1
|
Wang Q, Luo YJ, Su GL, Xie JL, Mao K, Huang CZ, Li YF, Zhou J, Zou HY, Zhen SJ. A novel triple signal amplification platform of peroxide test strip for sensitive detection of adenosine triphosphate. Talanta 2025; 284:127263. [PMID: 39591865 DOI: 10.1016/j.talanta.2024.127263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024]
Abstract
Peroxide test strip (PTS) has been widely used for the point-of-care testing (POCT), but its poor sensitivity is a big obstacle for analyzing trace target. Herein, a triple signal amplifying platform integrating the liposome enrichment, the hybridization chain reaction (HCR) circuit, and the image analysis method was constructed to enhance the visual readout of PTS for the sensitive detection of adenosine triphosphate (ATP), an important biomarker of food spoilage. In the presence of ATP, the HCR amplifier was firstly initiated on the surface of magnetic beads (MBs), inducing a large number of glucose oxidase (GOD) imbedded liposomes to be attached. After the magnetic separation, the linked liposomes were destroyed and the enriched GOD was released to react with glucose to produce H2O2, which can enhance the color change of PTS. Finally, an image analysis method was developed to further amplify the colorimetric difference of human visual perception of PTS readout. This triple signal amplification strategy was used to detect ATP in the linear range from 50 to 250 nmol/L, and the limit of detection (LOD, 3σ/k) was 0.65 nmol/L. Finally, this method has been successfully applied for accurate and sensitive detection of ATP in watermelon juice, showing its great potential for quick determining whether food is spoiled.
Collapse
Affiliation(s)
- Qiang Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yu Jie Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Guo Liang Su
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Jia Li Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Kai Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Cheng Zhi Huang
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jun Zhou
- College of Computer and Information Science, Southwest University, Chongqing, 400715, China
| | - Hong Yan Zou
- Key Laboratory of Biomedical Analytics, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, 400715, Chongqing, China.
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
2
|
Su Y, Gu M, Li C, Zhang D, Ren Y, Chen L, Li S, Zheng X. Development of a rhodamine-based fluorescent probe for ATP detection for potential applications in meat freshness assessment. Food Chem 2024; 450:139209. [PMID: 38615529 DOI: 10.1016/j.foodchem.2024.139209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 04/16/2024]
Abstract
Adenosine triphosphate (ATP) plays a vital role in physiological processes and is an essential indicator of microbial content in food. Herein, a new sensitive, rapid and water-soluble probe for ATP detection was developed. Rhodamine B and pentaethylenehexamine were employed to design and synthesise the probe rhodamine-pentaethylenehexamine (RP) for selective ATP detection. The synthesised probe RP was characterized using Fourier transform infrared, NMR and dynamic light scattering size distributions. Upon the addition of ATP, the probe exhibited a distinct change in fluorescence intensity, with fluorescence emission at 580 nm. A linear relationship was observed between fluorescence intensity and ATP concentrations at 0-50 μmol/L, with a limit of detection of 10.97 × 10-9 mol/L. The results of the zeta potential and molecular dynamics simulation demonstrated that the detection mechanism of the probe RP is associated with the electrostatic adsorption interaction between the multi-positively charged sites of RP and the negatively charged triphosphate structure of ATP. Our study provides new insights into improving charge site identification in small molecule detection. Furthermore, the successful detection of ATP on meat surfaces indicates that RP has the potential to assess meat freshness.
