysis, and chromatography excels in precise separation and quantification. Collectively, these methodologies establish a comprehensive framework for food analysis, essential for improving food quality, safety, and nutritional value. Future research should aim to refine these analytical methods, promising significant advancements in food and nutritional science.
Collapse
Affiliation(s)
- Nikhil Dnyaneshwar Patil
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | | |
Collapse
|
3
|
B K V, T R S. Monitoring Antibiotic Pollutants in Water Using Electrochemical Techniques: A Detailed Review. Crit Rev Anal Chem 2025:1-30. [PMID: 39773103 DOI: 10.1080/10408347.2024.2390549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This review article examines the application of electrochemical methods for detecting four prevalent antibiotics - azithromycin (AZM), amoxicillin (AMX), tetracycline (TC), and ciprofloxacin (CIP) - in environmental monitoring. Although, antibiotics are essential to contemporary treatment, their widespread usage has contaminated the environment and given rise to antibiotic resistance. Electrochemical techniques offer sensitive, rapid, and cost-effective solutions for monitoring these antibiotics, addressing the limitations of traditional methods. The review provides a comprehensive analysis of various electrochemical approaches, including voltammetry, amperometry, photoelectrochemical and so on, highlighting their principles, advantages, and limitations. Key findings underscore the effectiveness of these methods in detecting antibiotics at trace levels in complex environmental matrices. Implications for environmental health and policy are discussed, emphasizing the importance of reliable detection techniques in mitigating antibiotic resistance and safeguarding ecosystems. Lastly, the article outlines future research directions aimed at enhancing the sensitivity, selectivity, and field-applicability of electrochemical sensors, thus advancing their utility in environmental monitoring and public health protection.
Collapse
Affiliation(s)
- Vinay B K
- Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
| | - Suranjan T R
- Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
| |
Collapse
|
4
|
Daci M, Berisha L, Mercatante D, Rodriguez-Estrada MT, Jin Z, Huang Y, Amorati R. Advancements in Biosensors for Lipid Peroxidation and Antioxidant Protection in Food: A Critical Review. Antioxidants (Basel) 2024; 13:1484. [PMID: 39765813 PMCID: PMC11672933 DOI: 10.3390/antiox13121484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
This review highlights the progress made in recent years on biosensors aimed at detecting relevant analytes/markers of food peroxidation. Starting from the basic definition of biosensors and the chemical features of peroxidation, here we describe the different approaches that can be used to obtain information about the progress of peroxidation and the efficacy of antioxidants. Aptamers, metal-organic frameworks, nanomaterials, and supported enzymes, in conjunction with electrochemical methods, can provide fast and cost-effective detection of analytes related to peroxidation, like peroxides, aldehydes, and metals. The determination of (poly)phenols concentrations by biosensors, which can be easily obtained by using immobilized enzymes (like laccase), provides an indirect measure of peroxidation. The rationale for developing new biosensors, with a special focus on food applications, is also discussed.
Collapse
Affiliation(s)
- Majlinda Daci
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
| | - Liridon Berisha
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Pristina, Str. Mother Teresa, 10000 Prishtina, Kosovo;
- NanoAlb, Albanian NanoScience and Nanotechnology Unit, Academy of Sciences of Albania, Shëtitorja Murat Toptani, 1000 Tiranë, Albania
| | - Dario Mercatante
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Maria Teresa Rodriguez-Estrada
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università di Bologna, Viale G. Fanin 40, 40127 Bologna, Italy; (D.M.); (M.T.R.-E.)
| | - Zongxin Jin
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Yeqin Huang
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| | - Riccardo Amorati
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum-Università di Bologna, Via Gobetti 83, 40129 Bologna, Italy; (Z.J.); (Y.H.)
