1
|
Zhao D, Jiao Y, Zhang C, Xiao X. β-Galactosidase-triggered in situ synthesis of yellow emitting silicon nanoparticle and its application in visual detection of E. coli O157:H7 and drug susceptibility test. Food Chem 2024; 450:139331. [PMID: 38621310 DOI: 10.1016/j.foodchem.2024.139331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
The sensitive detection of foodborne pathogenic and rapid antibiotic susceptibility testing (AST) is of great significance. This paper reports the enzyme-triggered in situ synthesis of yellow emitting silicon nanoparticles (SiNPs) and the detection of Escherichia coli (E. coli) O157:H7 in food samples and the rapid AST. The rapid counting of E. coli O157:H7 has been achieved through direct visual observation, equipment detection, and smartphone digitalization. A simple detection platform based on smartphone senses and cotton swabs has been established. Meanwhile, rapid AST based on enzyme-catalyzed SiNPs can intuitively obtain colorimetric samples. This paper established a system for bacterial enzyme-triggered in situ synthesis of SiNPs, with high responsiveness, luminescence ratio, and specificity. The detection limit for E. coli O157:H7 can reach 100 CFU/mL during 5 h, and the recovery efficiency ranges from 90.14% to 110.16%, which makes it a promising strategy for the rapid detection of E. coli O157:H7 and AST.
Collapse
Affiliation(s)
- Dan Zhao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Yan Jiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Changpeng Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Xincai Xiao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| |
Collapse
|
2
|
Li Y, Liu W, Jiang X, Liu H, Wang S, Mao X, Bai R, Wen Y, Luo X, Zhang G, Zhao Y. β-Glucuronidase-triggered reaction for fluorometric and colorimetric dual-mode assay based on the in situ formation of silicon nanoparticles. Anal Chim Acta 2024; 1301:342471. [PMID: 38553126 DOI: 10.1016/j.aca.2024.342471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND β-Glucuronidase (GUS) is considered as a promising biomarker for primary cancer. Thus, the reliable detection of GUS has great practical significance in the discovery and diagnosis of cancer. Compared with traditional organic probes, silicon nanoparticles (Si NPs) have emerged as robust optical nanomaterials due to their facile preparation, superior photobleaching resistance and excellent biocompatibility. However, most nanomaterials-based methods only output a single signal which is easily influenced by external factors in complex systems. Hence, developing nanomaterial-based multi-signal optical assays for highly sensitive GUS determination is still urgently desired. RESULTS In this study, we developed a simple and efficient one-step method for the in situ preparation of yellow color and yellow-green fluorescent Si NPs. This was achieved by combining 3-[2-(2-aminoethylamino) ethylamino] propyl-trimethoxysilane with p-aminophenol (AP) in an aqueous solution. The obtained Si NPs showed yellow-green fluorescence at 535 nm when excited at 380 nm, while also exhibiting an absorption peak at a wavelength of 490 nm. Taking inspiration from the easy synthesis step regulated by AP, which is generated through the hydrolysis of 4-aminophenyl β-D-glucuronide catalyzed by GUS, we constructed a direct fluorometric and colorimetric dual-mode method to measure GUS activity. The developed fluorometric and colorimetric sensing platform showed high sensitivity and accuracy with detection limits for GUS determination as low as 0.0093 and 0.081 U/L, respectively. SIGNIFICANCE This study provides a facile dual-mode fluorometric and colorimetric approach for determination of GUS activity based on novel Si NPs for the first time. This designed sensing approach was successfully employed for the quantification of GUS in human serum samples and screening of GUS inhibitors, indicating the feasibility and potential applications in clinical cancer diagnosis and anti-cancer drug discovery.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, 610039, China
| | - Weiping Liu
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, 610039, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaoqian Mao
- Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, 643000, Sichuan, China
| | - Ruyu Bai
- School of Science, Xihua University, Chengdu, 610039, China
| | - Yulu Wen
- School of Science, Xihua University, Chengdu, 610039, China
| | - Xiaojun Luo
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, 610039, China.
