1
|
Shen Z, Wang Z, Ye P, Guo L, Peng S, Liu Y, Cui Y, Zheng J, Ouyang G. Highly hydrophobic calixarene polymers for efficient enrichment of polar nitrobenzene compounds. Talanta 2025; 286:127555. [PMID: 39778492 DOI: 10.1016/j.talanta.2025.127555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Macrocyclic polymer materials exhibit excellent selectivity and adsorption performance in pollutant adsorption due to unique host-guest recognition. Herein, three kinds of calixarene polymers (C4P, C6P and C8P) were synthesized through Sonogashira reaction, and were characterized through 1H NMR, FT-IR, SEM, and TEM. The water contact angle experiments revealed that three kinds of calixarene polymers were highly hydrophobic, and they all exhibited high enrichment efficiency for weak polar chloro-substituted benzene compounds (chlorobenzene, o-chlorotoluene, p-dichlorobenzene and o-dichlorobenzene) and BTEX (benzene, toluene, ethylbenzene and xylenes). Surprisingly, three types of calixarene polymers also showed satisfactory enrichment performance for polar nitrobenzene compounds (NBCs). Among them, C8P showed the most outstanding enrichment factors for NBCs (825-1913), which was about 2-7 times better than those of the commercial fibers. Using C8P as coating fiber, a sensitive analytical method was further developed based on solid phase microextraction (SPME), coupled with gas chromatography-mass spectrometry (GC-MS). The established analytical method demonstrated low detection limits (0.06-5.08 ng L-1), a wide linear range (0.5-1000 ng L-1), and good repeatability. The established method was further applied to the quantification of NBCs in environmental water samples, verifying its feasibility.
Collapse
Affiliation(s)
- Zitao Shen
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhuo Wang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Pengfei Ye
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Lihong Guo
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Sheng Peng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yuefan Liu
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yongsheng Cui
- Guangdong Center for Marine Development Research, Guangzhou, PR China.
| | - Juan Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China.
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China; School of Chemical Engineering and Technology, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519082, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou, 510070, PR China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, 450001, PR China
| |
Collapse
|
2
|
Sevgen S, Kara G, Kir AS, Şahin A, Boyaci E. A critical review of bioanalytical and clinical applications of solid phase microextraction. J Pharm Biomed Anal 2025; 252:116487. [PMID: 39378761 DOI: 10.1016/j.jpba.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Studying the functions, mechanisms, and effects of drugs and other exogenous compounds on biological systems, together with investigations performed to understand biosystems better, comprises one of the most fascinating areas of research. Although classical sample preparation techniques are dominantly used to infer the relevant information from the investigated system, they fail to meet various imperative requirements, such as being environmentally friendly, applicable in-vivo, and compatible with online analysis. As a chameleon in the analytical toolbox, solid phase microextraction (SPME) is one of the best tools available for studying biological systems in unconventional ways. In this review, SPME is spotlighted, and its capability for bioanalytical applications, including drug analysis, untargeted and targeted metabolomics, in-vivo and clinical studies, is scrutinized based on studies reported in the past five years. In addition, novel extractive phases and instrumental coupling strategies developed to serve bioanalytical research are discussed to give the perspective for state-of-the-art and future developments. The literature assessment showed that SPME could act as a critical tool to investigate in-vivo biological systems and provide information about the elusive portion of the metabolome. Moreover, recently introduced miniaturized SPME probes further improved the low-invasive nature of the sampling and enabled sampling even from a single cell. The coupling of SPME directly to mass spectrometry significantly reduced the total analytical workflow and became one of the promising tools suitable for fast diagnostic purposes and drug analysis. The numerous applications and advancements reported in bioanalysis using SPME show that it will continue to be an indispensable technique in the future.
Collapse
Affiliation(s)
- Sılanur Sevgen
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Gökşin Kara
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Aysegul Seyma Kir
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Alper Şahin
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye
| | - Ezel Boyaci
- Department of Chemistry, Middle East Technical University, Ankara 06800, Türkiye.
| |
Collapse
|
3
|
Zheng J, Chen C, Huang Y, Fang S, Guo P, Liu S, Ouyang G. A fast solid-phase microextraction scheme for in vivo monitoring of bio-accumulation and bio-transformation of arbidol in living plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177175. [PMID: 39461518 DOI: 10.1016/j.scitotenv.2024.177175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Large quantity of the antiviral drug arbidol is used for resisting virus infection like the Corona Virus Disease 2019 and influenza, resulting in unanticipated environmental pollution. Herein, to investigate the environmental risks of the unanticipated arbidol contamination, a novel in vivo sampling probe was developed based on a bromo-substituted porous organic polymer (Br-POP) and then adopted for tracking the bio-accumulation and bio-transformation of arbidol in living plants by coupling with a nano-electrospray ionization fourier-transform ion cyclotron resonance mass spectrometry (Nano-ESI-FT-ICR-MS) method. The established method showed good extraction performance towards arbidol with limit of detection (LOD) of 0.48 ng g-1, and relative standard deviation (RSD) of single-and multiple- probe of 2.2 and 14 %. Owing to the interactions between the Br-POP and the target analytes, as well as the fast analysis process of Nano-ESI-FT-ICR-MS, <6 min was cost for total sampling and analysis duration, achieving hourly tracking of arbidol and its metabolites in this work. During 21-d in vivo tracking, the concentration of arbidol in living plant stems increased rapidly within 6 h and peaked at 413.93 ± 47.09 ng g-1. Meanwhile, it was found that dissolved organic matters (DOM) had significant effect on arbidol behaviors in living plants, resulting in a decrease of the maximum concentration of arbidol in plant stems (152.70 ± 42.44 ng g-1) and the change of dominant metabolite of arbidol that the S-oxidation rather than N-demethylation product of arbidol was dominant with DOM participation. Additionally, the plant root secretion was found to be significantly altered by arbidol exposure. To summarized, the combination of in vivo SPME and the FT-ICR-MS analysis provide new and important information regarding arbidol contamination and related alternation of plant root metabolism.