| |
Collapse
|
5
|
Sun Y, Zhou Y, Chen L, Wang D, Liu H, Ni W, Feng X. Triphase Enzyme Electrode Based on ZIF-8 with Enhanced Oxidase Catalytic Kinetics and Bioassay Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44341-44349. [PMID: 39152897 DOI: 10.1021/acsami.4c10625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Oxidase enzyme-based electrochemical bioassays have garnered considerable interest due to their specificity and high efficiency. However, in traditional solid-liquid diphase enzyme electrode systems, the low solubility of oxygen and its slow mass transfer rate limit the oxidase catalytic reaction kinetics, thereby affecting the bioassay performance, including the detection accuracy, sensitivity, and linear dynamic range. ZIF-8 nanoparticles (NPs) possess hydrophobic and high-porosity characteristics, enabling them to serve as oxygen nanocarriers. In this work, we constructed a solid-liquid-air triphase enzyme electrode by encapsulating ZIF-8 NPs within an oxidase network. Hydrophobic ZIF-8 NPs can provide a rapid and sufficient supply of oxygen for the oxidase-catalyzed reactions, which enhances and stabilizes the kinetics of oxidase-catalyzed reactions. This approach eliminates the issue of "oxygen deficiency" at the traditional solid-liquid diphase interface. Consequently, the triphase enzyme electrode exhibits a 12-fold higher linear detection range than the diphase system and possesses good detection accuracy in electrolytes even with fluctuating oxygen levels. This work proposes a novel approach to construct triphase reaction systems for addressing the gas deficiency problem in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yimeng Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yifan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Liping Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Haiyan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weihai Ni
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
6
|
Yamaki Y, Seo H, Hatano A, Suzuki M, Niikura K. Structure-dependent detection of polyphenols using crown ether-immobilized gold nanoparticles. RSC Adv 2024; 14:16870-16875. [PMID: 38799214 PMCID: PMC11123615 DOI: 10.1039/d4ra02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Gold nanoparticles functionalized with 18-crown 6-ether (18C6-AuNPs) can be used for detection of tannic acid, epigallocatechin gallate, and epicatechin gallate by color change in the μg mL-1 range. 18C6-AuNPs were insensitive to l-ascorbic acid and l-tyrosine unlike conventional detection methods, such as Folin & Ciocalteu assay, whose principle is based on the redox reaction of polyphenols. Although 18C6-AuNPs did not respond to some polyphenols, such as gallic acid and epicatechin, if the polyphenols of interest are responsive to this approach, these are expected to be effective nanomaterial for simple sensing of polyphenols.
Collapse
Affiliation(s)
- Yuto Yamaki
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology Japan
| | - Hiroki Seo
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology Minamisaitama-Gun Saitama 345-8501 Japan
| | - Akihiko Hatano
- Department of Materials Science and Engineering, Shibaura Institute of Technology Fukasaku, Minuma-ku, Saitama-City Saitama 337-8570 Japan
| | - Manabu Suzuki
- Research & Development Center for Advanced Materials and Technology, Nippon Institute of Technology Japan
| | - Kenichi Niikura
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology Japan
- Graduate School of Environmental Symbiotic System Major, Nippon Institute of Technology Minamisaitama-Gun Saitama 345-8501 Japan
| |
Collapse
|
7
|
Wei X, Reddy VS, Gao S, Zhai X, Li Z, Shi J, Niu L, Zhang D, Ramakrishna S, Zou X. Recent advances in electrochemical cell-based biosensors for food analysis: Strategies for sensor construction. Biosens Bioelectron 2024; 248:115947. [PMID: 38181518 DOI: 10.1016/j.bios.2023.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024]
Abstract
Owing to their advantages such as great specificity, sensitivity, rapidity, and possibility of noninvasive and real-time monitoring, electrochemical cell-based biosensors (ECBBs) have been a powerful tool for food analysis encompassing the areas of nutrition, flavor, and safety. Notably, the distinctive biological relevance of ECBBs enables them to mimic physiological environments and reflect cellular behaviors, leading to valuable insights into the biological function of target components in food. Compared with previous reviews, this review fills the current gap in the narrative of ECBB construction strategies. The review commences by providing an overview of the materials and configuration of ECBBs, including cell types, cell immobilization strategies, electrode modification materials, and electrochemical sensing types. Subsequently, a detailed discussion is presented on the fabrication strategies of ECBBs in food analysis applications, which are categorized based on distinct signal sources. Lastly, we summarize the merits, drawbacks, and application scope of these diverse strategies, and discuss the current challenges and future perspectives of ECBBs. Consequently, this review provides guidance for the design of ECBBs with specific functions and promotes the application of ECBBs in food analysis.
Collapse
Affiliation(s)
- Xiaoou Wei
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Vundrala Sumedha Reddy
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Shipeng Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaodong Zhai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhihua Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiyong Shi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lidan Niu
- Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China
| | - Di Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore.