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
3
|
Wang T, Liu F, Chen C, Lu Y. Fluorometric "AND" logic gate for detection of tyramine and tyrosinase based on in-situ formation of silicon-containing nanoparticles. Anal Chim Acta 2024; 1298:342415. [PMID: 38462342 DOI: 10.1016/j.aca.2024.342415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Tyramine is an important index of food freshness degree, and tyrosinase that can specifically oxidized monophenolamine to catecholamine plays a crucial part in the occurrence and development of melanin-related skin diseases. Therefore, it is crucial to develop sensitive and efficient methods for the detection of tyramine and tyrosinase. RESULTS In this work, encouraged by tyrosinase-triggered specific oxidation of tyramine to dopamine and the unique fluorescent reaction between dopamine and amino silane, we have developed a one-step synthetic strategy of silicon containing nanoparticles (Si CNPs) for "turn-on" detection of tyramine and tyrosinase. The Si CNPs formed with thoroughly studied mechanism exhibit uniform structure and robust yellow-green fluorescence. The low detection limits for tyramine (1.87 μM) and tyrosinase (0.0029 U/mL) demonstrate admirable sensitivity outstripping most methods. The proposed assay achieves satisfactory results in the determination of tyramine and tyrosinase activity in real samples. Furthermore, we leverage this new fluorescent assay to enable the fabrication of an "AND" Boolean logic gate. SIGNIFICANCE The entire process can be completed at easily available temperature and pressure with rapid response, convenient operation and visual observation. This fluorescent assay featured with excellent sensitivity, selectivity and stability has considerable prospects in the application of biosensors and disease diagnosis.
Collapse
Affiliation(s)
- Tingting Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Fangning Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Chuanxia Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
4
|
Almeida CMR, Merillas B, Pontinha ADR. Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. Int J Mol Sci 2024; 25:1309. [PMID: 38279307 PMCID: PMC10816975 DOI: 10.3390/ijms25021309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Aerogels are unique solid-state materials composed of interconnected 3D solid networks and a large number of air-filled pores. This structure leads to extended structural characteristics as well as physicochemical properties of the nanoscale building blocks to macroscale, and integrated typical features of aerogels, such as high porosity, large surface area, and low density, with specific properties of the various constituents. Due to their combination of excellent properties, aerogels attract much interest in various applications, ranging from medicine to construction. In recent decades, their potential was exploited in many aerogels' materials, either organic, inorganic or hybrid. Considerable research efforts in recent years have been devoted to the development of aerogel-based biosensors and encouraging accomplishments have been achieved. In this work, recent (2018-2023) and ground-breaking advances in the preparation, classification, and physicochemical properties of aerogels and their sensing applications are presented. Different types of biosensors in which aerogels play a fundamental role are being explored and are collected in this manuscript. Moreover, the current challenges and some perspectives for the development of high-performance aerogel-based biosensors are summarized.
Collapse
Affiliation(s)
- Cláudio M. R. Almeida
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- LAQV-REQUIMTE, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Beatriz Merillas
- University of Coimbra, CERES, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal; (C.M.R.A.); (B.M.)
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Ana Dora Rodrigues Pontinha
- University of Coimbra, ISISE, ARISE, Department of Civil Engineering, 3030-788 Coimbra, Portugal
- SeaPower, Associação Para o Desenvolvimento da Economia do Mar, Rua Das Acácias, N° 40A, Parque Industrial Da Figueira Da Foz, 3090-380 Figueira Da Foz, Portugal
| |
Collapse
|
5
|
Yin C, Wu M, Sun Q, Su C, Cao S, Niu N, Chen L. Dual-functionalization of fluorescent carbon dots via cyclodextrin and aminosilane for visual detection of β-glucuronidase and bioimaging. Anal Chim Acta 2024; 1285:341996. [PMID: 38057046 DOI: 10.1016/j.aca.2023.341996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
A sensitive method for the detection of β-glucuronidase was established using functionalized carbon dots (β-CD-SiCDs) as fluorescent probes. The β-CD-SiCDs were found to be obtained through in situ autopolymerization by mixing the solutions of methyldopa, mono-6-ethylenediamine-β-cyclodextrin and N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane at room temperature. The method has the characteristics of low energy consumption, simple and rapid. β-CD-SiCDs exhibited green fluorescence at 515 nm emission with a quantum yield of 7.9 %. 4-nitrophenyl-β-D-glucuronide was introduced as a substrate for β-glucuronidase to generate p-nitrophenol. Subsequently, p-nitrophenol self-assembled with β-CD-SiCDs through host-guest recognition to form a stable inclusion complex, resulting in the fluorescence quenching of β-CD-SiCDs. The linear range of β-CD-SiCDs for detecting β-glucuronidase activity was 0.5-60 U L-1 with a detection limit of 0.14 U L-1. For on-site detection, gel reagents were prepared by a simple method and the images were visualized and quantified by taking advantage of smartphones, avoiding the use of large instrumentation. The constructed fluorescence sensing platform has the benefits of easy operation and time saving, and has been successfully used for the detection of β-glucuronidase activity in serum and cell imaging.