Collapse
Affiliation(s)
- Jiating Zheng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yiquan Huang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuting Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Shuqin Liu
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| |
Collapse
|
4
|
Li H, Shi X, Su H, Wang S, Lin J, Lin Z, Cai Z. Layer-by-layer fabrication of covalent organic frameworks on stainless steel needles as solid-phase microextraction probe coupled with electrospray ionization mass spectrometry for enrichment and determination of tyrosine kinase inhibitors in biosamples. J Chromatogr A 2024; 1733:465276. [PMID: 39154498 DOI: 10.1016/j.chroma.2024.465276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Sunitinib, N-desmethyl imatinib, dasatinib, imatinib, and bosutinib are tyrosine kinase inhibitors (TKIs) that are commonly employed in the treatment of a multitude of cancers. However, the inappropriate concentrations of TKIs can result in ineffective treatment or the emergence of multiple adverse effects. Consequently, the development of a rapid and sensitive analytical method for TKIs is of paramount importance for the safe administration of drugs. In this work, solid-phase microextraction (SPME) probe combined with an electrospray ionization mass spectrometry (ESI-MS) coupling platform was constructed for rapid and sensitive determination of TKIs. The covalent organic frameworks (COFs) coated SPME probe was made of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (TAPT) and 2,5-dibutoxyterephthalaldehyde (DBTA) by in-situ layer-by-layer chemical bonding synthesis strategy. The TAPT-DBTA-SPME probe exhibited several advantageous properties which rendered it suitable for the enrichment of TKIs. Under the optimal conditions, the developed analytical method demonstrated a broad linear range (0.05-500.00 µg/L), a low limit of detection (0.02 µg/L) and a high enrichment factor (51-203) for TKIs. The developed analytical method was successfully applied to a pharmacokinetic study of TKIs in mouse plasma and tissue matrix, demonstrating that the proposed analytical method has promise for clinical applications and metabolic monitoring.
Collapse
Affiliation(s)
- Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, College of Chemistry, Fuzhou, Fujian, 350108, China
| | - Xinye Shi
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, College of Chemistry, Fuzhou, Fujian, 350108, China
| | - Hang Su
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, College of Chemistry, Fuzhou, Fujian, 350108, China
| | - Shuyi Wang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, College of Chemistry, Fuzhou, Fujian, 350108, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou 350003, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, College of Chemistry, Fuzhou, Fujian, 350108, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, China.
| |
Collapse
|
5
|
Gai T, Jiang J, Wang S, Zhang L, Ren Y, Qin Z, Wu Q, Zhang J, Liao J. Highly sensitive and selective determination of uranyl ions based on Ag/Ag 2O-COF composite SERS substrate. Talanta 2024; 277:126407. [PMID: 38878512 DOI: 10.1016/j.talanta.2024.126407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/19/2024]
Abstract
Uranium is an essential nuclear material in civilian and military areas; however, its extensive application raises concerns about the potential safety issues in the fields of environmental protection and nuclear industry. In this study, we developed an Ag/Ag2O-COF (covalent-organic framework) composite SERS substrate to detect uranyl ions (UO22+) in environmental aqueous solutions. Herein, the strong SERS effect of uranyl adsorbed in Ag/Ag2O composite and the high adsorption efficiency of COF TpPa-1 were combined to realize the trace detection of uranyl ions. This method displayed a linear range of 10-8 mol L-1 to 10-6 mol L-1 with the detection limit of 8.9 × 10-10 mol L-1 for uranyl ions. Furthermore, common metal cations and oxo-ions hardly affected the SERS detection of uranyl, which is helpful for the trace analysis of uranyl in natural water samples. Although the proposed strategy is deployed for uranyl detection, the reusable and high-efficiency system may be expanded to trace detection of other substance with Raman activity.