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
8
|
Sahu S, Kumar L, Das S, Gupta D, Anand R. Ultrasensitive detection of aromatic water pollutants through protein immobilization driven organic electrochemical transistors. Chem Sci 2024; 15:710-719. [PMID: 38179533 PMCID: PMC10762727 DOI: 10.1039/d3sc03509c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/03/2023] [Indexed: 01/06/2024] Open
Abstract
Xenobiotic aromatic water pollutants pose an extreme threat to environmental sustainability. Due to the lack of detectable functional groups in these compounds and scarcity of selective bio-recognition scaffolds, easy-to-use sensing strategies capable of on-site detection remain unavailable. Herein, to address this lacune, we entail a strategy that combines biosensor scaffolds with organic electronics to create a compact device for environmental aromatic pollution monitoring. As proof of principle, a sensor module capable of rapid, economic, reliable, and ultrasensitive detection of phenol down to 2 ppb (0.02 μM) was designed wherein biosensing protein MopR was coupled with an organic electrochemical transistor (OECT). For effective interfacing of the sensing scaffold MopR, graphene oxide (GO) nanosheets were optimized as a host immobilization matrix. The MopR-GO immobilized sensor module was subsequently substituted as the gate electrode with PEDOT:PSS serving as an organic semiconductor material. The resulting OECT sensor provided a favourable microenvironment for protein activity, maintaining high specificity. Exclusive phenol detection with minimal loss of sensitivity (<5% error) could be achieved in both complex pollutant mixtures and real environmental samples. This fabrication strategy that amalgamates biological biosensors with organic electronics harnesses the potential to achieve detection of a host of emerging pollutants.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Lokesh Kumar
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sumita Das
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Dipti Gupta
- Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
9
|
Choi HK, Yoon J. Enzymatic Electrochemical/Fluorescent Nanobiosensor for Detection of Small Chemicals. BIOSENSORS 2023; 13:bios13040492. [PMID: 37185567 PMCID: PMC10136675 DOI: 10.3390/bios13040492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
The detection of small molecules has attracted enormous interest in various fields, including the chemical, biological, and healthcare fields. In order to achieve such detection with high accuracy, up to now, various types of biosensors have been developed. Among those biosensors, enzymatic biosensors have shown excellent sensing performances via their highly specific enzymatic reactions with small chemical molecules. As techniques used to implement the sensing function of such enzymatic biosensors, electrochemical and fluorescence techniques have been mostly used for the detection of small molecules because of their advantages. In addition, through the incorporation of nanotechnologies, the detection property of each technique-based enzymatic nanobiosensors can be improved to measure harmful or important small molecules accurately. This review provides interdisciplinary information related to developing enzymatic nanobiosensors for small molecule detection, such as widely used enzymes, target small molecules, and electrochemical/fluorescence techniques. We expect that this review will provide a broad perspective and well-organized roadmap to develop novel electrochemical and fluorescent enzymatic nanobiosensors.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Biosensors Based on Phenol Oxidases (Laccase, Tyrosinase, and Their Mixture) for Estimating the Total Phenolic Index in Food-Related Samples. Life (Basel) 2023; 13:life13020291. [PMID: 36836650 PMCID: PMC9964280 DOI: 10.3390/life13020291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Plant phenolic compounds demonstrate bioactive properties in vitro and/or in vivo, which creates demand for their precise determination in life sciences and industry. Measuring the concentration of individual phenolic compounds is a complex task, since approximately 9000 plant phenolic substances have been identified so far. The determination of the total phenolic content (TPC) is less laborious and is used for the qualimetric evaluation of complex multicomponent samples in routine analyses. Biosensors based on phenol oxidases (POs) have been proposed as alternative analytical devices for detecting phenolic compounds; however, their effectiveness in the analysis of food and vegetal matrices has not been addressed in detail. This review describes catalytic properties of laccase and tyrosinase and reports on the enzymatic and bienzymatic sensors based on laccase and tyrosinase for estimating the total phenolic index (TPI) in food-related samples (FRSs). The review presents the classification of biosensors, POs immobilization, the functions of nanomaterials, the biosensing catalytic cycle, interference, validation, and some other aspects related to TPI assessment. Nanomaterials are involved in the processes of immobilization, electron transfer, signal formation, and amplification, and they improve the performance of PO-based biosensors. Possible strategies for reducing interference in PO-based biosensors are discussed, namely the removal of ascorbic acid and the use of highly purified enzymes.