Collapse
Affiliation(s)
- Chenhui Yin
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Meng Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Qijun Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Chenglin Su
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Shuang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
6
|
Hu H, Wu Y, Gong X. Organosilicon-Based Carbon Dots and Their Versatile Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305933. [PMID: 37661362 DOI: 10.1002/smll.202305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Carbon dots (CDs) are a newly discovered type of fluorescent material that has gained significant attention due to their exceptional optical properties, biocompatibility, and other remarkable characteristics. However, single CDs have some drawbacks such as self-quenching, low quantum yield (QY), and poor stability. To address these issues, researchers have turned to organosilicon, which is known for its green, economical, and abundant properties. Organosilicon is widely used in various fields including optics, electronics, and biology. By utilizing organosilicon as a synthetic precursor, the biocompatibility, QY, and resistance to self-quenching of CDs can be improved. Meanwhile, the combination of organosilicon with CDs enables the functionalization of CDs, which significantly expands their original application scenarios. This paper comprehensively analyzes organosilicon in two main categories: precursors for CD synthesis and matrix materials for compounding with CDs. The role of organosilicon in these categories is thoroughly reviewed. In addition, the paper presents various applications of organosilicon compounded CDs, including detection and sensing, anti-counterfeiting, optoelectronic applications, and biological applications. Finally, the paper briefly discusses current development challenges and future directions in the field.
Collapse
Affiliation(s)
- Huajiang Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yongzhong Wu
- School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
7
|
Khan WU, Hussain MM, Ahmed F, Xiong H. A review of the growing trend towards heteroatoms-doped carbon dots based on dopamine acting as a hybrid agent and detected analyte. Talanta 2023; 265:124781. [PMID: 37348356 DOI: 10.1016/j.talanta.2023.124781] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Dopamine (DA) is a biomolecule that plays a critical part in the functioning of our brains by promoting motivation, maintaining focus, and altering mood. Excessive or low-level concentrations of DA in the human brain led to a dangerous neurological disorder. It is significantly important to trace the precise amount of DA to prevent such risky brain disease. Recently, heteroatoms-doped carbon dots (H-CDs) have attracted great attention for their capacity to detect biomolecules, metal ions, organic solvents, chemical dyes, etc. In this review, we have provided a comprehensive summary of the emerging trends in the heteroatom functional dopamine-doped carbon dots (DA-CDs), which are based on DA used as starting substances or functionalizing agents. Our analysis encompasses a detailed exploration of the synthetic methods, physical and chemical properties of carbon dots derived from dopamine, as well as their diverse range of applications. Additionally, we have also discussed the application of H-CDs in the dopmine detection by using various fluorescent, colorimetric, and electrochemical techniques.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | | | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
8
|
Xiao F, Wang Y, Li Q, Yang D, Yang Y. Fluorescence detection of dopamine based on the peroxidase-like activity of Fe 3O 4-MWCNTs@Hemin. Mikrochim Acta 2023; 190:259. [PMID: 37306766 DOI: 10.1007/s00604-023-05796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/11/2023] [Indexed: 06/13/2023]
Abstract
A novel Fe3O4-MWCNTs@Hemin nanocomposite was synthesized using hemin and Fe3O4 with multi-walled carbon nanotubes (MWCNTs) by one-step hydrothermal methods. The as-prepared Fe3O4-MWCNTs@Hemin nanocomposites exhibited excellent peroxidase-like activities in the activation of H2O2. The mechanisms, kinetics, and catalytic performances of Fe3O4-MWCNTs@Hemin were systematically studied. Fe3O4-MWCNTs@Hemin can oxidize dopamine (DA) to dopaquinone in the presence of H2O2, and the intermediate products dopaquinone can further react with β-naphthol to generate a highly fluorescent derivative at 415 nm excitation wavelength. Therefore, an innovative fluorescence platform for the detection of DA was developed. The fluorescence intensity increased linearly with DA concentration in the range 0.33 to 107 μM, with a low detection limit of 0.14 μM. Due to the excellent activity, substrate universality, fast response, high selectivity, and sensitivity of Fe3O4-MWCNTs@Hemin, the proposed fluorescence method was used to analyze complex biological blood samples with a satisfactory result. It demonstrated the significant potential for developing effective and dependable fluorescent analytical platforms for preserving human health.
