1
|
Amini A, Themelis T, Janvier S, Steyaert J, De Vos J, Eeltink S. Design and Implementation of a Proof-of-Concept Robotic-Microfluidic Interface to Bridge Spatial Comprehensive Three-Dimensional Liquid Chromatography with Mass Spectrometry. Anal Chem 2024; 96:15859-15864. [PMID: 39324864 DOI: 10.1021/acs.analchem.4c04184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A proof-of-concept system is presented for the hyphenation of spatial comprehensive three-dimensional liquid chromatography (3D-LC) to mass spectrometry (MS) detection via a robotic-microfluidic interface. A three-dimensional fractal microflow distributor, incorporating 16 parallel RP monolithic capillary columns arranged in a 4 × 4 configuration, was connected to an X-Y-Z robotic system. This setup facilitated the deposition of successive arrays of microdroplets onto an MS target plate. To minimize carryover during droplet deposition, a strategy was implemented in which the distance between the target plate and the capillary was gradually increased during the deposition process. System-level variation in travel time and subsequent flow rates across parallel columns was assessed and translated in retention alignment based on injection of a protein standard. The successful separation of intact proteins was demonstrated through a parallel 4 × 4 column configuration, applying MALDI-MS detection after microdroplet spotting on an MS target plate. Furthermore, the discussion encompasses high-throughput MS imaging detection within the framework of spatial 3D-LC.
Collapse
Affiliation(s)
- Ali Amini
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, B-1050 Brussels, Belgium
| | - Thomas Themelis
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, B-1050 Brussels, Belgium
| | - Steven Janvier
- Vrije Universiteit Brussel (VUB), Structural Biology Brussels, B-1050 Brussels, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Vrije Universiteit Brussel (VUB), Structural Biology Brussels, B-1050 Brussels, Belgium
- Vlaams Instituut voor Biotechnologie (VIB), VIB-VUB Center for Structural Biology, B-1050 Brussels, Belgium
| | - Jelle De Vos
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, B-1050 Brussels, Belgium
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | - Sebastiaan Eeltink
- Vrije Universiteit Brussel (VUB), Department of Chemical Engineering, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Eeltink S, De Vos J, Desmet G. Toward Unrivaled Chromatographic Resolving Power in Proteomics: Design and Development of Comprehensive Spatial Three-Dimensional Liquid-Phase Separation Technology. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:475-493. [PMID: 38424031 DOI: 10.1146/annurev-anchem-061522-044510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Spatial comprehensive three-dimensional chromatography (3D-LC) offers an innovative approach to achieve unprecedented resolving power in terms of peak capacity and sample throughput. This advanced technique separates components within a 3D separation space, where orthogonal retention mechanisms are incorporated. The parallel development of the second- and third-dimension stages effectively overcomes the inherent limitation of conventional multidimensional approaches, where sampled fractions are analyzed sequentially. This review focuses on the design aspects of the microchip for spatial 3D-LC and the selection of orthogonal separation modes to enable the analysis of intact proteins. The design considerations for the flow distributor and channel layout are discussed, along with various approaches to confine the flow during the subsequent development stages. Additionally, the integration of stationary phases into the microchip is addressed, and interfacing to mass spectrometry detection is discussed. According to Pareto optimality, the integration of isoelectric focusing, size-exclusion chromatography, and reversed-phase chromatography in a spatial 3D-LC approach is predicted to achieve an exceptional peak capacity of over 30,000 within a 1-h analysis, setting a new benchmark in chromatographic performance.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- 1Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium;
| | - Jelle De Vos
- 1Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium;
- 2Current affiliation: RIC Group, Kortrijk, Belgium
| | - Gert Desmet
- 1Department of Chemical Engineering, Vrije Universiteit Brussel, Brussels, Belgium;
| |
Collapse
|
3
|
Zhai Y, Li G, Peng K, Ge Z, Zhang W, Li D. Less Configuration and More Dimensionality: Preparative Heart-Cut Multidimensional Liquid Chromatography Based on Trapping Arrays. Anal Chem 2022; 94:16997-17002. [PMID: 36453024 DOI: 10.1021/acs.analchem.2c03875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The resolving power of multiple dimensional liquid chromatography (mD-LC) is multiplicative as it adds dimensions. However, the issue in creating a preparative mD-LC system is that the higher the dimensionality, the more complicated the system configuration. Thus, we presented a new configuration of preparative mD-LC using one set of LC modules and trapping array-based multiple heart-cut interfaces. A preparative two-dimensional liquid chromatography (2D-LC) separation of herbal medicine formulation produced 40 compounds with a purity of >90%. During the separation process, the interface stores the fractions and allocates positions for the fractions from a different dimension; LC draws the fraction from the interface, makes nD separation, and sends isolated fractions to the interface. By repeating this process, we achieved variable dimensionality of LC separations. We also presented a preparative 3D-LC separation of herbal medicines to validate the principle of "less configuration and more dimensionality". Thus, we can explore the higher dimensional preparative separations. The developed preparative mD-LC displayed exceptional power in the isolation of various compounds and has great potential in the application of natural products.