Collapse
|
11
|
Liu Y, Chen Y, Fan Y, Gao G, Zhi J. Development of a Tyrosinase Amperometric Biosensor Based on Carbon Nanomaterials for the Detection of Phenolic Pollutants in Diverse Environments. ChemElectroChem 2022. [DOI: 10.1002/celc.202200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yining Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
12
|
Lzaod S, Dutta T. Recent Advances in the Development of Oxidoreductase-Based Biosensors for Detection of Phenolic Antioxidants in Food and Beverages. ACS OMEGA 2022; 7:47434-47448. [PMID: 36591143 PMCID: PMC9798740 DOI: 10.1021/acsomega.2c05604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Antioxidants are known to exhibit a protective effect against reactive oxygen species (ROS)-related oxidative damage. As a result, inclusion of exogenous antioxidants in the diet has greatly increased. In this sense, detection and quantification of such antioxidants in various food and beverage items are of eminent importance. Monophenols and polyphenols are among the most prominent natural antioxidants. In this regard, biosensors have emerged as a simple, fast, and economical method for determination of such antioxidants. Owing to the fact that majority of the phenolic antioxidants are electroactive, oxidoreductase enzymes are the most extensively availed bioreceptors for their detection. Herein, the different types of oxidoreductases that have been utilized in biosensors for the biorecognition and quantification of natural phenolic compounds commonly present in foods and beverages are discussed. Apart from the most accustomed electrochemical biosensors, this review sheds light on the alternative transduction systems for the detection of phenolic antioxidants. Recent advances in the strategies involved in enzyme immobilization and surface modification of the biosensing platform are analyzed. This review aims to provide a brief overview of the latest developments in biosensor technology for phenolic antioxidant analysis in foodstuffs and future directions in this field.
Collapse
|
13
|
Batista EA, Pereira MOA, Macêdo IYL, Machado FB, Moreno EKG, Diniz EP, Frazzão IGV, Bernardes LSC, Oliveira SCB, Gil ES. Electroanalytical Enzyme Biosensor Based on Cordia superba Enzyme Extract for the Detection of Phytomarkers in Kombucha. BIOSENSORS 2022; 12:bios12121112. [PMID: 36551079 PMCID: PMC9775402 DOI: 10.3390/bios12121112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 05/28/2023]
Abstract
Antioxidants are responsible for many beneficial health effects and are highly present in natural products, such as kombucha. Biosensors' development targeting antioxidants and phytomarkers are an active research field. This work aimed to propose a voltammetric polyphenolxidase (Cordia superba) biosensor for catechin and total phenolic compounds quantification in kombucha samples. Optimizations were performed on the biosensor of Cordia superba to improve the accuracy and selectivity, such as enzyme-substrate interaction time, analytical responses for different patterns and signal differences with the carbon paste and modified carbon paste electrode. Kombucha probiotic drink samples were fermented for 7 to 14 days at a controlled temperature (28 ± 2 °C). A linear curve was made for catechin with a range of 10.00 to 60.00 µM, with a limit of detection of 0.13 µM and limit of quantification of 0.39 µM. The biosensor proposed in this work was efficient in determining the patterns of phenolic compounds in kombucha.
Collapse
Affiliation(s)
- Erica A. Batista
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Marx O. A. Pereira
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Isaac Y. L. Macêdo
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Fabio B. Machado
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Emily K. G. Moreno
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Elgia P. Diniz
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | - Italo G. V. Frazzão
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| | | | - Severino C. B. Oliveira
- Departamento de Química (DQ), Universidade Federal Rural de Pernambuco (UFRPE), Recife 52171-900, Brazil
| | - Eric S. Gil
- Faculdade de Farmácia (FF), Universidade Federal de Goiás (UFG), Goiânia 74605-170, Brazil
| |
Collapse
|
14
|
Zhang J, Lei J, Liu Z, Chu Z, Jin W. Nanomaterial-based electrochemical enzymatic biosensors for recognizing phenolic compounds in aqueous effluents. ENVIRONMENTAL RESEARCH 2022; 214:113858. [PMID: 35952740 DOI: 10.1016/j.envres.2022.113858] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of industrial society, phenolic pollutants already identified in water are severe threats to human health. Traditional detection techniques like chromatography are poor in the ability of cost-effectiveness and on-site detection. In recent years, electrochemical enzymatic biosensors have attracted increasing attention for use in the recognition of phenolic compounds, which is considered an effective strategy for the product transfer of portable analytical devices. Although electrochemical enzymatic biosensors provide a fast, accurate on-site detection technique, the difficulties of enzyme deactivation, poor stability and low sensitivity remain to be solved. Thus, effective immobilization methods of enzymes and nanomaterials with excellent properties have been extensively researched to obtain a high-sensitivity and high-stability biosensing platform. Simultaneous detection of multiple phenols may become the focus of further research. In this review, we provide an overview of recent progress toward electrochemical enzymatic biosensors for the detection of phenolic compounds, including enzyme immobilization approaches and