Collapse
Affiliation(s)
- Feijian Xiao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yijie Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
9
|
Leon AL, Sacco NA, Zoppas FM, Galindo R, Sandoval EM, Marchesini FA. Dopamine removal from water by advanced oxidative processes with Fe/N-doped carbon nanotubes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55424-55436. [PMID: 36892703 DOI: 10.1007/s11356-023-26224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Dopamine (DA) is an important neurotransmitter in the human body, and a subnormal level is associated with some neurological problems, such as Alzheimer's and Parkinson's diseases. Its use as medicine has progressively increased, as well as its appearance in water bodies, such as domestic or hospital effluents. Dopamine has been found to produce neurological and cardiac damage to the animals that have consumed water with its content, so the removal of dopamine from water is of utmost importance to ensure water safety. Advanced oxidative processes (AOPs) are one of the most effective technologies to eliminate hazardous and toxic compounds in wastewater. In this work, Fe-based multi-walled carbon nanotubes (MWCNTs) were synthesized by aerosol-assisted catalytic chemical vapor deposition to be applied in the AOP of DA. MWCNTs (carbon nanotubes) exhibited high catalytic activity in removing DA with 99% of elimination.By increasing 4 times the initial concentration of DA, the removal percentage of the molecule was lower than the original one, which was attributed to the DA saturation of active sites. Even so, the percentage of degradation was high (76.2%).
Collapse
Affiliation(s)
- Anaí Laurel Leon
- Chemistry Department, Natural and Exact Sciences Division, University of Guanajuato, Noria Alta S/N, 36050, Noria Alta, CP, Mexico
| | - Nicolas Alejandro Sacco
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Fernanda Miranda Zoppas
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Rosario Galindo
- Advanced Materials Department, IPICYT, Camino a La Presa San José 2055, Col. Lomas 4a Sección, 78216, San Luis Potosí, Mexico
| | - Emilio Muñoz Sandoval
- Natural and Exact Sciences Division, CONACYT Cathedra in University of Guanajuato, Cerro de la, Venada S/N, Pueblito de Rocha, 36040, Guanajuato, Mexico
| | - Fernanda Albana Marchesini
- INCAPE (UNL-CONICET), Facultad de Ingeniería Química, Instituto de Investigaciones en Catálisis Y Petroquímica, Santiago del Estero 2829, 3000, Santa Fe, Argentina.