Collapse
Affiliation(s)
- Yuanyuan Su
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minghui Gu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Cheng Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuqing Ren
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Chen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaobo Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaochun Zheng
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Kang H, Lee J, Moon J, Lee T, Kim J, Jeong Y, Lim EK, Jung J, Jung Y, Lee SJ, Lee KG, Ryu S, Kang T. Multiplex Detection of Foodborne Pathogens using 3D Nanostructure Swab and Deep Learning-Based Classification of Raman Spectra. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308317. [PMID: 38564785 DOI: 10.1002/smll.202308317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Proactive management of foodborne illness requires routine surveillance of foodborne pathogens, which requires developing simple, rapid, and sensitive detection methods. Here, a strategy is presented that enables the detection of multiple foodborne bacteria using a 3D nanostructure swab and deep learning-based Raman signal classification. The nanostructure swab efficiently captures foodborne pathogens, and the portable Raman instrument directly collects the Raman signals of captured bacteria. a deep learning algorithm has been demonstrated, 1D convolutional neural network with binary labeling, achieves superior performance in classifying individual bacterial species. This methodology has been extended to mixed bacterial populations, maintaining accuracy close to 100%. In addition, the gradient-weighted class activation mapping method is used to provide an investigation of the Raman bands for foodborne pathogens. For practical application, blind tests are conducted on contaminated kitchen utensils and foods. The proposed technique is validated by the successful detection of bacterial species from the contaminated surfaces. The use of a 3D nanostructure swab, portable Raman device, and deep learning-based classification provides a powerful tool for rapid identification (≈5 min) of foodborne bacterial species. The detection strategy shows significant potential for reliable food safety monitoring, making a meaningful contribution to public health and the food industry.
Collapse
Affiliation(s)
- Hyunju Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Junhyeong Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jeong Moon
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06032, USA
| | - Taegu Lee
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jueun Kim
- Department of Energy Resources and Chemical Engineering, Kangwon National University, 346 Jungang-ro, Samcheok, Gangwon-do, 25913, Republic of Korea
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeonwoo Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Juyeon Jung
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seok Jae Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kyoung G Lee
- Division of Nano-Bio Sensors/Chips Development, National NanoFab Center (NNFC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- School of Pharmacy, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Suwon, Gyeonggi-do, 16419, Republic of Korea
| |
Collapse
|
4
|
Liu Q, Yan S, Zhang M, Wang C, Xing D. Air sampling and ATP bioluminescence for quantitative detection of airborne microbes. Talanta 2024; 274:126025. [PMID: 38574539 DOI: 10.1016/j.talanta.2024.126025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Exposure to bioaerosol contamination has detrimental effects on human health. Recent advances in ATP bioluminescence provide more opportunities for the quantitative detection of bioaerosols. Since almost all active organisms can produce ATP, the amount of airborne microbes can be easily measured by detecting ATP-driven bioluminescence. The accurate evaluation of microorganisms mainly relies on following the four key steps: sampling and enrichment of airborne microbes, lysis for ATP extraction, enzymatic reaction, and measurement of luminescence intensity. To enhance the effectiveness of ATP bioluminescence, each step requires innovative strategies and continuous improvement. In this review, we summarized the recent advances in the quantitative detection of airborne microbes based on ATP bioluminescence, which focuses on the advanced strategies for improving sampling devices combined with ATP bioluminescence. Meanwhile, the optimized and innovative strategies for the remaining three key steps of the ATP bioluminescence assay are highlighted. The aim is to reawaken the prosperity of ATP bioluminescence and promote its wider utilization for efficient, real-time, and accurate detection of airborne microbes.
Collapse
Affiliation(s)
- Qing Liu
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Saisai Yan
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China.
| | - Miao Zhang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Chao Wang
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Capuano GE, Corso D, Farina R, Pezzotti Escobar G, Screpis GA, Coniglio MA, Libertino S. Miniaturizable Chemiluminescence System for ATP Detection in Water. SENSORS (BASEL, SWITZERLAND) 2024; 24:3921. [PMID: 38931704 PMCID: PMC11207618 DOI: 10.3390/s24123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
We present the design, fabrication, and testing of a low-cost, miniaturized detection system that utilizes chemiluminescence to measure the presence of adenosine triphosphate (ATP), the energy unit in biological systems, in water samples. The ATP-luciferin chemiluminescent solution was faced to a silicon photomultiplier (SiPM) for highly sensitive real-time detection. This system can detect ATP concentrations as low as 0.2 nM, with a sensitivity of 79.5 A/M. Additionally, it offers rapid response times and can measure the characteristic time required for reactant diffusion and mixing within the reaction volume, determined to be 0.3 ± 0.1 s. This corresponds to a diffusion velocity of approximately 44 ± 14 mm2/s.