advanced nanomaterials, especially nanocomposites with attractive properties such as good conductivity, high specific surface area, and porous structure. We will comprehensively discuss the features and mechanisms of the main enzymes adopted in the construction of different phenolic biosensors, as well as traditional methods (e.g., adsorption, covalent bonding, entrapment, encapsulation, cross-linking) of enzyme immobilization. The most effective method is based on the properties of enzymes, supports and application objective because there is no one-size-fits-all method of enzymatic immobilization. The emphasis will be given to various advanced nanomaterials, including their special nanostructures, preparation methods and performance. Finally, the main challenges in future research on electrochemical phenolic biosensors will be discussed to provide further perspectives for practical applications in dynamic and on-site monitoring. We believe this review will deliver an important inspiration for the construction of novel and high-performance electrochemical biosensors from enzyme selection to nanomaterial design for the detection of various hazardous materials. We believe this review will deliver an important inspiration on the construction of novel and high-performance electrochemical biosensors from the enzyme selection to the nanomaterial design for detections of various hazardous materials.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jing Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhengkun Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
15
|
Bounegru AV, Apetrei C. Studies on the Detection of Oleuropein from Extra Virgin Olive Oils Using Enzymatic Biosensors. Int J Mol Sci 2022; 23:ijms232012569. [PMID: 36293426 PMCID: PMC9604468 DOI: 10.3390/ijms232012569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
Oleuropein (OLEU) is an important indicator of the quality and authenticity of extra virgin olive oils (EVOO). Electrochemical sensors and biosensors for the detection of oleuropein can be used to test the adulteration of extra virgin olive oils. The present study aimed at the qualitative and quantitative determination of oleuropein in commercial EVOO samples by applying electrochemical techniques, cyclic voltammetry (CV) and square wave voltammetry (SWV). The sensing devices used were two newly constructed enzyme biosensors, supported on single-layer carbon-nanotube-modified carbon screen-printed electrode (SPE/SWCNT) on whose surface tyrosinase (SPE/SWCNT/Tyr) and laccase (SPE/SWCNT/Lac) were immobilized, respectively. The active surfaces of the two biosensors were analyzed and characterized by different methods, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Fourier transform infrared spectroscopy (FTIR) and the results confirmed the efficient immobilization of the enzymes. SPE/SWCNT/Tyr was characterized by a low detection limit (LOD = 9.53 × 10−8 M) and a very good sensitivity (0.0718 μA·μM−1·cm−2) over a wide linearity range from 0.49 to 11.22 μM. The process occurring at the biosensor surface corresponds to kinetics (h = 0.90), and tyrosinase showed a high affinity towards OLEU. The tyrosinase-based biosensor was shown to have superior sensitive properties to the laccase-based one. Quantitative determination of OLEU in EVOOs was performed using SPE/SWCNT/Tyr and the results confirmed the presence of the compound in close amounts in the EVOOs analysed, proving that they have very good sensory properties.
Collapse
|
16
|
Braz BA, Hospinal-Santiani M, Martins G, Pinto CS, Zarbin AJG, Beirão BCB, Thomaz-Soccol V, Bergamini MF, Marcolino-Junior LH, Soccol CR. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. BIOSENSORS 2022; 12:bios12100885. [PMID: 36291021 PMCID: PMC9599560 DOI: 10.3390/bios12100885] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 06/02/2023]
Abstract
The development of immunosensors to detect antibodies or antigens has stood out in the face of traditional methods for diagnosing emerging diseases such as the one caused by the SARS-CoV-2 virus. The present study reports the construction of a simplified electrochemical immunosensor using a graphene-binding peptide applied as a recognition site to detect SARS-CoV-2 antibodies. A screen-printed electrode was used for sensor preparation by adding a solution of peptide and reduced graphene oxide (rGO). The peptide-rGO suspension was characterized by scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The electrochemical characterization (electrochemical impedance spectroscopy-EIS, cyclic voltammetry-CV and differential pulse voltammetry-DPV) was performed on the modified electrode. The immunosensor response is based on the decrease in the faradaic signal of an electrochemical probe resulting from immunocomplex formation. Using the best set of experimental conditions, the analytic curve obtained showed a good linear regression (r2 = 0.913) and a limit of detection (LOD) of 0.77 μg mL-1 for antibody detection. The CV and EIS results proved the efficiency of device assembly. The high selectivity of the platform, which can be attributed to the peptide, was demonstrated by the decrease in the current percentage for samples with antibody against the SARS-CoV-2 S protein and the increase in the other antibodies tested. Additionally, the DPV measurements showed a clearly distinguishable response in assays against human serum samples, with sera with a response above 95% being considered negative, whereas responses below this value were considered positive. The diagnostic platform developed with specific peptides is promising and has the potential for application in the diagnosis of other infections that lead to high antibody titers.
