1
|
Mielewczyk L, Galle L, Niese N, Grothe J, Kaskel S. Precursor-Derived Sensing Interdigitated Electrode Microstructures Based on Platinum and Nano Porous Carbon. ChemistryOpen 2024; 13:e202400179. [PMID: 39158463 PMCID: PMC11564864 DOI: 10.1002/open.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
Interdigital electrodes were prepared using nanoimprint lithography and piezoelectric inkjet printing. These processes are simpler and more cost-effective than the industrially used electron beam lithography because of their purely mechanical process step. For the investigation of material dependence, platinum as well as carbon electrodes were fabricated. Afterwards electrodes with various line widths and spacings were tested for the application as a chemiresistive sensor for ferrocenyl-methanol and the influence of the gap-width and conductor cross-section on the sensitivity was investigated. The general suitability of the systems for the production of such structures could be confirmed. Structures with a limit of detection (LOD) down to 1.2 μM and 35.9 μM could be produced for carbon and platinum, respectively, as well as a response time of 3.6 s was achieved.
Collapse
Affiliation(s)
- Lukas Mielewczyk
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Lydia Galle
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Nick Niese
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Julia Grothe
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| | - Stefan Kaskel
- Inorganic Chemistry ITechnische Universität DresdenBergstraße 6601069Dresden
| |
Collapse
|
2
|
Ávila Oliveira BD, Gomes RS, de Carvalho AM, Lima EMF, Pinto UM, da Cunha LR. Revolutionizing food safety with electrochemical biosensors for rapid and portable pathogen detection. Braz J Microbiol 2024; 55:2511-2525. [PMID: 38922532 PMCID: PMC11405362 DOI: 10.1007/s42770-024-01427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Foodborne diseases remain a worldwide concern, despite the advances made in sanitation, pathogen surveillance and food safety management systems. The methods routinely applied for detecting pathogens in foods are time consuming, labor intensive and usually require trained and qualified individuals. The objective of this review was to highlight the use of biosensors, with a focus on the electrochemical devices, as promising alternatives for detecting foodborne pathogens. These biosensors present high speed for obtaining results, with the possibility of evaluating foods in real time, at low cost, ease of use, in addition to being compact and portable. These aspects are considered advantageous and suitable for use in food safety management systems. This work also shows some limitations for the application of biosensors, and we present perspectives with the development and use of nanomaterials.
Collapse
Affiliation(s)
- Brígida D' Ávila Oliveira
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Raíssa Soares Gomes
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Alice Mendes de Carvalho
- Health and Nutrition Graduate Program, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Emília Maria França Lima
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Luciana Rodrigues da Cunha
- Department of Foods, Health and Nutrition Graduate Program, Federal University of Ouro Preto, Federal University of Ouro Preto (UFOP), Ouro Preto, 35400-000, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Hlaváčová T, Skládal P. Photoelectrochemical Enzyme Biosensor for Malate Using Quantum Dots on Indium Tin Oxide/Plastics as a Sensing Surface. BIOSENSORS 2023; 14:11. [PMID: 38248388 PMCID: PMC10813686 DOI: 10.3390/bios14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
A photoelectrochemical biosensor for malate was developed using an indium tin oxide (ITO) layer deposited on a poly(ethylene terephthalate) plastic sheet as a transparent electrode material for the immobilization of malate dehydrogenase together with CdTe quantum dots. Different approaches were compared for the construction of the bioactive layer; the highest response was achieved by depositing malate dehydrogenase together with CdTe nanoparticles and covering it with a Nafion/water (1:1) mixture. The amperometric signal of this biosensor was recorded during irradiation with a near-UV LED in the flow-through mode. The limit of detection was 0.28 mmol/L, which is adequate for analyzing malic acid levels in drinks such as white wines and fruit juices. The results confirm that the cheap ITO layer deposited on the plastic sheet after cutting into rectangular electrodes allows for the economic production of photoelectrochemical (bio)sensors. The combination of NAD+-dependent malate dehydrogenase with quantum dots was also compatible with such an ITO surface.