Collapse
Affiliation(s)
- Tao Gai
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Jiaolai Jiang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Shaofei Wang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China.
| | - Ling Zhang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Yiming Ren
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Zhen Qin
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Qian Wu
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Jun Zhang
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China
| | - Junsheng Liao
- Institute of Materials, China Academy of Engineering Physics, PO Box 9071-11, Mianyang, PR China.
| |
Collapse
|
6
|
Li H, Tu Y, Xie W, Shi X, Zhang Q, Lin J, Zhong Y, Lin Z, Cai Z. In situ fabrication of covalent organic frameworks on solid-phase microextraction probes coupled with electrospray ionization mass spectrometry for enrichment and determination of androgens in biosamples. Mikrochim Acta 2024; 191:276. [PMID: 38644435 DOI: 10.1007/s00604-024-06355-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Solid-phase microextraction (SPME) coupled with electrospray ionization mass spectrometry (ESI-MS) was developed for rapid and sensitive determination of endogenous androgens. The SPME probe is coated with covalent organic frameworks (COFs) synthesized by reacting 1,3,5-tri(4-aminophenyl)benzene (TPB) with 2,5-dioctyloxybenzaldehyde (C8PDA). This COFs-SPME probe offers several advantages, including enhanced extraction efficiency and stability. The analytical method exhibited wide linearity (0.1-100.0 µg L-1), low limits of detection (0.03-0.07 µg L-1), high enrichment factors (37-154), and satisfactory relative standard deviations (RSDs) for both within one probe (4.0-14.8%) and between different probes (3.4-12.7%). These remarkable performance characteristics highlight the reliability and precision of the COFs-SPME-ESI-MS method. The developed method was successfully applied to detect five kinds of endogenous androgens in female serum samples, indicating that the developed analytical method has great potential for application in preliminary clinical diagnosis.
Collapse
Affiliation(s)
- Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China
| | - Yuxin Tu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China
| | - Wen Xie
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China
| | - Xinye Shi
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China
| | - Qiuting Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China
| | - Juan Lin
- Department of Cardiology, Fujian Provincial Governmental Hospital, Fuzhou, 350003, China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, 2 Xueyuan Road, Qishan Campus, Fuzhou, 350108, Fujian, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
7
|
He Z, Ma S, Huang P, Liang Q, Wang R. Covalent organic framework/layered double hydroxide composite-coated poly(ether ether ketone) jacket for stir bar sorptive extraction of Sudan dyes. J Sep Sci 2024; 47:e2300865. [PMID: 38471971 DOI: 10.1002/jssc.202300865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
A novel coating for stir bar sorptive extraction was developed by growing a covalent organic framework, TpPa-1 (derived from phenylenediamine and 1,3,5-trimethylphloroglucinol), onto the surface of Ni-Al layered double hydroxide. Using a poly(ether ether ketone) tube as the supporting substrate, a TpPa-1/layered double hydroxide-coated stir bar was fabricated and demonstrated excellent extraction performance for Sudan dyes. Notably, its extraction efficiency significantly exceeded that of stir bars modified with only TpPa-1 or Ni-Al layered double hydroxide. Based on this innovative coating, a stir bar sorptive extraction-high performance liquid chromatography method was established. This method exhibited low limits of detection (0.04-0.08 ng/mL) for the analysis of Sudan dyes. It also featured a wide linear range (0.25-100 or 200 ng/mL) and demonstrated good repeatability with relative standard deviations ≤6.22%. The recoveries obtained for spiked lake water and chili powder samples were 93.5%-105.2% and 87.8%-100.6%, respectively, demonstrating the practical potential of the developed method for detecting trace Sudan dyes in real samples.
Collapse
Affiliation(s)
- Zhenfu He
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Shumin Ma
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Peiqi Huang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Qionghuan Liang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| | - Rong Wang
- School of Pharmacy, Guilin Medical University, Guilin, P. R. China
| |
Collapse
|
8
|
Liu H, Li C, Wang L, Fang L, Huang H, Deng J, Hu Y, Li M, Ran X, Li L, Zheng J. Photoelectrochemical sensor based on AuNPs@WO 3@TpPa-1-COF for quantification of DNA methylation levels. Mikrochim Acta 2024; 191:167. [PMID: 38418644 DOI: 10.1007/s00604-024-06235-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
A "signal-off" photoelectrochemical (PEC) sensing platform has been designed for the ultrasensitive detection of DNA methylation levels and multiple methylated sites. The platform employs tungsten trioxide and TpPa-1-COF loaded by gold nanoparticle (AuNPs@WO3@TpPa-1-COF) composite material as the photoactive component and p-type reduced graphene (rGO) as an efficient quencher. The PEC signal of AuNPs@WO3@TpPa-1-COF composite is effectively quenched in the presence of p-type rGO, because p-type rGO can compete with AuNPs@WO3@TpPa-1-COF to deplete light energy and electron donors. In addition, a hybrid strand reaction (HCR) amplification strategy fixes more target DNA and then combines with rGO-modified anti-5-methylcytosine antibody to facilitate ultrasensitive DNA methylation detection. Under optimal conditions, DNA methylation can be measured within a linear concentration range of 10-14 to 10-8 M, with an exceptionally low detection limit of 0.19 fM (S/N = 3). At the same time, the platform can conduct quantitative determination of multi-site methylation, with the linear equation △I = 44.19LogA + 61.43, and the maximum number of methylation sites is 5. The sensor demonstrates high sensitivity, excellent selectivity, and satisfactory stability. Furthermore, the proposed signal-off PEC strategy was successfully employed to detect DNA methylation in spiked human serum samples, with recoveries ranging from 93.17 to 107.28% and relative standard deviation (RSD) ranging from 1.15 to 5.49%.