Collapse
Affiliation(s)
- Beatriz A. Braz
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Manuel Hospinal-Santiani
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Gustavo Martins
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Cristian S. Pinto
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Aldo J. G. Zarbin
- Materials Chemistry Group (GQM), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Breno C. B. Beirão
- Graduate Program in Microbiology, Parasitology, and Pathology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Vanete Thomaz-Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Márcio F. Bergamini
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Luiz H. Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE), Department of Chemistry, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| | - Carlos R. Soccol
- Molecular Biology Laboratory, Graduate Program in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba 81531-980, PR, Brazil
| |
Collapse
|
17
|
Shahbaz A, Hussain N, Intisar A, Bilal M, Iqbal HMN. Immobilized Enzymes-Based Biosensing Cues for Strengthening Biocatalysis and Biorecognition. Catal Letters 2022; 152:2637-2649. [DOI: 10.1007/s10562-021-03866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023]
|
18
|
Thakur A, Kumar A. Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155219. [PMID: 35421493 DOI: 10.1016/j.scitotenv.2022.155219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Environmental safety has become a significant issue for the safety of living species, humans, and the ecosystem as a consequence of the harmful and detrimental consequences of various pollutants such as pesticides, heavy metals, dyes, etc., emitted into the surroundings. To resolve this issue, various efforts, legal acts, scientific and technological perspectives have been embraced, but still remain a global concern. Furthermore, due to non-portability, complex detection, and inappropriate on-site recognition of sophisticated laboratory tools, the real-time analysis of these environmental contaminants has been limited. As a result of innovative nano bioconjugation and nanofabrication techniques, nanotechnology enables enhanced nanomaterials (NMs) based (bio)sensors demonstrating ultra-sensitivity and a short detection time in real-time analysis, as well as superior sensitivity, reliability, and selectivity have been developed. Several researchers have demonstrated the potent detection of pollutants such as Hg2+ ion by the usage of AgNP-MD in electronic and optoelectronic methods with a detection limit of 5-45 μM which is quite significant. Taking into consideration of such tremendous research, herein, the authors have highlighted 21st-century strategies towards NMs based biosensor technology for pollutants detection, including nano biosensors, enzyme-based biosensors, electrochemical-based biosensors, carbon-based biosensors and optical biosensors for on-site identification and detection of target analytes. This article will provide a brief overview of the significance of utilizing NMs-based biosensors for the detection of a diverse array of hazardous pollutants, and a thorough understanding of the detection processes of NMs-based biosensors, as well as the limit of quantification (LOQ) and limit of detection (LOD) values, rendering researchers to focus on the world's need for a sustainable earth.
Collapse
Affiliation(s)
- Abhinay Thakur
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India
| | - Ashish Kumar
- Department of Chemistry, Faculty of Technology and Science, Lovely Professional University, Phagwara, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
19
|
Özer EM, Apetrei RM, Camurlu P. Trace-level phenolics detection based on composite PAN-MWCNTs nanofibers. Chembiochem 2022; 23:e202200139. [PMID: 35775384 DOI: 10.1002/cbic.202200139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/29/2022] [Indexed: 11/10/2022]
Abstract
In view of major concerns regarding toxicity (genotoxic, mutagenic, hepatotoxic) of phenolics, there is an on-going necessity for sensitive and accurate analytical procedures for detection and measurements in environmental field, water, and food quality control. The current study proposes composite polyacrylonitrile nanofibrous assemblies enriched with multi-wall carbon nanotubes (PAN-MWCNTs NFs) as suitable immobilization platforms for cross-linking of Tyrosinase in detection of both diphenols and monophenols, which are of much interest in water contamination.
