1
|
Amithabh GS, Gireesh Kumar MP, Selvapandian K, Baskar B. Recent development on the extraction, detection, and quantification of vitamin D from various sources - an update. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6654-6675. [PMID: 39314119 DOI: 10.1039/d4ay01114g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Recent advancements in analytical methods for vitamin D and its metabolites have substantially enhanced our capacity to precisely determine and quantify these substances in a wide range of sources, such as biological fluids, fungus, natural and fortified foods. This study focuses on the latest advancements in sample preparation procedures, including solid-phase extraction and environmentally friendly extraction methods. These approaches aim to enhance efficiency and minimize the use of solvents. In addition, we explore the growing popularity of chromatographic methods, specifically LC-MS/MS and developing supercritical fluid chromatography (SFC), which provide improved sensitivity, selectivity, and faster analytical times for comprehensive vitamin D profiling. These developments are crucial for overcoming the challenges presented by low concentrations and complex matrices in the investigation of vitamin D.
Collapse
Affiliation(s)
- G S Amithabh
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603203 Chengalpet (Dt), Tamilnadu, India.
- Cavinkare Research Center, 12, Poonamallee Road, Ekkattuthangal, Chennai-600032, Tamilnadu, India
| | - M P Gireesh Kumar
- Cavinkare Research Center, 12, Poonamallee Road, Ekkattuthangal, Chennai-600032, Tamilnadu, India
| | - K Selvapandian
- Aston Medical School, Aston University, Brimingham-B4 7ET, UK
| | - B Baskar
- Laboratory of Sustainable Chemistry, Department of Chemistry, SRM Institute of Science and Technology, Kattankulatur, 603203 Chengalpet (Dt), Tamilnadu, India.
| |
Collapse
|
2
|
Huo Y, Zhang S, Wu G, Shan H, Li Q, Deng T, Pan C. Rapid simultaneous determination of 7 fat-soluble vitamins in human serum by ultra high performance liquid chromatography tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5535-5544. [PMID: 37847399 DOI: 10.1039/d3ay01527k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Accurate detection of vitamins is critically important for clinical diagnosis, metabolomics and epidemiological studies. However, the amounts of different vitamins vary dramatically in human serum. It is a challenge to achieve simultaneous detection of multiple vitamins rapidly. Herein, we developed and validated a sensitive and specific method using ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) for simultaneous quantification of 7 fat-soluble vitamins (FSVs) across their physiological concentrations in serum for the first time, which was subjected to protein precipitation, liquid-liquid extraction to an organic phase, evaporation to dryness and reconstitution with acetonitrile. In the present procedure, retinol (vitamin A), ergocalciferol (25-OH-D2), cholecalciferol (25-OH-D3), α-tocopherol (vitamin E), phylloquinone (vitamin K1), menatetrenone-4 (MK-4), and menaquinone-7 (MK-7) were detected in one analytical procedure for the first time within 5.0 min by triple quadrupole tandem mass spectrometry. The limit of quantification (LOQ) for vitamin A was 10.0 ng mL-1, LOQs for 25-OH-D2 and 25-OH-D3 were 1.0 ng mL-1, LOQ for vitamin E was 100.0 ng mL-1, and LOQs for vitamin K1, MK-4 and MK-7 were 0.10 ng mL-1, respectively, with a correlation (R2) of 0.995-0.999. Recoveries ranged from 80.5% to 118.5% and the intra-day and inter-day coefficients of variance (CVs) were 0.72-8.89% and 3.2-9.0% respectively. The method was validated according to the European Medicines Agency (EMA) and U.S. Food and Drug guidelines and C62-A on bioanalytical methods, and was used for clinical routine determination.
Collapse
Affiliation(s)
- Yumei Huo
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Shangqing Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Gaoping Wu
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Hongbo Shan
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Qianqian Li
- Waters Technologies (Beijing) Co., Ltd., Beijing, China
| | - Tongqing Deng
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| | - Chao Pan
- Hangzhou Adicon Clinical Laboratories Co., Ltd, Hangzhou, China
| |
Collapse
|
3
|
Arachchige GRP, Pook CJ, Jones B, Coe M, Saffery R, Wake M, Thorstensen EB, O’Sullivan JM. Fat-Soluble Vitamers: Parent-Child Concordance and Population Epidemiology in the Longitudinal Study of Australian Children. Nutrients 2022; 14:nu14234990. [PMID: 36501020 PMCID: PMC9735774 DOI: 10.3390/nu14234990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Fat-soluble vitamers (FSV) are a class of diverse organic substances important in a wide range of biological processes, including immune function, vision, bone health, and coagulation. Profiling FSV in parents and children enables insights into gene-environment contributions to their circulating levels, but no studies have reported on the population epidemiology of FSV in these groups as of yet. In this study, we report distributions of FSV, their parent-child concordance and variation by key characteristics for 2490 children (aged 11-12 years) and adults (aged 28-71 years) in the Child Health CheckPoint of the Longitudinal Study of Australian Children. Ten A, D, E and K vitamers were quantified using a novel automated LC-MS/MS method. All three K vitamers (i.e., K1, MK-4, MK-7) and 1-α-25(OH)2D3 were below the instrument detection limit and were removed from the present analysis. We observed a strong vitamer-specific parent-child concordance for the six quantifiable A, D and E FSVs. FSV concentrations all varied by age, BMI, and sex. We provide the first cross-sectional population values for multiple FSV. Future studies could examine relative genetic vs. environmental determinants of FSV, how FSV values change longitudinally, and how they contribute to future health and disease.
Collapse
Affiliation(s)
| | - Chris James Pook
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
- Correspondence: (C.J.P.); (J.M.O.)
| | - Beatrix Jones
- Department of Statistics, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret Coe
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Richard Saffery
- The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Melissa Wake
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
- The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Justin Martin O’Sullivan
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland 1010, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, University Road, Southampton SO17 1BJ, UK
- Correspondence: (C.J.P.); (J.M.O.)
| | | |
Collapse
|
4
|
Alexandridou A, Schorr P, Stokes CS, Volmer DA. Analysis of vitamin D metabolic markers by mass spectrometry: Recent progress regarding the "gold standard" method and integration into clinical practice. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34967037 DOI: 10.1002/mas.21768] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Liquid chromatography/tandem mass spectrometry is firmly established today as the gold standard technique for analysis of vitamin D, both for vitamin D status assessments as well as for measuring complex and intricate vitamin D metabolic fingerprints. While the actual mass spectrometry technology has seen only incremental performance increases in recent years, there have been major, very impactful changes in the front- and back-end of MS-based vitamin D assays; for example, the extension to new types of biological sample matrices analyzed for an increasing number of different vitamin D metabolites, novel sample preparation techniques, new powerful chemical derivatization reagents, as well the continued integration of high resolution mass spectrometers into clinical laboratories, replacing established triple-quadrupole instruments. At the same time, the sustainability of mass spectrometry operation in the vitamin D field is now firmly established through proven analytical harmonization and standardization programs. The present review summarizes the most important of these recent developments.
Collapse
Affiliation(s)
| | - Pascal Schorr
- Department of Bioanalytical Chemistry, Humboldt University Berlin, Berlin, Germany
| | - Caroline S Stokes
- Food and Health Research Group, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Dietrich A Volmer
- Department of Bioanalytical Chemistry, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|