Collapse
Affiliation(s)
- Huamin Liu
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Chenghong Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lina Wang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jun Deng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Yue Hu
- Emergency Department, 2, Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Mimi Li
- Emergency Department, 2, Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xiaoping Ran
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lulu Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Guo W, Tao H, Tao H, Shuai Q, Huang L. Recent progress of covalent organic frameworks as attractive materials for solid-phase microextraction: A review. Anal Chim Acta 2024; 1287:341953. [PMID: 38182358 DOI: 10.1016/j.aca.2023.341953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
Solid-phase microextraction (SPME) is a green, environmentally friendly, and efficient technique for sample pre-treatment. Covalent organic frameworks (COFs), a class of porous materials formed by covalent bonds, have gained prominence owing to their remarkable attributes, including large specific surface area, tunable pore size, and robust thermal/chemical stability. These characteristics have made COFs highly appealing as potential coatings for SPME fiber over the past decades. In this review, various methods used to prepare SPME coatings based on COFs are presented. These methods encompass physical adhesion, sol-gel processes, in situ growth, and chemical cross-linking strategies. In addition, the applications of COF-based SPME coating fibers for the preconcentration of various targets in environmental, food, and biological samples are summarized. Moreover, not only their advantages but also the challenges they pose in practical applications are highlighted. By shedding light on these aspects, this review aims to contribute to the continued development and utilization of COF materials in the field of sample pretreatment.
Collapse
Affiliation(s)
- Weikang Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Hui Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Haijuan Tao
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan, 430074, PR China.
| |
Collapse
|
10
|
Zou J, Li Y, Dong H, Ma N, Dai W. Well-constructed a water stable Cu-BTC@TpPa-1 binary composite with excellent capture ability toward malachite green. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124306-124315. [PMID: 37996590 DOI: 10.1007/s11356-023-31114-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Adsorptive removal of dyes (e.g., malachite green (MG)) from wastewater using commercially available adsorbents is not significantly efficient. Metal-organic frameworks (MOFs) such as Cu-BTC is considered as an excellent adsorbent in adsorption-separation filed. However, the water instability of Cu-BTC restricts its potential utilization in dye wastewater purification. In this paper, we have developed a novel metal/covalent-organic frameworks (Cu-BTC@TpPa-1) binary composite by solvothermal method. This composite serves as a multifunctional platform for the effective removal of MG from water. This Cu-BTC@TpPa-1 obviously keeps structural integrity soaked in water for 7 days. And its heat resistant performance can achieve 360 °C because of the TpPa-1 protection, which is outdistance to that of Cu-BTC. The adsorbed capacity of MG over Cu-BTC@TpPa-1 is exceptionally high, with an uptake of up to 64.12 mg/g, which is superior compared to previous adsorbents, highlighting its superior adsorption capabilities. The adsorptive performance was controlled by the associative effects of Cu-BTC and TpPa-1 with an association effect of π-complexation and electrostatic attraction. The Cu-BTC@TpPa-1 might be a prospective adsorbent for MG capture from industrial wastewater.
Collapse
Affiliation(s)
- Jiaying Zou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Yan Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Haotian Dong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, People's Republic of China.
| |
Collapse
|
11
|
Ma W, Chen H, Hou H, Hu Q, Bai Y. TiO 2@COF-based solid-phase microextraction combined with UHPLC-MS/MS for the rapid determination of potential biomarkers of phosphatidylcholines and lysophosphatidylcholines in head and neck cancers. Anal Bioanal Chem 2023; 415:6771-6783. [PMID: 37776352 DOI: 10.1007/s00216-023-04954-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Phosphatidylcholine (PC) and lysophosphatidylcholine (LPC), two types of phospholipids (PLs), have been reported to be closely correlated with head and neck cancers of laryngeal cancer (LC) and thyroid cancer (TC), which make their analysis crucial. TiO2@COF-based solid-phase microextraction (SPME) coupled to UHPLC-MS/MS was developed for the rapid and accurate detection of seven potential PL biomarkers from small amounts of serum in this work. The combination of TiO2 and COF proves to be effective for the extraction of the target analytes. Under optimal conditions, the developed TiO2@COF-based SPME-UHPLC-MS/MS method revealed good linearity (R2 ≥ 0.997) with LODs ranging from 0.05 to 0.38 ng/mL for PLs, the extraction recoveries and matrix effects ranging from 83.09-112.03% and 85.38-113.67%, respectively. As a high-throughput pretreatment method, satisfactory probe-to-probe reproducibility rates of 2.7-10.1% were obtained. Finally, the TiO2@COF-based SPME-UHPLC-MS/MS method was applied to analyze LPC 14:0, LPC 16:0, LPC 18:0, LPC 18:1, LPC 19:0, PC 16:0/18:1, and PC 18:0 in serum samples from early LC patients (n = 15), early TC patients (n = 15), and healthy volunteers (n = 15). The results indicated that cancer patients could be effectively differentiated from healthy controls using orthogonal partial least squares discriminant analysis (OPLS-DA). In conclusion, the established TiO2@COF-based SPME-UHPLC-MS/MS method is reliable for the rapid determination of the seven PLs in serum samples, which is promising for early diagnosis of head and neck cancers.
Collapse
Affiliation(s)
- Wanwan Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Beijing, 100101, China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Beijing, 100101, China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Beijing, 100101, China.