Collapse
Affiliation(s)
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic;
| |
Collapse
|
4
|
Liu Y, Zhao M, Shi J, Yang S, Xue Y. Genome-Wide Identification of AhMDHs and Analysis of Gene Expression under Manganese Toxicity Stress in Arachis hypogaea. Genes (Basel) 2023; 14:2109. [PMID: 38136931 PMCID: PMC10743186 DOI: 10.3390/genes14122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Malate dehydrogenase (MDH) is one kind of oxidation-reduction enzyme that catalyzes the reversible conversion of oxaloacetic acid to malic acid. It has vital functions in plant development, photosynthesis, abiotic stress responses, and so on. However, there are no reports on the genome-wide identification and gene expression of the MDH gene family in Arachis hypogaea. In this study, the MDH gene family of A. hypogaea was comprehensively analyzed for the first time, and 15 AhMDH sequences were identified. According to the phylogenetic tree analysis, AhMDHs are mainly separated into three subfamilies with similar gene structures. Based on previously reported transcriptome sequencing results, the AhMDH expression quantity of roots and leaves exposed to manganese (Mn) toxicity were explored in A. hypogaea. Results revealed that many AhMDHs were upregulated when exposed to Mn toxicity, suggesting that those AhMDHs might play an important regulatory role in A. hypogaea's response to Mn toxicity stress. This study lays foundations for the functional study of AhMDHs and further reveals the mechanism of the A. hypogaea signaling pathway responding to high Mn stress.
Collapse
Affiliation(s)
- Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Min Zhao
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Jianning Shi
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Shaoxia Yang
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (J.S.)
| | - Yingbin Xue
- Department of Agronomy, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
5
|
Matthews CJ, Patrick WM. An enzyme-centric approach for constructing an amperometric l-malate biosensor with a long and programmable linear range. Protein Sci 2023; 32:e4743. [PMID: 37515423 PMCID: PMC10451018 DOI: 10.1002/pro.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
l-Malate is a key flavor enhancer and acidulant in the food and beverage industry, particularly winemaking. Enzyme-based amperometric biosensors offer convenience for monitoring its concentration. However, only a small number of off-the-shelf malate-oxidizing enzymes have been used in previous devices. These typically have linear ranges poorly suited for the l-malate concentrations found in fruit processing and winemaking, making it necessary to use precisely diluted samples. Here, we describe a pipeline of database-mining, gene synthesis, recombinant expression, and spectrophotometric assays to characterize previously untested enzymes for their suitability in biosensors. The pipeline yielded a bespoke biocatalyst-the Ascaris suum malic enzyme carrying mutation R181Q [AsME(R181Q)]. Our first prototype with AsME(R181Q) had an ultra-wide linear range of 50-200 mM l-malate, corresponding to concentrations found in undiluted fruit juices (including grape). Changing the dication from Mg2+ to Mn2+ increased sensitivity five-fold and adding citrate (100 mM) increased it another six-fold, albeit decreasing the linear range to 1-10 mM. To our knowledge, this is the first time an l-malate biosensor with a tuneable combination of sensitivity and linear range has been described. The sensor response was also tested in the presence of various molecules abundant in juices and wines, with ascorbate shown to be a potent interferent. Interference was mitigated by the addition of ascorbate oxidase, allowing for differential measurements on an undiluted, untreated wine sample that corresponded well with commercial l-malate testing kits. Overall, this work demonstrates the power of an enzyme-centric approach for designing electrochemical biosensors with improved operational parameters and novel functionality.
Collapse
Affiliation(s)
- Christopher J. Matthews
- Centre for Biodiscovery, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| | - Wayne M. Patrick
- Centre for Biodiscovery, School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
| |
Collapse
|
6
|
Kumar RR, Kumar A, Chuang CH, Shaikh MO. Recent Advances and Emerging Trends in Cancer Biomarker Detection Technologies. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rajkumar Rakesh Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Muhammad Omar Shaikh
- Sustainability Science and Management, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
7
|
Biosensor integrated brain-on-a-chip platforms: Progress and prospects in clinical translation. Biosens Bioelectron 2023; 225:115100. [PMID: 36709589 DOI: 10.1016/j.bios.2023.115100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Because of the brain's complexity, developing effective treatments for neurological disorders is a formidable challenge. Research efforts to this end are advancing as in vitro systems have reached the point that they can imitate critical components of the brain's structure and function. Brain-on-a-chip (BoC) was first used for microfluidics-based systems with small synthetic tissues but has expanded recently to include in vitro simulation of the central nervous system (CNS). Defining the system's qualifying parameters may improve the BoC for the next generation of in vitro platforms. These parameters show how well a given platform solves the problems unique to in vitro CNS modeling (like recreating the brain's microenvironment and including essential parts like the blood-brain barrier (BBB)) and how much more value it offers than traditional cell culture systems. This review provides an overview of the practical concerns of creating and deploying BoC systems and elaborates on how these technologies might be used. Not only how advanced biosensing technologies could be integrated with BoC system but also how novel approaches will automate assays and improve point-of-care (PoC) diagnostics and accurate quantitative analyses are discussed. Key challenges providing opportunities for clinical translation of BoC in neurodegenerative disorders are also addressed.