Collapse
Affiliation(s)
- Yulin Zhai
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, People's Republic of China.,Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Guoli Li
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Kai Peng
- Soochow High Tech Chromatography Co., Ltd., Suzhou 2151213, People's Republic of China
| | - Zhaosong Ge
- Soochow High Tech Chromatography Co., Ltd., Suzhou 2151213, People's Republic of China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Duxin Li
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, People's Republic of China.,Soochow High Tech Chromatography Co., Ltd., Suzhou 2151213, People's Republic of China
| |
Collapse
|
4
|
Flow Dynamics and Analyte Transfer in a Microfluidic Device for Spatial Two-Dimensional Separations. Chromatographia 2022. [DOI: 10.1007/s10337-022-04207-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractIn the last decade, chip-based separations have become a major area of interest in the field of separation science, especially for the development of “spatial” two-dimensional liquid chromatography (xLC × xLC). In xLC × xLC, the analytes are first separated by migration to different positions in a first-dimension (1D) channel and subsequently transferred with the aid of a flow distributor in a perpendicular direction to undergo a second-dimension (2D) separation. In this study, several designs for 2D separations are explored with the aid of computational fluid dynamics simulations. There were several aims of this work, viz. (1) to investigate the possible anomalies arising from the location of analyte bands in the first-dimension channel before transfer to the second dimension induced by the flow distributor, (2) to study the distribution ratio of the analytes across the different outlets of the 1D channel, and (3) to study the flow behaviour confinement in the flow distributor. In all designs, the simulated absolute flow velocity was not equal in all regions of the 1D channel. The extreme segments showed higher velocities compared to the central zones. This will eventually influence the migration times (first moments) and the variances (second moments), as confirmed by CFD results. The study has contributed to the understanding of the effects of the peak locations and, ultimately, to progress in spatial 2D-LC separations.
Collapse
|
5
|
Themelis T, De Vos J, Eeltink S. Design Guidelines and Kinetic Performance Limits for Spatial Comprehensive Three-Dimensional Chromatography for the Analysis of Intact Proteins. Anal Chem 2022; 94:13737-13744. [PMID: 36054280 DOI: 10.1021/acs.analchem.2c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design aspects of microfluidic chips for spatial three-dimensional chromatography featuring an interconnected channel network and targeting protein analysis are discussed, and the corresponding kinetic performance limits have been established using a Pareto-optimality approach. The pros and cons to integrate different separation mechanisms (IEF, CE, SEC, RPLC, HILIC, HIC, and IEX) are discussed considering development stages in the spatial domain (xLC) in the first and second dimension and time domain (tLC) for the third dimension. Based on Pareto-optimization, we discuss the considerations of the channel length, particle diameter, and the effect of number of second- and third-dimension channels on the resulting peak capacity of a spatial xIEF × xSEC × tRPLC device. Novel equations are proposed to determine the peak capacity in xSEC and to account for sample modulation affected by the number of second- and third-dimension channels. The corresponding Pareto fronts have been constructed demonstrating the resolving power, in terms of peak capacity and analysis time, considering current state-of-the-art prototyping methodologies. A microfluidic spatial prototype chip with an integrated channel layout (64 2D and 4096 3D channels) has been created, which has the potential to yield a peak capacity of 32,600 within only 44 min of the total analysis time, by implementing xIEF × xSEC × tRPLC separation stages.