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, China National Tobacco Quality Supervision and Test Center, Zhengzhou, 450001, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Beijing, 100101, China.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Xu L, Hu W, Wu F, Zhang J. In situ growth of porous organic framework on iron wire for microextraction of polycyclic aromatic hydrocarbons. Talanta 2023; 264:124732. [PMID: 37279625 DOI: 10.1016/j.talanta.2023.124732] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
In this work, a novel spherical metal organic framework (MOF) was first in situ grown on the surface of iron wire (IW), in which IW served as the substrate and metal source for MOF (type NH2-MIL88) growth without adding additional metal salts in the process, while spherical NH2-MIL88 provided more active sites for further construction of multifunctional composites. Subsequently, a covalent organic framework (COF) was covalently bonded to the surface of the NH2-MIL88 to obtain the IW@NH2-MIL88@COF fibers, which were used for headspace solid-phase microextraction (HS-SPME) of polycyclic aromatic hydrocarbons (PAHs) in milk samples prior to determination by gas chromatography-flame ionization detection (GC-FID). Compared with the fiber prepared by physical coating, the IW@NH2-MIL88@COF fiber prepared by in situ growth and covalent bonding exhibits better stability and possesses more uniform layer. The extraction mechanism of the IW@NH2-MIL88@COF fiber for PAHs was discussed, which mainly owed to π-π interactions and hydrophobic interactions. After optimization of the primary extraction conditions, the SPME-GC-FID method was established for five PAHs with a wide linear range (1-200 ng mL-1), good linearity coefficient (0.9935-0.9987) and low detection limits (0.017-0.028 ng mL-1). The relative recoveries for PAHs detection in milk samples ranged from 64.69 to 113.97%. This work not only provides new ideas for the in situ growth of other types of MOF, but also provides new methods for the construction of multifunctional composites.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Wei Hu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
13
|
Li S, Ma J, Guan J, Li J, Wang X, Sun X, Chen L. Selective cationic covalent organic framework for high throughput rapid extraction of novel polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130125. [PMID: 36303337 DOI: 10.1016/j.jhazmat.2022.130125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Novel per- and polyfluoroalkyl substances (PFASs) raise global concerns due to their toxic effects on environment and human health. However, researches on analytical methods of novel PFASs are lacking. Here, a kind of selective cationic covalent organic framework (iCOF) was designed and loaded on the surface of cotton as an adsorbent. Then, a simple solid-phase extraction (SPE) method based on the cotton@iCOF was developed for high throughput rapid extraction of six novel PFASs in water samples, coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. Several important SPE parameters, such as the amount of iCOF, sample pH, desorption conditions and salinity were systematically investigated. Under optimal conditions, the limits of detection and quantification of this SPE-UHPLC-MS/MS method were as low as 0.08-2.14 ng/L and 0.28-7.15 ng/L, respectively. The recoveries were 77.9-117.6 % for the tap water and surface water, and F-53 B in surface water were detected. Notably, this SPE process was rapid (1 h for 500 mL water sample) compared with commercial SPE (normal 2-3 h), owing to little resistance of cotton@iCOF and omission of nitrogen blowing process, and high throughput with 12 samples concurrently extracted. Additionally, various characterization means and density functional theory (DFT) calculations showed that ion-exchange effect, hydrophobic interaction, hydrogen bonding and ordered channel structure synergistically contributed to the PFASs adsorption on cotton@iCOF. The cotton@iCOF-based SPE method with simplicity, rapidity, selectivity and efficiency provided new research ideas for the analysis and control of ionic emerging pollutants in water.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Jing Guan
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiyan Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Kong X, Gao N, Du J, Zhao Q. Arrangement of Indocyanine Green in a 1.5-Nanometer Channel to Achieve High-Efficiency Imaging of the Intestinal Lymphatic System. Molecules 2022; 27:molecules27248704. [PMID: 36557838 PMCID: PMC9786184 DOI: 10.3390/molecules27248704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The complications of inflammatory bowel diseases (IBDs) seriously endanger people’s health, such as bleeding, polyp hyperplasia, and even cancer. Although the precise pathophysiology of IBD is unknown, alterations in the intestinal lymphatic network, such as lymphangiogenesis and lymphatic vessel dysfunction, are well-established features. Therefore, the development of a reliable technology is urgently required, with a stereoscopic, deep, and high-resolution technology for IBD lymphatic targeting imaging in clinical practice. However, indocyanine green, the only clinically approved imaging agent by the Food and Drug Administration, can easily cause self-aggregation or be interfered with by microenvironments, causing fluorescence quenching, which seriously affects the imaging and detective capabilities. Herein, indocyanine green molecules are arranged in a 1.5-nanometer one-dimensional channel (TpPa-1@ICG). Based on this specified structure, the fluorescence enhancement effect is observed in the TpPa-1@ICG resultant, and the fluorescence intensity is enhanced by 27%. In addition, the ICG-incorporated porous solid reveals outstanding solvent (dichloromethane, tetrahydrofuran, etc.) and thermal (>300 °C) stability. After modifying the target molecules, TpPa-1@ICG showed excellent imaging ability for intestinal lymphatic vessels, providing a new imaging tool for IBDs research.