Collapse
Affiliation(s)
- Elif Merve Özer
- Akdeniz Üniversitesi: Akdeniz Universitesi, Chemistry, TURKEY
| | | | - Pinar Camurlu
- Akdeniz University: Akdeniz Universitesi, Department of Chemistry, Akdeniz University Department of Chemistry, 07058, Antalya, TURKEY
| |
Collapse
|
20
|
Camargo JR, Silva TA, Rivas GA, Janegitz BC. Novel eco-friendly water-based conductive ink for the preparation of disposable screen-printed electrodes for sensing and biosensing applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Yıldız S, Bilen Ç, Karakuş E. Purification of damson plum polyphenol oxidase by affinity chromatography and investigation of metal effects on enzyme activity. Prep Biochem Biotechnol 2022; 52:1019-1034. [PMID: 35015975 DOI: 10.1080/10826068.2021.2023825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Polyphenol oxidase (PPO) was firstly purified from damson plum as a high antioxidant source. PPO was treated by 0-80% ammonium sulfate precipitation and dialysis. Characterization results were determined for catechol, 4-methyl catechol, pyrogallol and caffeic acid as 0.05 M/pH: 7.2/25 °C; 0.2 M/pH: 4.5/10 °C; 0.01 M/pH: 6.8/5 °C, and 0.2 M/pH: 8.5/10 °C, respectively. Vmax and KM values were calculated for same substrates as 17,219.97 U/(mL*min) and 11.67 mM; 7309.72 U/(mL*min) and 5 mM; 12,580.12 U/(mL*min) and 3.74 mM; 12,100.41 U/(mL*min) and 6.25 mM, respectively. Catechol gave the highest Vmax value among substrates. Affinity purification was performed by using Sepharose 4B-L-Tyrosine-p-aminobenzoic acid and Sepharose 6B-L-Tyrosine-p-aminobenzoic acid. Single bands were approximately observed at 50 kDa for each affinity sample in SDS-PAGE and Native-PAGE. 93.88 and 10.46 purification-folds were obtained for PPO by reference Sepharose-4B and original Sepharose-6B gels. Metal effects upon PPO activity were also investigated due to the importance of enzymatic browning in foods. Cu+2 activation and Fe+2 inhibition were observed with a final metal concentration of 1 mM at 219.66 and 43.18%, respectively. PPO purification from damson plum by affinity chromatography, its characterization, stability evaluation by statistically, and effects of metal ions on damson plum PPO have not been investigated in the literature.
Collapse
Affiliation(s)
- Selinnur Yıldız
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Çiğdem Bilen
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
22
|
Bounegru AV, Apetrei C. Laccase and Tyrosinase Biosensors Used in the Determination of Hydroxycinnamic Acids. Int J Mol Sci 2021; 22:4811. [PMID: 34062799 PMCID: PMC8125614 DOI: 10.3390/ijms22094811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, researchers have focused on developing simple and efficient methods based on electrochemical biosensors to determine hydroxycinnamic acids from various real samples (wine, beer, propolis, tea, and coffee). Enzymatic biosensors represent a promising, low-cost technology for the direct monitoring of these biologically important compounds, which implies a fast response and simple sample processing procedures. The present review aims at highlighting the structural features of this class of compounds and the importance of hydroxycinnamic acids for the human body, as well as presenting a series of enzymatic biosensors commonly used to quantify these phenolic compounds. Enzyme immobilization techniques on support electrodes are very important for their stability and for obtaining adequate results. The following sections of this review will briefly describe some of the laccase (Lac) and tyrosinase (Tyr) biosensors used for determining the main hydroxycinnamic acids of interest in the food or cosmetics industry. Considering relevant studies in the field, the fact has been noticed that there is a greater number of studies on laccase-based biosensors as compared to those based on tyrosinase for the detection of hydroxycinnamic acids. Significant progress has been made in relation to using the synergy of nanomaterials and nanocomposites for more stable and efficient enzyme immobilization. These nanomaterials are mainly carbon- and/or polymer-based nanostructures and metallic nanoparticles which provide a suitable environment for maintaining the biocatalytic activity of the enzyme and for increasing the rate of electron transport.
Collapse
Affiliation(s)
| | - Constantin Apetrei
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania;
| |
Collapse
|
23
|
Bucur B, Purcarea C, Andreescu S, Vasilescu A. Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspectives. SENSORS (BASEL, SWITZERLAND) 2021; 21:3038. [PMID: 33926034 PMCID: PMC8123588 DOI: 10.3390/s21093038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022]
Abstract
Enzymatic biosensors enjoy commercial success and are the subject of continued research efforts to widen their range of practical application. For these biosensors to reach their full potential, their selectivity challenges need to be addressed by comprehensive, solid approaches. This review discusses the status of enzymatic biosensors in achieving accurate and selective measurements via direct biocatalytic and inhibition-based detection, with a focus on electrochemical enzyme biosensors. Examples of practical solutions for tackling the activity and selectivity problems and preventing interferences from co-existing electroactive compounds in the samples are provided such as the use of permselective membranes, sentinel sensors and coupled multi-enzyme systems. The effect of activators, inhibitors or enzymatic substrates are also addressed by coupled enzymatic reactions and multi-sensor arrays combined with data interpretation via chemometrics. In addition to these more traditional approaches, the review discusses some ingenious recent approaches, detailing also on possible solutions involving the use of nanomaterials to ensuring the biosensors' selectivity. Overall, the examples presented illustrate the various tools available when developing enzyme biosensors for new applications and stress the necessity to more comprehensively investigate their selectivity and validate the biosensors versus standard analytical methods.