Collapse
|
8
|
Zhou ZS, Zhao YL, Hu BY, Wang B, Liu YP, Zhu YY, He YJ, Wang ZJ, Dai Z, Zhao LX, Luo XD. Steroidal alkaloid with unprecedented triheterocyclic architecture. Chem Commun (Camb) 2023; 59:326-329. [PMID: 36511292 DOI: 10.1039/d2cc06073f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Veratrazine A (1), a steroidal alkaloid with a unique 6/5/5 triheterocyclic scaffold as the side chain, was isolated from Veratrum stenophyllum, and its structure was established via spectroscopic analyses and X-ray diffraction. A plausible biosynthetic pathway for 1 is proposed. Bioassy exhibits moderate anti-inflammatory activities in vitro and in vivo.
Collapse
Affiliation(s)
- Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Bin-Yuan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Bei Wang
- Key Laboratory of Herbal-Tebitan Drug Screening and Deep Processing of Gansu Province, School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| | - Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Li-Xing Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China.
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, P. R. China. .,State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
9
|
Ji Z, Huo H, Duan L, Wang S. Design of robust malate dehydrogenases by assembly of motifs of halophilic and thermophilic enzyme based on interaction network. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Bullé Rêgo ES, Santos DL, Hernández-Macedo ML, Padilha FF, López JA. Methods for the prevention and control of microbial spoilage and undesirable compounds in wine manufacturing. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Facile Gold-Nanoparticle Boosted Graphene Sensor Fabrication Enhanced Biochemical Signal Detection. NANOMATERIALS 2022; 12:nano12081327. [PMID: 35458034 PMCID: PMC9033081 DOI: 10.3390/nano12081327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Graphene has been considered as an excellent biochemical sensors’ substrate material because of its excellent physical and chemical properties. Most of these sensors have employed enzymes, antibodies, antigens, and other biomolecules with corresponding recognition ability as recognition elements, to convert chemical signals into electrical signals. However, oxidoreductase enzymes that grow on graphene surfaces are affected significantly by the environment and are easily inactivated, which hinders the further improvement of detection sensitivity and robusticity. A gold-boosted graphene sensor was fabricated by the in situ electrochemical deposition of inorganic gold nanoparticles on vertical graphene nanosheets. This approach solves the instability of biological enzymes and improves the detection performance of graphene-based sensors. The uric acid sensitivity of the gold-boosted electrode was 6230 µA mM−1 cm−2, which is 6 times higher than the original graphene electrode. A 7 h GNSs/CC electrode showed an impressive detection performance for ascorbic acid, dopamine, and uric acid, simultaneously. Moreover, it exhibited a reliable detection performance in human serum in terms of uric acid. The possible reason could be that the vertical aliened graphene nanosheet acts as a reaction active spot. This 3D graphene-nanosheet-based doping approach can be applied to a wide variety of inorganic catalytic materials to enhance their performance and improve their durability in aspects such as single-atom catalysis and integration of multiple catalytic properties.
Collapse
|
12
|
Marassi V, Mattarozzi M, Toma L, Giordani S, Ronda L, Roda B, Zattoni A, Reschiglian P, Careri M. FFF-based high-throughput sequence shortlisting to support the development of aptamer-based analytical strategies. Anal Bioanal Chem 2022; 414:5519-5527. [PMID: 35182166 PMCID: PMC9242963 DOI: 10.1007/s00216-022-03971-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/13/2023]
Abstract
Aptamers are biomimetic receptors that are increasingly exploited for the development of optical and electrochemical aptasensors. They are selected in vitro by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, but although they are promising recognition elements, for their reliable applicability for analytical purposes, one cannot ignore sample components that cause matrix effects. This particularly applies when different SELEX-selected aptamers and related truncated sequences are available for a certain target, and the choice of the aptamer should be driven by the specific downstream application. In this context, the present work aimed at investigating the potentialities of asymmetrical flow field-flow fractionation (AF4) with UV detection for the development of a screening method of a large number of anti-lysozyme aptamers towards lysozyme, including randomized sequences and an interfering agent (serum albumin). The possibility to work in native conditions and selectively monitor the evolution of untagged aptamer signal as a result of aptamer-protein binding makes the devised method effective as a strategy for shortlisting the most promising aptamers both in terms of affinity and in terms of selectivity, to support subsequent development of aptamer-based analytical devices.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy. .,byFlow Srl, Bologna, Italy.
| | - Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.