Collapse
Affiliation(s)
- Giuseppe E. Capuano
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Domenico Corso
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| | - Roberta Farina
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianni Pezzotti Escobar
- URT “LabSens of Beyond Nano” of the Department of Physical Sciences and Technologies of Matter, National Research Council (CNR-DSFTM-ME), Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy;
| | - Giuseppe A. Screpis
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Maria Anna Coniglio
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Sebania Libertino
- Istituto per la Microeletttronica e Microsistemi—Consiglio Nazionale delle Ricerche, VIII Strada Z.I., 5, 95121 Catania, Italy; (G.E.C.); (R.F.); (S.L.)
| |
Collapse
|
6
|
Abbasi R, Imanbekova M, Wachsmann-Hogiu S. On-chip bioluminescence biosensor for the detection of microbial surface contamination. Biosens Bioelectron 2024; 254:116200. [PMID: 38518562 DOI: 10.1016/j.bios.2024.116200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
Detection of microbial pathogens is important for food safety reasons, and for monitoring sanitation in laboratory environments and health care settings. Traditional detection methods such as culture-based and nucleic acid-based methods are time-consuming, laborious, and require expensive laboratory equipment. Recently, ATP-based bioluminescence methods were developed to assess surface contamination, with commercial products available. In this study, we introduce a biosensor based on a CMOS image sensor for ATP-mediated chemiluminescence detection. The original lens and IR filter were removed from the CMOS sensor revealing a 12 MP periodic microlens/pixel array on an area of 6.5 mm × 3.6 mm. UltraSnap swabs are used to collect samples from solid surfaces including personal electronic devices, and office and laboratory equipment. Samples mixed with chemiluminescence reagents were placed directly on the surface of the image sensor. Close proximity of the sample to the photodiode array leads to high photon collection efficiency. The population of microorganisms can be assessed and quantified by analyzing the intensity of measured chemiluminescence. We report a linear range and limit of detection for measuring ATP in UltraSnap buffer of 10-1000 nM and 225 fmol, respectively. The performance of the CMOS-based device was compared to a commercial luminometer, and a high correlation with a Pearson's correlation coefficient of 0.98589 was obtained. The Bland-Altman plot showed no significant bias between the results of the two methods. Finally, microbial contamination of different surfaces was analyzed with both methods, and the CMOS biosensor exhibited the same trend as the commercial luminometer.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | - Meruyert Imanbekova
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada
| | | |
Collapse
|
7
|
Hu S, Liu Y, Liu L, Yu Z, Gan N. Femtomolar endogenous adenosine triphosphate-responded photoelectrochemical biosensor based on Au@Cu 2O core-shell nanocubes for the ultrasensitive determination of Escherichia coli O157:H7 in foods. Anal Chim Acta 2023; 1280:341868. [PMID: 37858568 DOI: 10.1016/j.aca.2023.341868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023]
Abstract
Sensitive and precise determination of virulent foodborne pathogens is significant for food safety. Herein, an ultrasensitive photoelectrochemical (PEC) bioanalysis was developed using the endogenous adenosine triphosphate (ATP)-responded Au@Cu2O core-shell nanocubes (Au@Cu2O NCs) to measure Escherichia coli O157: H7 (E. coli O157:H7) in food. Briefly, the phage-functionalized gold wire was used to specifically recognize the target pathogen. With the bacteriolysis of lysozyme, the endogenous ATP molecules were emitted from the captured target bacteria and enriched by another ATP aptamer-modified gold wire. Following the exchange with complementary DNA (cDNA) chains, the bonded ATP would be released. It could simultaneously etch the Au@Cu2O NCs and compete with external circuit electrons to combine photogenerated holes on the Au@Cu2O NCs-modified screen-printed electrode. With the synergy of the two signal amplification mechanisms, a significant attenuation of photocurrent signal appeared even with femtomolar ATP. Therefore, the purpose of ultrasensitive determination of E. coli O157:H7 was realized, which depended on the endogenous ATP rather than exogenous signal probes. The proposed biosensor presented a good analysis performance within 10-106 CFU/mL with a detection limit of 5 CFU/mL. Besides, its specificity, repeatability, and stability were also investigated and acceptable. The detection results for food samples matched well with the results detected by the plate counting method. This work gives an innovative and sensitive signal amplification strategy for PEC bioassays in foodborne pathogens detection.