| |
Collapse
|
10
|
Sangubotla R, Won S, Kim J. Boronic acid-modified fluorescent sensor using coffee biowaste-based carbon dots for the detection of dopamine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Nsanzamahoro S, Wang WF, Zhang Y, Wang CB, Shi YP, Yang JL. Fluorometric assay based on the in situ formation of silicon nanoparticles for the determination of β-glucuronidase. Mikrochim Acta 2022; 189:436. [DOI: 10.1007/s00604-022-05528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
12
|
Cai ZF, Wang XS, Li HY, Cao PL, Han XR, Guo PY, Cao FY, Liu JX, Sun XX, Li T, Wu Y, Zhang S. One-step synthesis of blue emission copper nanoclusters for the detection of furaltadone and temperature. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121408. [PMID: 35617839 DOI: 10.1016/j.saa.2022.121408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Polyvinyl pyrrolidone (PVP), playing roles as a templating agent, can be applied to prepare blue-emitting copper nanoclusters (Cu NCs@PVP) on the basis of a rapid chemical reduction synthesis method. The Cu NCs@PVP displayed a blue emission wavelength at 430 nm and the corresponding quantum yield (QY) could reach 10.4%. Subsequently, the as-synthesized Cu NCs@PVP were used for the trace analysis of furaltadone based on the inner filter effect (IFE) between Cu NCs@PVP and furaltadone, which caused the fluorescence to be effectively quenched. Additionally, this proposed determination platform based on the Cu NCs@PVP for furaltadone sensing possessed an excellent linear range from 0.5 to 100 μM with a lower detection limit of 0.045 μM (S/N = 3). Meanwhile, the Cu NCs@PVP also could be applied for the sensing of temperature. Furthermore, the practicability of the sensing platform has been successfully verified by measuring furaltadone in real samples, affirming its potential to increase fields for the determination of furaltadone.
Collapse
Affiliation(s)
- Zhi-Feng Cai
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China.
| | - Xian-Song Wang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Hao-Yang Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Peng-Li Cao
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Xin-Rui Han
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Peng-Yu Guo
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Fang-Yu Cao
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Jia-Xi Liu
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Xue-Xue Sun
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Tong Li
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| | - Ying Wu
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China.
| | - Shen Zhang
- Department of Chemistry, Taiyuan Normal University, Jinzhong 030619, China
| |
Collapse
|
13
|
Lu CH, Yeh YC. Synthesis and Processing of Dynamic Covalently Crosslinked Polydextran/Carbon Dot Nanocomposite Hydrogels with Tailorable Microstructures and Properties. ACS Biomater Sci Eng 2022; 8:4289-4300. [PMID: 36075100 DOI: 10.1021/acsbiomaterials.2c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using functionalized nanoparticles to crosslink hydrophilic polymers is a growing theme of directly constructing nanocomposite (NC) hydrogels. Employing dynamic covalent chemistry at the nanoparticle-polymer interface is particularly attractive due to the spontaneous formation and reversible manner of dynamic covalent bonds. However, the structure and property modulation of the dynamic covalently crosslinked NC hydrogels has not been thoroughly discussed. Here, we fabricated NC hydrogels by using amine-functionalized carbon dots (CDs) to crosslink polydextran aldehyde (PDA) polymers through imine bond formation. The role of PDA with different oxidation degrees (i.e., PDA10, PDA30, and PDA50) in affecting the microstructures and properties of PDA@CD hydrogels was systematically investigated, showing that the PDA50@CD hydrogel presented the densest structure and the highest mechanical strength among the three PDA@CD hydrogels. The pH-responsiveness, 3D printing, electrospinning, and biocompatibility of PDA@CD hydrogels were also demonstrated, showing the great promise of using PDA@CD hydrogels for applications in biomedicine and biofabrication.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Liu Y, Liu Y, Zhang J, Zheng J, Yuan Z, Lu C. Catechin-inspired gold nanocluster nanoprobe for selective and ratiometric dopamine detection via forming azamonardine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121142. [PMID: 35305522 DOI: 10.1016/j.saa.2022.121142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The sensitive and selective perception of dopamine (DA, a typical neurotransmitter) is important to evaluate the biological environment. In this study, a catechin-functionalized gold nanocluster (C-Au NC) nanoprobe has been explored for the ratiometric DA sensing. The detection mechanism is based on the formation of azamonardine via selective DA-catechin chemical reaction and subsequent enhanced fluorescence emission. Using Au NC emission as the internal reference, ratiometric fluorescence variation is realized, which allows sensitive DA analysis with a limit of detection of 1.0 nM (S/N = 3) and linear response concentration range from 0 to 500 nM. The characteristic chemical reaction between catechin and DA affords favorable selectivity over other amino acids, metal ions and small molecules. In addition, the practical application of the proposed nanoprobe is validated by the accurate detection of DA content in urea and cell lysate samples.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiaojiao Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001,China.
