1
|
Meng B, Huang Y, Lu A, Liao H, Zhai R, Gong X, Dong L, Jiang Y, Dai X, Fang X, Zhao Y. Enhanced Analysis of Low-Abundance Proteins in Soybean Seeds Using Advanced Mass Spectrometry. Int J Mol Sci 2025; 26:949. [PMID: 39940716 PMCID: PMC11817203 DOI: 10.3390/ijms26030949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
This study presents an advanced approach for the comprehensive analysis of low-abundance proteins in soybean seeds, addressing challenges posed by high-abundance storage proteins. We compared the effectiveness of Data-Dependent Acquisition (DDA), Data-Independent Acquisition (DIA), and BoxCar mass spectrometry techniques to identify low-abundance proteins in two types of soybean seeds: High-Oil and High-Protein seeds. The results indicate that the DIA method, and particularly the BoxCar methods, significantly improve the detection of low-abundance proteins compared to DDA, offering deeper insights into soybean seed biology. Specifically, BoxCar-based analysis revealed distinct proteomic differences between High-Oil and High-Protein seeds, highlighting more active metabolic processes in High-Oil seeds. Additionally, several key proteins were identified and annotated as uniquely expressed in either High-Oil or High-Protein seeds. These findings emphasize the importance of advanced proteomic techniques, such as BoxCar, in deepening our understanding of soybean seed biology and supporting breeding strategies to improve nutritional qualities.
Collapse
Affiliation(s)
- Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Yuanyuan Huang
- Department of Grassland Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Ao Lu
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Huanyue Liao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Rui Zhai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Lianhua Dong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China; (B.M.); (A.L.); (H.L.); (R.Z.); (X.G.); (L.D.); (Y.J.); (X.D.)
| |
Collapse
|
2
|
Wu Z, Huang X, Huang L, Zhang X. 102-Plex Approach for Accurate and Multiplexed Proteome Quantification. Anal Chem 2024; 96:1402-1409. [PMID: 38215345 DOI: 10.1021/acs.analchem.3c03036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Hyperplexing approaches have been aimed to meet the demand for large-scale proteomic analyses. Currently, the analysis capacity has expanded to up to 54 samples within a single experiment by utilizing different isotopic and isobaric reagent combinations. In this report, we propose a super multiplexed approach to enable the analysis of up to 102 samples in a single experiment, by the combination of our recently developed TAG-TMTpro and TAG-IBT16 labeling. We systematically investigated the identification and quantification performance of the 102-plex approach using the mixtures of E. coli and HeLa peptides. Our results revealed that all labeling series demonstrated accurate and reliable quantification performance. The combination of TAG-IBT16 and TAG-TMTpro approaches expands the multiplexing capacity to 102 plexes, providing a more multiplexed quantification method for even larger-scale proteomic analysis. Data are available via ProteomeXchange with the identifier PXD042398.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xirui Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Yu C, Huang L. New advances in cross-linking mass spectrometry toward structural systems biology. Curr Opin Chem Biol 2023; 76:102357. [PMID: 37406423 PMCID: PMC11091472 DOI: 10.1016/j.cbpa.2023.102357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023]
Abstract
Elucidating protein-protein interaction (PPI) networks and their structural features within cells is central to understanding fundamental biology and associations of cell phenotypes with human pathologies. Owing to technological advancements during the last decade, cross-linking mass spectrometry (XL-MS) has become an enabling technology for delineating interaction landscapes of proteomes as they exist in living systems. XL-MS is unique due to its capability to simultaneously capture PPIs from native environments and uncover interaction contacts though identification of cross-linked peptides, thereby permitting the determination of both identity and connectivity of PPIs in cells. In combination with high resolution structural tools such as cryo-electron microscopy and AI-assisted prediction, XL-MS has contributed significantly to elucidating architectures of large protein assemblies. This review highlights the latest developments in XL-MS technologies and their applications in proteome-wide analysis to advance structural systems biology.