Collapse
Affiliation(s)
- Bogdan Bucur
- National Institute for Research and Development in Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Cristina Purcarea
- Institute of Biology, 296 Splaiul Independentei, 060031 Bucharest, Romania;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13676, USA;
| | - Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
24
|
Abstract
Antioxidants are compounds that prevent or delay the oxidation process, acting at a much smaller concentration, in comparison to that of the preserved substrate. Primary antioxidants act as scavenging or chain breaking antioxidants, delaying initiation or interrupting propagation step. Secondary antioxidants quench singlet oxygen, decompose peroxides in non-radical species, chelate prooxidative metal ions, inhibit oxidative enzymes. Based on antioxidants’ reactivity, four lines of defense have been described: Preventative antioxidants, radical scavengers, repair antioxidants, and antioxidants relying on adaptation mechanisms. Carbon-based electrodes are largely employed in electroanalysis given their special features, that encompass large surface area, high electroconductivity, chemical stability, nanostructuring possibilities, facility of manufacturing at low cost, and easiness of surface modification. Largely employed methods encompass voltammetry, amperometry, biamperometry and potentiometry. Determination of key endogenous and exogenous individual antioxidants, as well as of antioxidant activity and its main contributors relied on unmodified or modified carbon electrodes, whose analytical parameters are detailed. Recent advances based on modifications with carbon-nanotubes or the use of hybrid nanocomposite materials are described. Large effective surface area, increased mass transport, electrocatalytical effects, improved sensitivity, and low detection limits in the nanomolar range were reported, with applications validated in complex media such as foodstuffs and biological samples.
Collapse
|
25
|
Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. SENSORS (BASEL, SWITZERLAND) 2021; 21:1176. [PMID: 33562374 PMCID: PMC7915219 DOI: 10.3390/s21041176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Antioxidants are a group of healthy substances which are useful to human health because of their antihistaminic, anticancer, anti-inflammatory activity and inhibitory effect on the formation and the actions of reactive oxygen species. Generally, they are phenolic complexes present in plant-derived foods. Due to the valuable nutritional role of these mixtures, analysis and determining their amount in food is of particular importance. In recent years, many attempts have been made to supply uncomplicated, rapid, economical and user-friendly analytical approaches for the on-site detection and antioxidant capacity (AOC) determination of food antioxidants. In this regards, sensors and biosensors are regarded as favorable tools for antioxidant analysis because of their special features like high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current five-year progresses in different types of optical and electrochemical sensors/biosensors for the analysis of antioxidants in foods are discussed and evaluated well. Moreover, advantages, limitations, and the potential for practical applications of each type of sensors/biosensors have been discussed. This review aims to prove how sensors/biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Gilvanda S Nunes
- Pesticide Residue Analysis Center, Federal University of Maranhao, 65080-040 Sao Luis, Brazil
| | - Jean Louis Marty
- Faculty of Sciences, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX 9, France
| |
Collapse
|
26
|
Electrochemical Detection of Bisphenol A by Tyrosinase Immobilized on Electrospun Nanofibers Decorated with Gold Nanoparticles. ELECTROCHEM 2021. [DOI: 10.3390/electrochem2010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) employed in industrial processes that causes adverse effects on the environment and human health. Sensitive and inexpensive methods to detect BPA are therefore needed. In this paper, we describe an electrochemical biosensor for detecting low levels of BPA using polymeric electrospun nanofibers of polyamide 6 (PA6) and poly(allylamine hydrochloride) (PAH) decorated with gold nanoparticles (AuNPs), namely, PA6/PAH@AuNPs, which were deposited onto a fluorine-doped tin oxide (FTO) substrate. The hybrid layer was excellent for the immobilization of tyrosinase (Tyr), which allowed an amperometric detection of BPA with a limit of detection of 0.011 μM in the concentration range from 0.05 to 20 μM. Detection was also possible in real water samples with recoveries in the range of 92–105%. The improved sensing performance is attributed to the combined effect of the large surface area and porosity of PA6/PAH nanofibers, the catalytic activity of AuNPs, and oxidoreductase ability of Tyr. These results provide a route for novel biosensing architectures to monitor BPA and other EDCs in water resources.
Collapse
|