| |
Collapse
|
15
|
Direct and Sensitive Detection of Dopamine Using Carbon Quantum Dots Based Refractive Index Surface Plasmon Resonance Sensor. NANOMATERIALS 2022; 12:nano12111799. [PMID: 35683655 PMCID: PMC9182140 DOI: 10.3390/nano12111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023]
Abstract
Abnormality of dopamine (DA), a vital neurotransmitter in the brain’s neuronal pathways, causes several neurological diseases. Rapid and sensitive sensors for DA detection are required for early diagnosis of such disorders. Herein, a carbon quantum dot (CQD)-based refractive index surface plasmon resonance (SPR) sensor was designed. The sensor performance was evaluated for various concentrations of DA. Increasing DA levels yielded blue-shifted SPR dips. The experimental findings revealed an excellent sensitivity response of 0.138°/pM in a linear range from 0.001 to 100 pM and a high binding affinity of 6.234 TM−1. The effects of varied concentrations of DA on the optical characteristics of CQD thin film were further proved theoretically. Increased DA levels decreased the thickness and real part of the refractive index of CQD film, according to fitting results. Furthermore, the observed reduction in surface roughness using AFM demonstrated that DA was bound to the sensor layer. This, in turn, explained the blue shift in SPR reflectance curves. This optical sensor offers great potential as a trustworthy solution for direct measurement due to its simple construction, high sensitivity, and other sensing features.
Collapse
|
16
|
Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WMEMM. Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120202. [PMID: 34333400 DOI: 10.1016/j.saa.2021.120202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Due to the crucial role of dopamine (DA) in health and peripheral nervous systems, it is particularly important to develop an efficient and accurate sensor to monitor and determine DA concentrations for diagnostic purposes and diseases prevention. Up to now, using surface plasmon resonance (SPR) sensors in DA determination is very limited and its application still at the primary stage. In this work, a simple and ultra-sensitive SPR sensor was constructed for DA detection by preparation of chitosan- graphene quantum dots (CS-GQDs) thin film as the sensing layer. Other SPR measurements were conducted using different sensing layers; GQDs, CS for comparison. The proposed thin films were prepared by spin coating technique. The developed CS-GQDs thin film-based SPR sensor was successfully tested in DA concentration range from 0 fM to 1 pM. The designed SPR sensor showed outstanding performance in detecting DA sensitively (S = 0.011°/fM, R2 = 0.8174) with low detection limit of 1.0 fM has been achieved for the first time. The increased angular shift of SPR dip, narrow full width half maximum of the SPR curves, excellent signal-to-noise ratio and figure of merit, and a binding affinity constant (KA) of 2.962 PM-1 demonstrated the potential of this sensor to detect DA with high accuracy. Overall, it was concluded that the proposed sensor would serve as a valuable tool in clinical diagnostic for the serious neurological disorders. This in turns has a significant socio-economic impact.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|
17
|
Cai ZF, Deng CH, Wang J, Zuo Y, Wu JL, Wang XP, Lv TZ, Wang YY, Feng DY, Zhao J, Zhang CF, Zhang JM. Sensitive and selective determination of aloin with highly stable histidine-capped silver nanoclusters based on the inner filter effect. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Simultaneous sensing γ-glutamyl transpeptidase and alkaline phosphatase by robust dual-emission carbon dots. Anal Chim Acta 2021; 1178:338829. [PMID: 34482874 DOI: 10.1016/j.aca.2021.338829] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Rapid, convenient, sensitive and simultaneous detection of distinct enzymes is urgently needed for diagnosis, therapeutics and prognostic of related diseases. Here, a new strategy for simultaneous monitoring γ-glutamyl transpeptidase (GGT) and alkaline phosphatase (ALP) activity has been fabricated based on dual-emission carbon dots (CDs). CDs were prepared by solvothermal treatment of Actinidia chinensis, which presents two fluorescent emissions at 471 nm (blue channel) and 671 nm (red channel). GGT and ALP activity can be detected based on inner filter effect (IFE) and static quenching effect (SQE) of blue and red channels of CDs, respectively. Linear ranges were 2.5-90 U L-1 and 5-200 U L-1, and limit of detection (LOD) were 0.71 U L-1 and 1.2 U L-1 for GGT and ALP, respectively. Developed CDs can monitor GGT and ALP activity in human serum samples with satisfied recoveries (99.3%-108.6% for GGT, 98.4%-105.4% for ALP). Furthermore, the combination of CDs to sense GGT and ALP activity with OR logic gate can predict human health status. The design and application of dual-emission CDs can also be extended as promising tools to detect multianalytes using different channel signals.
