1
|
Wu H, Wang G, Cai Z, Li D, Xiao F, Lei D, Dai Z, Dou X. Polyethyleneimine-capped copper nanoclusters for detection and discrimination of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4485-4494. [PMID: 36317750 DOI: 10.1039/d2ay01311h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and discrimination of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) from analogues are of great importance to global security and are full of challenges in the field of trace sensing. Here, benefitting from the strong electrophilicity of TNT, a sensing strategy is established by synthesizing polyethyleneimine capped copper nanoclusters (PEI-Cu NCs) with abundant -NH2 groups. By carefully controlling the size and structure of PEI-Cu NCs, Förster resonance energy transfer (FRET) from PEI-Cu NCs to the Meisenheimer complex occurs resulting from their spectral overlap when detecting TNT, while, due to the energy level match of TNP with PEI-Cu NCs, as well as the strong affinity between its -OH and -NH2 in PEI-Cu NCs, photo-induced electron transfer (PET) is feasibly expected. As a result, TNT and TNP could be detected from 26 types of analogues and cations with a limit of detection (LOD) of 26.57 and 12.82 nM, respectively. Besides, owing to the brown color of the Meisenheimer complex, the discrimination of TNT and TNP could be additionally realized by colorimetric detection. We expect that the proposed methodology would not only shine light on the detection and discrimination of TNT and TNP that mitigate against public security concerns, but also pave a way for the deep understanding of FRET and PET related fluorescence quenching mechanisms from the aspect of controllable sensing material design and synthesis.
Collapse
Affiliation(s)
- Haotian Wu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Dezhong Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang T, Liu S, Ren S, Liu B, Gao Z. Magnetic relaxation switch and fluorescence dual-mode biosensor for rapid and sensitive detection of ricin B toxin in edible oil and tap water. Anal Chim Acta 2022; 1232:340471. [DOI: 10.1016/j.aca.2022.340471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/28/2022] [Indexed: 11/01/2022]
|
3
|
Wang HB, Tao BB, Wu NN, Zhang HD, Liu YM. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120948. [PMID: 35104744 DOI: 10.1016/j.saa.2022.120948] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
A simple and highly selective fluorescence biosensor has been exploited for p-nitrophenol (p-NP) and alkaline phosphatase (ALP) activity detection based on the glutathione-stabilized copper nanoclusters (GSH-CuNCs) mediated-inner filter effect (IFE). The GSH-CuNCs were prepared by employing GSH as stabilizer and ascorbic acid (AA) as reductant. The obtained GSH-CuNCs exhibited a strong blue fluorescence emission at 420 nm with an excitation wavelength of 365 nm, which overlapped largely with the absorption spectra of p-nitrophenol (p-NP). Therefore, the luminescence of GSH-CuNCs could be quenched by p-NP through inner filter effect. In addition, ALP catalyzed the substrate p-nitrophenyl phosphate (p-NPP) to form p-nitrophenol (p-NP), which also leading to the fluorescence quenching of GSH-CuNCs. The fluorescent strategy was realized for the sensitive determination of p-NP and ALP activity with the promising limit of detection of 20 nM (for p-NP) and 0.003 mU⋅mL-1 (for ALP). Furthermore, the method could be applied to detect the p-NP content in river water samples and ALP activity in human serum samples.
Collapse
Affiliation(s)
- Hai-Bo Wang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Bei-Bei Tao
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Ning-Ning Wu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Hong-Ding Zhang
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
4
|
Shi W, Li T, Chu N, Liu X, He M, Bui B, Chen M, Chen W. Nano-octahedral bimetallic Fe/Eu-MOF preparation and dual model sensing of serum alkaline phosphatase (ALP) based on its peroxidase-like property and fluorescence. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112404. [PMID: 34579916 DOI: 10.1016/j.msec.2021.112404] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 01/14/2023]
Abstract
Herein a nano-scale bimetallic Fe/Eu-MOF with a regular octahedral structure was synthesized for the first time. The synthesized Fe/Eu-MOF has both peroxidase-like activity and fluorescence properties. Fe/Eu-MOF can catalyze H2O2 to oxidize the chromogenic substrate TMB to produce blue oxTMB, which has ultraviolet absorption at 652 nm. Unexpectedly, the generated oxTMB can effectively quench the fluorescence of the catalyst Fe/Eu-MOF at 450 nm. The quenching mechanism is mainly the internal filtration effect (IFE), accompanied by static quenching (SQE), Förster resonance energy transfer (FRET) and photoelectron transfer (PET). Fe/Eu-MOF has a high affinity for sodium pyrophosphate (PPi). PPi can be adsorbed to the surface of Fe/Eu-MOF, destroying the structure of Fe/Eu-MOF and inhibiting its catalytic activity, resulting in a decrease in UV absorbance and the decline of fluorescence quenching. In contrast, phosphoric acid (Pi) has almost no effect on the reaction system. Alkaline phosphatase (ALP) can catalyze the hydrolysis of PPi to Pi, thereby reducing the inhibitory effect of PPi. Based on this, we successfully constructed a dual-mode ALP sensor with high selectivity. The linear ranges based on the 652 nm absorption or the fluorescence detection are from 1 to 200 U/L, and the detection limits are 0.6 for the absorption method and 0.9 U/L for the fluorescence method, respectively.
Collapse
Affiliation(s)
- Wei Shi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Tianze Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Ning Chu
- Bayuquan Customs of the People's Republic of China, Yingkou 115000, China
| | - Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Mengqi He
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, United States
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, 110819, China.
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, TX 76019-0059, United States; Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford CM1 1SQ, UK.
| |
Collapse
|