Collapse
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
4
|
Santorelli L, Caterino M, Costanzo M. Dynamic Interactomics by Cross-Linking Mass Spectrometry: Mapping the Daily Cell Life in Postgenomic Era. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:633-649. [PMID: 36445175 DOI: 10.1089/omi.2022.0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The majority of processes that occur in daily cell life are modulated by hundreds to thousands of dynamic protein-protein interactions (PPI). The resulting protein complexes constitute a tangled network that, with its continuous remodeling, builds up highly organized functional units. Thus, defining the dynamic interactome of one or more proteins allows determining the full range of biological activities these proteins are capable of. This conceptual approach is poised to gain further traction and significance in the current postgenomic era wherein the treatment of severe diseases needs to be tackled at both genomic and PPI levels. This also holds true for COVID-19, a multisystemic disease affecting biological networks across the biological hierarchy from genome to proteome to metabolome. In this overarching context and the current historical moment of the COVID-19 pandemic where systems biology increasingly comes to the fore, cross-linking mass spectrometry (XL-MS) has become highly relevant, emerging as a powerful tool for PPI discovery and characterization. This expert review highlights the advanced XL-MS approaches that provide in vivo insights into the three-dimensional protein complexes, overcoming the static nature of common interactomics data and embracing the dynamics of the cell proteome landscape. Many XL-MS applications based on the use of diverse cross-linkers, MS detection methods, and predictive bioinformatic tools for single proteins or proteome-wide interactions were shown. We conclude with a future outlook on XL-MS applications in the field of structural proteomics and ways to sustain the remarkable flexibility of XL-MS for dynamic interactomics and structural studies in systems biology and planetary health.
Collapse
Affiliation(s)
- Lucia Santorelli
- Department of Oncology and Hematology-Oncology, University of Milano, Milan, Italy.,IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| |
Collapse
|
5
|
Simultaneous enrichment and sequential separation of O-linked glycopeptides and phosphopeptides with immobilized titanium (IV) ion affinity chromatography materials. J Chromatogr A 2022; 1681:463462. [DOI: 10.1016/j.chroma.2022.463462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
|
6
|
Jiao F, Yu C, Wheat A, Wang X, Rychnovsky SD, Huang L. Two-Dimensional Fractionation Method for Proteome-Wide Cross-Linking Mass Spectrometry Analysis. Anal Chem 2022; 94:4236-4242. [PMID: 35235311 DOI: 10.1021/acs.analchem.1c04485] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cross-linking mass spectrometry (XL-MS) is an emergent technology for studying protein-protein interactions (PPIs) and elucidating architectures of protein complexes. The development of various MS-cleavable cross-linkers has facilitated the identification of cross-linked peptides, enabling XL-MS studies at the systems level. However, the scope and depth of cellular networks revealed by current XL-MS technologies remain limited. Due to the inherently broad dynamic range and complexity of proteomes, interference from highly abundant proteins impedes the identification of low-abundance cross-linked peptides in complex samples. Thus, peptide enrichment prior to MS analysis is necessary to enhance cross-link identification for proteome-wide studies. Although chromatographic techniques including size exclusion (SEC) and strong cation exchange (SCX) have been successful in isolating cross-linked peptides, new fractionation methods are still needed to further improve the depth of PPI mapping. Here, we present a two-dimensional (2D) separation strategy by integrating peptide SEC with tip-based high pH reverse-phase (HpHt) fractionation to expand the coverage of proteome-wide XL-MS analyses. Combined with the MS-cleavable cross-linker DSSO, we have successfully mapped in vitro PPIs from HEK293 cell lysates with improved identification of cross-linked peptides compared to existing approaches. The method developed here is effective and can be generalized for cross-linking studies of complex samples.
Collapse
Affiliation(s)
- Fenglong Jiao
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Andrew Wheat
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Xiaorong Wang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, Irvine, California 92694, United States
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, California 92694, United States
| |
Collapse
|
7
|
Metaproteomics insights into fermented fish and vegetable products and associated microbes. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100045. [PMID: 35415649 PMCID: PMC8991600 DOI: 10.1016/j.fochms.2021.100045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Increasing global population means higher demand for healthy food. Fish and vegetables are healthy foods, but overproduction leads to spoilage. Fermentation of fish/vegetables elongate their shelf lives, improved flavour and functions. Microbes associated with Fish/vegetable fermentation produce health conferring peptides. There is little review on peptides elicited during fish/vegetable fermentations.
The interest in proteomic studies of fermented food is increasing; the role of proteins derived from fermentation extends beyond preservation, they also improve the organoleptic, anti-pathogenic, anti-cancer, anti-obesogenic properties, and other health conferring properties of fermented food. Traditional fermentation processes are still in use in certain cultures, but recently, the controlled process is gaining wider acceptance due to consistency and predictability. Scientists use modern biotechnological approaches to evaluate reactions and component yields from fermentation processes. Pieces of literature on fermented fish and vegetable end-products are scanty (compared to milk and meat), even though fish and vegetables are considered health conferring diets with high nutritional contents. Evaluations of peptides from fermented fish and vegetables show they have anti-obesity, anti-oxidative, anti-inflammatory, anti-pathogenic, anti-anti-nutrient, improves digestibility, taste, nutrient content, texture, aroma properties, etc. Despite challenges impeding the wider applications of the metaproteomic analysis of fermented fish and vegetables, their potential benefits cannot be underestimated.
Collapse
|