Collapse
Affiliation(s)
- Xiangyi Kong
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Nan Gao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
- Correspondence: (N.G.); (J.D.)
| | - Jianshi Du
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, China
- Correspondence: (N.G.); (J.D.)
| | - Qing Zhao
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery Jilin Province, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| |
Collapse
|
15
|
Zheng J, Peng X, Zhu T, Huang S, Chen C, Chen G, Liu S, Ouyang G. Detection of bile acids in small volume human bile samples via an amino metal-organic framework composite based solid-phase microextraction probe. J Chromatogr A 2022; 1685:463634. [DOI: 10.1016/j.chroma.2022.463634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
16
|
Gao Y, Sheng K, Bao T, Wang S. Recent applications of organic molecule-based framework porous materials in solid-phase microextraction for pharmaceutical analysis. J Pharm Biomed Anal 2022; 221:115040. [PMID: 36126613 DOI: 10.1016/j.jpba.2022.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022]
Abstract
Sample preparation is an indispensable part of detection of complex samples in pharmaceutical analysis. Solid-phase microextraction (SPME) has obtained a lot of attention due to its advantages of time saving, less solvent and easily automation. A variety of functional materials are used as sorbents in SPME to carry out selective and high extraction. This review centers around the recent applications of organic molecule-based framework porous materials, such as metal organic frameworks (MOFs) and covalent organic frameworks (COFs), as SPME coating materials mainly focus on pharmaceutical analysis in food, environment, and biological samples. Four representative extraction devices are introduced, including on-fiber SPME, in-tube SPME, thin film SPME, stir bar SPME. The application prospect of other organic porous materials as sorbents for pharmaceutical analysis are also discussed, such as hyper crosslinked polymers (HCPs) and conjugated microporous polymers (CMPs). The progresses and discusses are provided to offer references for further research focusing on application and development of organic molecule-based framework porous materials in the field of SPME.
Collapse
Affiliation(s)
- Yan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Kangjia Sheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| |
Collapse
|
17
|
A critical review of covalent organic frameworks-based sorbents in extraction methods. Anal Chim Acta 2022; 1224:340207. [DOI: 10.1016/j.aca.2022.340207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
|
18
|
Triazine-based porous organic polymer as pipette tip solid-phase extraction adsorbent coupled with HPLC for the determination of sulfonamide residues in food samples. Food Chem 2022; 397:133831. [DOI: 10.1016/j.foodchem.2022.133831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022]
|
19
|
Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit Rev Anal Chem 2022; 54:565-598. [PMID: 35757859 DOI: 10.1080/10408347.2022.2089838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent organic frameworks (COFs) are a class of emerging materials that are synthesized based on the covalent bonds between different building blocks. COFs possess unique attributes in terms of high porosity, tunable structure, ordered channels, easy modification, large surface area, and great physical and chemical stability. Due to these features, COFs have been extensively applied as adsorbents in various extraction modes. Enhanced extraction performance could be reached with modified COFs, where COFs are presented as composites with other materials including nanomaterials, carbon and its derivatives, silica, metal-organic frameworks, molecularly imprinted polymers, etc. This review article describes the recent advances, developments, and applications of COF-based materials being utilized as adsorbents in the extraction methods. The COFs, their properties, their synthesis approaches as well as their composite structures are reviewed. Most importantly, suggested mechanisms for the extraction of analyte(s) by COF-based materials are also discussed. Finally, the current challenges and future prospects of COF-based materials in extraction methods are summarized and considered in order to provide more insights into this field.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
20
|
Convenient synthesis of a hyper-cross-linked polymer via knitting strategy for high-performance solid phase microextraction of polycyclic aromatic hydrocarbons. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Rapidly covalent immobilization of β-ketoenamine-linked covalent organic framework on fibers for efficient solid-phase microextraction of phthalic acid esters. Talanta 2022; 243:123380. [DOI: 10.1016/j.talanta.2022.123380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
|
22
|
Sun W, Hu X, Xiang Y, Ye N. Adsorption behavior and mechanism of sulfonamides on controllably synthesized covalent organic frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18680-18688. [PMID: 34697714 DOI: 10.1007/s11356-021-17169-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this work, four kinds of covalent organic framework (COF) materials (TpPa-1, TpBD, TpDT, and TFBBD) with different pore sizes or functional groups were synthesized by an ultrasonic method for the adsorption of five sulfonamides. Optimization experiments regarding the adsorption time, vortex speed, and pH were carried out to improve adsorption efficiency. In addition, kinetic and thermodynamic experiments were conducted to explore the adsorption mechanism of the sulfonamides on the different COFs. The adsorption processes of the five sulfonamides on the four COFs fit the pseudo-second-order kinetic model and Langmuir adsorption isotherm model. Additionally, pore filling, hydrogen bond interactions, and electrostatic attraction were found to be the main adsorption mechanisms.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Xiaoyu Hu
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing, 100048, People's Republic of China.