Collapse
Affiliation(s)
- Thomas Themelis
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
| | - Jelle De Vos
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel (VUB), Brussels 1050, Belgium
| |
Collapse
|
6
|
Foster SW, Parker D, Kurre S, Boughton J, Stoll DR, Grinias JP. A review of two-dimensional liquid chromatography approaches using parallel column arrays in the second dimension. Anal Chim Acta 2022; 1228:340300. [DOI: 10.1016/j.aca.2022.340300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
7
|
Jia L, Wang H, Xu X, Wang H, Li X, Hu Y, Chen B, Liu M, Gao X, Li H, Guo D, Yang W. An off-line three-dimensional liquid chromatography/Q-Orbitrap mass spectrometry approach enabling the discovery of 1561 potentially unknown ginsenosides from the flower buds of Panax ginseng, Panax quinquefolius and Panax notoginseng. J Chromatogr A 2022; 1675:463177. [PMID: 35660315 DOI: 10.1016/j.chroma.2022.463177] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
To comprehensively elucidate the herbal metabolites is crucial in natural products research to discover new lead compounds. Ginsenosides are an important class of bioactive components from the Panax plants exerting the significant tonifying effects. However, to identify new ginsenosides by the conventional strategies trends to be more and more difficult because of the large spans of acid-base property (the neutral and acidic saponins), molecular mass (400-1400 Da), and rather low content. Herein, an off-line multidimensional chromatography/high-resolution mass spectrometry approach was presented: ion exchange chromatography (IEC) as the first dimension of separation, hydrophilic interaction chromatography (HILIC) in the second dimension, and reversed-phase chromatography (RPC) for the third dimension which was hyphenated to a Q Exactive Q-Orbitrap mass spectrometer. By applying to the flower buds of P. ginseng (PGF), P. quinquefolius (PQF), and P. notoginseng (PNF), IEC using a PhenoSphereTM SAX column could fractionate the total extracts into the neutral (unretained) and acidic (retained) fractions, while HILIC (an XBridge Amide column) and RPC (BEH Shield RP18 column) achieved the hydrophilic interaction and hydrophobic interaction separations, respectively. Q-Orbitrap mass spectrometry offered rich structural information and complementary resolution to the co-eluting components, particular to those minor ones by including precursor ion lists in data-dependent acquisition. We could characterize 803 ginsenosides from PGF, 795 from PQF, and 833 from PNF, and 1561 thereof are potentially unknown. These results can indicate the great potential of this multidimensional approach in the ultra-deep characterization of complex herbal samples supporting the efficient discovery of potentially novel natural compounds.
Collapse
Affiliation(s)
- Li Jia
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Hongda Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Xiaoyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Huimin Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Boxue Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Meiyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China
| | - Huifang Li
- Thermo Fisher Scientific, Building #6, 27 Xinjinqiao Road, Pudong, Shanghai, 201206, China
| | - Dean Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Wenzhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin, 301617, China.
| |
Collapse
|
8
|
Abdulhussain N, Nawada S, Schoenmakers P. Latest Trends on the Future of Three-Dimensional Separations in Chromatography. Chem Rev 2021; 121:12016-12034. [PMID: 33878259 PMCID: PMC8517953 DOI: 10.1021/acs.chemrev.0c01244] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/26/2022]
Abstract
Separation and characterization of complex mixtures are of crucial importance in many fields, where extremely high separation power is required. Three-dimensional separation techniques can offer a path toward achieving high peak capacities. In this Review, online three-dimensional separation systems are discussed, including three-dimensional gas chromatography, and hyphenated combinations of two-dimensional gas chromatography with liquid chromatography or supercritical-fluid chromatography. Online comprehensive two-dimensional liquid chromatography provides detailed information on complex samples and the need for higher peak capacities is pushing researchers toward online three-dimensional liquid chromatography. In this review, an overview of the various combinations are provided and we discuss and compare their potential performance, advantages, perspectives, and results obtained during the most recent 10-15 years. Finally, the Review will discuss a novel approach of spatial three-dimensional liquid separation to increase peak capacity.