Collapse
Affiliation(s)
- Shuhao Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yuting Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Liu Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhenzhong Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Liu S, Zhao J, Guo Y, Ma X, Sun C, Cai M, Chi Y, Xu K. Application of ATP-based bioluminescence technology in bacterial detection: a review. Analyst 2023. [PMID: 37366080 DOI: 10.1039/d3an00576c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
With the development of new technologies for rapid and high-throughput bacterial detection, ATP-based bioluminescence technology is making progress. Because live bacteria contain ATP, the number of bacteria is correlated with the level of ATP under certain conditions, so that the method of luciferase catalyzing the fluorescence reaction of luciferin with ATP is widely used for the detection of bacteria. This method is easy to operate, has a short detection cycle, does not require much human resources, and is suitable for long-term continuous monitoring. Currently, other methods are being explored in combination with bioluminescence for more accurate, portable and efficient detection. This paper introduces the principle, development and application of bacterial bioluminescence detection based on ATP and compares the combination of bioluminescence and other bacterial detection methods in recent years. In addition, this paper also examines the development prospects and direction of bioluminescence in bacterial detection, hoping to provide a new idea for the application of ATP-based bioluminescence.
Collapse
Affiliation(s)
- Shitong Liu
- Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Jinbin Zhao
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Yulan Guo
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Xueer Ma
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Chunmeng Sun
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Ming Cai
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Yuyang Chi
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| | - Kun Xu
- Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.
- Jilin University, School of Public Health, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
9
|
Calabretta MM, Lopreside A, Montali L, Zangheri M, Evangelisti L, D'Elia M, Michelini E. Portable light detectors for bioluminescence biosensing applications: A comprehensive review from the analytical chemist's perspective. Anal Chim Acta 2022; 1200:339583. [DOI: 10.1016/j.aca.2022.339583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
|
10
|
On-Line Multi-Frequency Electrical Resistance Tomography ( mfERT) Device for Crystalline Phase Imaging in High-Temperature Molten Oxide. SENSORS 2022; 22:s22031025. [PMID: 35161771 PMCID: PMC8839816 DOI: 10.3390/s22031025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/10/2022]
Abstract
An on-line multi-frequency electrical resistance tomography (mfERT) device with a melt-resistive sensor and noise reduction hardware has been proposed for crystalline phase imaging in high-temperature molten oxide. The melt-resistive sensor consists of eight electrodes made of platinum-rhodium (Pt-20mass%Rh) alloy covered by non-conductive aluminum oxide (Al2O3) to prevent an electrical short. The noise reduction hardware has been designed by two approaches: (1) total harmonic distortion (THD) for the robust multiplexer, and (2) a current injection frequency pair: low fL and high fH, for thermal noise compensation. THD is determined by a percentage evaluation of k-th harmonic distortions of ZnO at f=0.1~10,000 Hz. The fL and fH are determined by the thermal noise behavior estimation at different temperatures. At f <100 Hz, the THD percentage is relatively high and fluctuates; otherwise, THD dramatically declines, nearly reaching zero. At the determined fL≥ 10,000 Hz and fH≈ 1,000,000 Hz, thermal noise is significantly compensated. The on-line mfERT was tested in the experiments of a non-conductive Al2O3 rod dipped into conductive molten zinc-borate (60ZnO-40B2O3) at 1000~1200 °C. As a result, the on-line mfERT is able to reconstruct the Al2O3 rod inclusion images in the high-temperature fields with low error, ςfL, T = 5.99%, at 1000 °C, and an average error ⟨ςfL⟩ = 9.2%.
Collapse
|