| |
Collapse
|
23
|
Li S, Ma J, Wu G, Li J, Wang X, Chen L. Magnetic covalent-organic frameworks for the simultaneous extraction of eleven emerging aromatic disinfection byproducts in water samples coupled with UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127687. [PMID: 34776299 DOI: 10.1016/j.jhazmat.2021.127687] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
A simple method based on magnetic solid-phase extraction (MSPE) was developed for the simultaneous extraction of eleven emerging aromatic disinfection byproducts (DBPs) in water samples coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. A magnetic covalent-organic framework (COF) material, namely, Fe3O4 @TpBD, was facilely synthesized and fully characterized, followed by an MSPE process. Several important MSPE parameters, such as the magnetic ratio, Fe3O4 @TpBD amount and sample pH, were systematically investigated. Under optimal conditions, the limits of detection and quantification of this COF-MSPE-UHPLC-MS/MS method were as low as 0.07-1.81 ng/L and 0.24-5.99 ng/L, respectively. Good precision was obtained with relative standard deviations (RSDs) of 1.3-10.9% (intraday) and 4.3-15.9% (interday). Furthermore, the validated method was proven applicable to real water samples; for example, the recoveries were 86.8-115.1% for the secondary effluent, and several DBPs in swimming pool water were detected. Notably, the MSPE process required only 7 min, ensuring that the DBPs were relatively stable during the whole analysis process and that Fe3O4 @TpBD demonstrated excellent reusability. The COF-based MSPE method with simplicity, rapidity and efficiency provided an ideal sample pretreatment alternative to determine trace DBPs in complex matrices.
Collapse
Affiliation(s)
- Shuang Li
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China.
| | - Gege Wu
- School of Environmental & Municipal Engineering, State-Local Joint Engineering Research Center of Urban Sewage Treatment and Resource Recovery, Qingdao University of Technology, Qingdao 266033, China
| | - Jinhua Li
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
24
|
Soufi G, Bagher H, Yeganeh Rad L, Minaeian S. Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath. Anal Chim Acta 2022; 1198:339550. [DOI: 10.1016/j.aca.2022.339550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
25
|
Yu Q, Ma W, Zhang W, Chen H, Ding Q, Guo Y, Yang J, Zhang L. In situ room-temperature rapidly fabricated imine-linked covalent organic framework coated fibers for efficient solid-phase microextraction of pyrethroids. Anal Chim Acta 2021; 1181:338886. [PMID: 34556223 DOI: 10.1016/j.aca.2021.338886] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 01/09/2023]
Abstract
A facile and rapid strategy for preparation of covalent organic framework (COF) coated fibers at ambient temperature is urgently needed for solid-phase microextraction (SPME) technology. In this work, an in situ room-temperature rapid growth strategy was developed to high-efficiently fabricate imine-linked COF (TPB-DVA) coated fibers in as little as 30 min at room temperature, and the thickness of the coating reached 9 μm. The prepared TPB-DVA coated fiber offer high thermal and chemical stability, and outstanding service lifetime. Moreover, we generalize this strategy to other two imine-linked COF (TPB-DMTP and TFPB-TAPB) coated fibers and the fibers were fabricated at room temperature for 3 h and 12 h, respectively, which demonstrate the applicability of this strategy. Subsequently, a SPME-GC-MS/MS analytical method was developed for trace pyrethroids (PYs) detection, which exhibited high enhancement factors (EFs, 2700-13195), wide linear range (0.08-800 ng L-1), low limits of detection (LODs, 0.02-0.20 ng L-1), and good repeatability (RSD ≤ 8.5%, n = 6). Furthermore, the developed analytical method was applied to tea samples and trace PYs (1.31-4.32 ng L-1) were found with satisfactory recovery (80.2-119.8%). The above results demonstrated that the feasibility of the developed strategy for the facile and rapid fabrication of imine-linked COF coated fibers.
Collapse
Affiliation(s)
- Qidong Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China; College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wende Ma
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemical and Biological Engineering, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yuheng Guo
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jiangfan Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology (Ministry of Education & Fujian Province), College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
26
|
Wen G, Xiao Y, Chen S, Zhang X, Jiang Z. A nanosol SERS/RRS aptamer assay of trace cobalt(ii) by covalent organic framework BtPD-loaded nanogold catalytic amplification. NANOSCALE ADVANCES 2021; 3:3846-3859. [PMID: 36133010 PMCID: PMC9417635 DOI: 10.1039/d1na00208b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/04/2021] [Indexed: 06/14/2023]
Abstract
The determination of heavy metal ions has always been a hot topic in the field of environmental analysis. In this study, a new covalent organic framework-loaded gold nanoparticle (AuCOF) nanocatalytic amplification signal strategy was developed to determine trace Co2+ in water. The COF of BtPD was synthesized from 1,3,5-benzene tricarboxaldehyde and p-phenylenediamine, and a new kind of AuBtPD nanosol was prepared by reduction of HAuCl4 to AuNPs on the BtPD carrier. It has strong catalysis of the new indicator reaction of sodium formate reducing HAuCl4 to AuNP sol with strong resonance Rayleigh scattering (RRS) at 370 nm and surface enhanced resonance Raman scattering (SERS) activity at 1614 cm-1 in the presence of a Victoria blue 4R (VB4R) molecular probe. Combining the nanocatalytic reaction to amplify the dual-scattering signals and specific aptamer (Apt) of cobalt ions, a new, fast, stable, sensitive and specific dual mode method for detecting Co2+ was established; the RRS signal I 370nm and SERS signal I 1614cm-1 show a linear relationship with the concentration of 0.033-1 nmol L-1 Co2+ and with a limit of detection (LOD) of 0.02 nmol L-1. The two methods have been applied to the determination of Co2+ in industrial wastewater, tap water and river water, and the results are satisfactory.