Collapse
|
19
|
Chellasamy G, Ankireddy SR, Lee KN, Govindaraju S, Yun K. Smartphone-integrated colorimetric sensor array-based reader system and fluorometric detection of dopamine in male and female geriatric plasma by bluish-green fluorescent carbon quantum dots. Mater Today Bio 2021; 12:100168. [PMID: 34877521 PMCID: PMC8628042 DOI: 10.1016/j.mtbio.2021.100168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
A simple, cost-effective system was developed for dopamine (DA) detection using green synthesized 1-6 nm honey-based carbon quantum dots (H-CQDs) exhibiting bluish green fluorescence. The H-CQDs exhibited emission at 445 nm, with a quantum yield of ∼44%. The H-CQDs were used as a probe for electron transfer based DA detection and changes in H-CQD color in the presence of DA. The H-CQDs were formed with polar functional groups and were highly soluble in aqueous media. In the fluorometric mode, the proposed system demonstrated high specificity toward DA and effective limit of detection (LOD) values of 6, 8.5, and 8 nM in deionized (DI) water, male geriatric plasma, and female geriatric plasma, respectively, in the linear range 100 nM-1000 μM. In the colorimetric mode, the color changed within 5 min, and the LOD was 163 μM. A colorimetric sensor array system was used to precisely detect DA with a smartphone-integrated platform using an in house built imaging application and an analyzer app. Additionally, no additives were required, and the H-CQDs were not functionalized. More importantly, the H-CQDs were morphologically and analytically characterized before and after DA detection. Because the sensor array-based system allows high specificity DA detection in both DI water and geriatric plasma, it will play an important role in biomedical applications.
Collapse
Affiliation(s)
- Gayathri Chellasamy
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Seshadri Reddy Ankireddy
- Department of Chemical Sciences, Dr. Buddolla's Institute of Life Sciences, Tirupathi, 517503, India
| | - Kook-Nyung Lee
- IVD Device Research Institute, Wizbiosolutions, Inc., Gyeonggi-do, 13209, Republic of Korea
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, 13120, Republic of Korea
| |
Collapse
|
20
|
Wu W, Wu X, He M, Yuan X, Lai J, Sun H. A novel carbon dot/polyacrylamide composite hydrogel film for reversible detection of the antibacterial drug ornidazole. RSC Adv 2021; 11:22993-23001. [PMID: 35480440 PMCID: PMC9034351 DOI: 10.1039/d1ra01478a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
A carbon dot/polyacrylamide (CDs/PAM) composite hydrogel film with stable fluorescence performance was fabricated by merging a hydrogel film and carbon dots (CDs) with blue fluorescence, which were prepared by hydrothermal synthesis using anhydrous citric acid and acrylamide as carbon sources. The obtained CDs/PAM composite hydrogel film exhibited a good fluorescence quenching effect on ornidazole (ONZ), and can be used for the quantitative detection of ONZ. In the ONZ concentration range of 5-60 μM, a good linear relationship between the fluorescence quenching efficiency of the CDs/PAM composite hydrogel film and the concentration of ONZ solution was obtained with a low detection limit of 2.35 μM. In addition, the detection system has good selectivity and strong anti-interference capacity, and can be used in repeated cycles for detection.
Collapse
Affiliation(s)
- Weizhen Wu
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Xiaoyi Wu
- School of Chemistry, South China Normal University Guangzhou 510006 China
- College of Environmental Science & Engineering, Guangzhou University Guangzhou 510006 China
| | - Miao He
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Xiaolin Yuan
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Jiaping Lai
- School of Chemistry, South China Normal University Guangzhou 510006 China
| | - Hui Sun
- College of Environmental Science & Engineering, Guangzhou University Guangzhou 510006 China
| |
Collapse
|