Collapse
Affiliation(s)
- Noor Abdulhussain
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Suhas Nawada
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Peter Schoenmakers
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Science Park, 1098 XH, Amsterdam, The Netherlands
- The
Centre for Analytical Sciences Amsterdam (CASA), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Young GM, Lurie IS. Recent forensic applications of enhanced chromatographic separation methods. J Sep Sci 2021; 45:369-381. [PMID: 34535950 DOI: 10.1002/jssc.202100513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 01/14/2023]
Abstract
This study reviews the recent applications of enhanced separation methods employed in forensic analysis utilizing gas chromatography, liquid chromatography, and supercritical fluid chromatography published between 2015 to 2020, except papers previously covered in relevant review articles. Applications of enhanced chromatographic separation methods to arson investigations, environmental forensics, sexual assault investigations, drug analysis, and toxicology are discussed. Future directions for enhanced chromatographic separation methods in forensic science are also explored.
Collapse
Affiliation(s)
- Genetta M Young
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| | - Ira S Lurie
- Department of Forensic Science, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Trinklein TJ, Warren CG, Synovec RE. Determination of the Signal-To-Noise Ratio Enhancement in Comprehensive Three-Dimensional Gas Chromatography. Anal Chem 2021; 93:8526-8535. [PMID: 34097388 DOI: 10.1021/acs.analchem.1c01190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We investigate the extent to which comprehensive three-dimensional gas chromatography (GC3) provides a signal enhancement (SE) and a signal-to-noise ratio enhancement (S/NRel) relative to one-dimensional (1D)-GC. Specifically, the SE is defined as the ratio of the tallest 3D peak height from the GC3 separation to the 1D peak height from the unmodulated 1D-GC separation. A model is proposed which allows the analyst to predict the theoretically attainable SE (SET) based upon the peak width and sampling density inputs. The model is validated via comparison of the SET to the experimentally measured SE (SEM) obtained using total-transfer GC3 (100% duty cycle for both modulators) with time-of-flight mass spectrometry detection. Two experimental conditions were studied using the same GC3 column set, differing principally in the modulation period from the 1D to 2D columns: 4 s versus 8 s. Under the first set of conditions, the average SEM was 97 (±22), in excellent agreement with the SET of 97 (±18). The second set of conditions improved the average SEM to 181 (±27), also in agreement with the average SET of 176 (±26). The average S/NRel following correction for the mass spectrum acquisition frequency was 38.8 (±11.2) and 59.0 (±27.2) for the two sets of conditions. The enhancement in S/N is largely attributed to moving the signal to a higher frequency domain where the impact of "low frequency" noise is less detrimental. The findings here provide strong evidence that GC3 separations can provide enhanced detectability relative to 1D-GC and comprehensive two-dimensional gas chromatography (GC×GC) separations.
Collapse
Affiliation(s)
- Timothy J Trinklein
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Cable G Warren
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
11
|
De Vos J, Stoll D, Buckenmaier S, Eeltink S, Grinias JP. Advances in ultra-high-pressure and multi-dimensional liquid chromatography instrumentation and workflows. ANALYTICAL SCIENCE ADVANCES 2021; 2:171-192. [PMID: 38716447 PMCID: PMC10989561 DOI: 10.1002/ansa.202100007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2024]
Abstract
The present contribution discusses recent advances in ultra-high-pressure liquid chromatography (UHPLC) and multi-dimensional liquid chromatography (MDLC) technology. First, new developments in UHPLC column technology and system design are highlighted. The latter includes a description of a novel injector concept enabling method speed-up, emerging detectors, and instrument diagnostics approaches. Next, online MDLC workflows are reviewed and advances in modulation technology are highlighted. Finally, key applications published in 2020 are reviewed.
Collapse
Affiliation(s)
- Jelle De Vos
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - Dwight Stoll
- Department of ChemistryGustavus Aldophus CollegeSaint PeterMinnesotaUSA
| | | | - Sebastiaan Eeltink
- Department of Chemical EngineeringVrije Universiteit Brussel (VUB)BrusselsBelgium
| | - James P. Grinias
- Department of Chemistry and BiochemistryRowan UniversityGlassboroNew JerseyUSA
| |
Collapse
|