| | - Lorenzo Toma
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Giordani
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Parco Area delle Scienze, 23/A, 43124, Parma, Italy.,Institute of Biophysics, CNR, 56124, Pisa, Italy
| | - Barbara Roda
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry, University of Bologna, Via Selmi 2, Bologna, Italy.,byFlow Srl, Bologna, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
13
|
Portable amperometric method for selective determination of caffeine in samples with the presence of interfering electroactive chemical species. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Viera W, Shinohara T, Samaniego I, Sanada A, Terada N, Ron L, Suárez-Tapia A, Koshio K. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030328. [PMID: 35161309 PMCID: PMC8838848 DOI: 10.3390/plants11030328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 05/13/2023]
Abstract
Tropical fruits are in high demand for their flavor and for their functional composition because these compounds are considered nutraceuticals. Passion fruit production is of economic importance to Ecuador; however, several Passiflora species are grown and each has to be analyzed to identify their phytochemical composition. In this study, the polyphenol, flavonoid, carotenoid, vitamin C, sugar and organic acid contents were determined. Six different Passiflora spp. germplasms were analyzed, coming from Passiflora edulis f. flavicarpa, Passiflora alata, Passiflora edulis f. edulis and unidentified Passiflora species (local germplasm). Measurement techniques included reflectometry for vitamin C, spectrophotometry for antioxidant compounds and HPLC for sugars and organic acids. Data were analyzed by principal component analysis, correlation and analysis of variance. Results showed that INIAP 2009 and P10 showed a high amount of polyphenols, antioxidant activity and citric content. Sweet passion fruit had the lowest vitamin C content while Gulupa showed the highest content. In terms of the local germplasm, POR1 showed the lowest content of flavonoids while PICH1 had high flavonoid and carotenoid content. Polyphenols were the main compounds that influenced antioxidant activity. This phytochemical information adds value to passion fruit as a nutraceutical source.
Collapse
Affiliation(s)
- William Viera
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
- Fruit Program, Tumbaco Experimental Farm, National Institute of Agricultural Research (INIAP), Av. Interoaceánica km 15 and Eloy Alfaro, Tumbaco 170902, Ecuador;
| | - Takashi Shinohara
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| | - Iván Samaniego
- Fruit Program, Tumbaco Experimental Farm, National Institute of Agricultural Research (INIAP), Av. Interoaceánica km 15 and Eloy Alfaro, Tumbaco 170902, Ecuador;
| | - Atsushi Sanada
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| | - Naoki Terada
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| | - Lenin Ron
- Zoonosis International Center, Universidad Central del Ecuador (UCE), Quito 170521, Ecuador;
| | - Alfonso Suárez-Tapia
- Graduate School of Agroindustry and Food Science, Universidad de las Américas (UDLA), Quito 170503, Ecuador
- Correspondence: ; Tel.: +593-996-759-124
| | - Kaihei Koshio
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakura gaoka 1-1-1, Setagaya, Tokyo 156-8502, Japan or (W.V.); (T.S.); (A.S.); (N.T.); (K.K.)
| |
Collapse
|
15
|
Feng J, Liu Y, Shan Y, Xie Y, Chu Z, Jin W. In-situ growth of Cu@CuFe Prussian blue based core-shell nanowires for non-enzymatic electrochemical determination of ascorbic acid with high sensitivity and reusability. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Miao K, Yan L, Bi R, Ma X. Enzymatic Biosensor Based on One‐step Electrodeposition of Graphene‐gold Nanohybrid Materials and its Sensing Performance for Glucose. ELECTROANAL 2021. [DOI: 10.1002/elan.202100293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kunpeng Miao
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Long Yan
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Ran Bi
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| | - Xiaoyan Ma
- School of Chemistry and Chemical Engineering Northwestern Polytechnic University Xi'an 710129 Shaanxi China
| |
Collapse
|
17
|
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. BIOSENSORS 2021; 11:190. [PMID: 34207580 PMCID: PMC8227973 DOI: 10.3390/bios11060190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/18/2022]
Abstract
Foodborne disease caused by foodborne pathogens is a very important issue in food safety. Therefore, the rapid screening and sensitive detection of foodborne pathogens is of great significance for ensuring food safety. At present, many research works have reported the application of biosensors and signal amplification technologies to achieve the rapid and sensitive detection of pathogenic bacteria. Thus, this review summarized the use of biosensors coupled with signal amplification technology for the detection of pathogenic bacteria, including (1) the development, concept, and principle of biosensors; (2) types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and so on; and (3) different kinds of signal amplification technologies applied in biosensors, such as enzyme catalysis, nucleic acid chain reaction, biotin-streptavidin, click chemistry, cascade reaction, nanomaterials, and so on. In addition, the challenges and future trends for pathogenic bacteria based on biosensor and signal amplification technology were also discussed and summarized.
Collapse
Affiliation(s)
- Fengchun Huang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
| | - Yingchao Zhang
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Jianhan Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| | - Yuanjie Liu
- College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (J.L.)
| |
Collapse
|
18
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|