Collapse
Affiliation(s)
- Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Yang Xiao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Shuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Xinghui Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education Guangxi China
- Key Laboratory of Environmental Pollution Control Theory and Technology Guilin 541004 China
| |
Collapse
|
27
|
Song C, Shao Y, Yue Z, Hu Q, Zheng J, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Anal Chim Acta 2021; 1176:338772. [PMID: 34399894 DOI: 10.1016/j.aca.2021.338772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
The extraction performance of solid-phase microextraction (SPME) fiber is significantly influenced by coating materials and fabricating process. It is urgently needed for fabricating robust SPME fiber with facile preparation methods. Herein, a novel polyimide (PI) @ covalent organic framework (COF) synthesized by 1,3,5-Tris (4-aminophenyl) benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP) fiber, named PI@TPB-DMTP fiber, was successfully fabricated with facile method at room temperature. Firstly, a COF crystals TPB-DMTP was in situ grown on stainless steel fiber, where the COF crystals was synthesized by the Schiff-base reaction between TPB and DMTP. Subsequently, the COF coating was covered with an ultrathin layer of PI through a simple dip-coating method to improve the fiber stability. By coupled PI@TPB-DMTP SPME fiber with gas chromatography-negative chemical ion-mass spectrometry (GC-NCI-MS), a sensitive analytical method was established for the determination of ultratrace polybrominated diphenyl ethers (PBDEs) in water sample. To achieve the best efficiency and sensitivity for the analysis of PBDEs, six potential influencing factors in extraction step and desorption step were optimized. Under optimized conditions, the established method showed high enhancement factors of 1470-3555, wide linear range of 0.05-100 ng L-1, low detection limits of 0.0083-0.0190 ng L-1, good repeatability for intra-day in the range of 3.71%-7.62% and inter-day in the range of 5.12%-8.81%, good reproducibility in the range of 6.83%-9.21%. The satisfactory recovery was ranged from 79.2% to 117.3% in determining real water samples. The excellent experimental performance was mainly attributed to the large specific surface area of TPB-DMTP, as well as the high permeability of porous PI film. The results demonstrated that the COF-based fiber showed great potential for analysis of PBDEs in complex environmental samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Shao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Zeyi Yue
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Qingkun Hu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China.
| |
Collapse
|
28
|
Yu Y, Cao Y, Huang W, Liu Y, Lu Y, Zhao J. β-Sitosterol Ameliorates Endometrium Receptivity in PCOS-Like Mice: The Mediation of Gut Microbiota. Front Nutr 2021; 8:667130. [PMID: 34179058 PMCID: PMC8224531 DOI: 10.3389/fnut.2021.667130] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases in women of childbearing age, has been found to be accompanied by changes in the gut microbiota. The Bu Shen Yang Xue formula (BSYXF) is a traditional Chinese medicine widely used for the treatment of PCOS. This study aimed to investigate whether the protective effects of β-sitosterol, the main active ingredient of BSYXF, on PCOS was mediated by regulating gut microbiota. Methods: The presence of β-sitosterol in BSYXF was detected by liquid chromatography-mass spectrometry. The PCOS-like mouse model was induced by dehydroepiandrosterone. The fecal supernatant of β-sitosterol-treated mice was prepared for fecal microbiota transplantation (FMT). Body weight and wet weight of the uterus and ovary of the mice were recorded for organ index calculation. Hematoxylin and eosin stain was used to assess the endometrial morphology and microenvironment changes. Expression of endometrial receptivity markers cyclooxygenase-2 (COX-2), Integrin ανβ3, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) in the endometrium were determined by immunohistochemistry and western blot analysis. Enzyme-linked immunosorbent assay was employed to detect the expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), and testosterone (T) in the serum. The diversity of gut microbiota was examined by 16S rDNA gene sequencing. Results: With the treatment of β-sitosterol and β-sitosterol-FMT, the uterine index of PCOS-like mice increased, the ovarian index decreased, levels of COX-2, LH and T decreased, and levels of Integrin ανβ3, LIF, HOXA10, FSH, and P increased. Under β-sitosterol treatment, the structure of the gut microbiota in PCOS-like mice was also changed. Conclusion: β-sitosterol regulates the endometrial receptivity of PCOS and harmonizes the sex hormone balance, which may be related to the changes in the structure and composition of gut microbiota, thus affecting the pathological process of PCOS.
Collapse
Affiliation(s)
- Yanyan Yu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Cao
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Wenling Huang
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanxia Liu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Lu
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiajing Zhao
- Department of Gynecology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Li L, Yin D, Xiandi G. Construction of a novel 2D–2D heterojunction by coupling a covalent organic framework and In 2S 3 for photocatalytic removal of organic pollutants with high efficiency. NEW J CHEM 2021. [DOI: 10.1039/d1nj03133c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TpPa-1 COF was coupled with an inorganic narrow-band gap semiconductor In2S3 to form a novel 2D–2D heterojunction by a facile hydrothermal method.
Collapse
Affiliation(s)
- Luqiu Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dongguang Yin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Guo Xiandi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|