1
|
Kuang J, Zhao L, Ruan S, Sun Y, Wu Z, Zhang H, Zhang M, Hu P. The integration platform for exosome capture and colorimetric detection: Site occupying effect-modulated MOF-aptamer interaction and aptamer-Au NPs-dopamine interaction. Anal Chim Acta 2024; 1329:343234. [PMID: 39396297 DOI: 10.1016/j.aca.2024.343234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Exosomes are extracellular vesicles of 30-200 nm in diameter that inherit molecular markers from their parent cells, including proteins, lipids, nucleic acids, and glycoconjugates. The detection and protein profiling of exosome could provide noninvasive access to disease diagnosis and treatment. In recent years, it has been found that Zr-MOFs can capture exosomes by forming Zr-O-P bonds through the phospholipid bilayer of exosomes. In addition, gold nanoparticles with optical response are used for colorimetric biological analysis, such as proteins, peptides, DNA. In this work, we proposed an aptasensor for exosome capture and sensitive colorimetric detection. The Zr-MOF (PCN-224) is innovatively used to capture exosome by Zr-O-P bond, and sodium tripolyphosphate (STPP) is used to block the non-specific adsorption of DNA aptamers on the surface of PCN-224 by site occupying effect. The aptamer binds to exosome immunity, and the remaining aptamer binds to Au NPs, resulting in an increase in steric hindrance and electrostatic repulsion, which makes the dispersion of Au NPs better and avoids the aggregation of Au NPs induced by dopamine (DA). The ratio of absorbance A650/A520 represents the aggregate degree of Au NPs, which correlates with the concentration of exosomes, and achieves sensitive colorimetric detection of exosomes with a linear range of 1.0 × 105-1.0 × 107 particles/mL. Further studies reveal that our work has excellent selectivity and anti-interference, breast cancer patients and healthy individuals can be distinguished by analyzing the differences in the expression of CD63 protein on exosome. The proposed biosensor integrates the capture and detection of exosomes, the multiple colors of Au NPs changed significantly from red to gray, which was conducive to the naked-eye identification of exosome detection.
Collapse
Affiliation(s)
- Jingjing Kuang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linghao Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengli Ruan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yangkun Sun
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zeyu Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongyang Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Ping Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Abd-El-Haleem DAM, Elkatory MR, Abu-Elreesh GM. Uncovering novel polyhydroxyalkanoate biosynthesis genes and unique pathway in yeast hanseniaspora valbyensis for sustainable bioplastic production. Sci Rep 2024; 14:27162. [PMID: 39511267 PMCID: PMC11544117 DOI: 10.1038/s41598-024-77382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
This study delves into the exploration of polyhydroxyalkanoate (PHA) biosynthesis genes within wild-type yeast strains, spotlighting the exceptional capabilities of isolate DMG-2. Through meticulous screening, DMG-2 emerged as a standout candidate, showcasing vivid red fluorescence indicative of prolific intracellular PHA granules. Characterization via FTIR spectroscopy unveiled a diverse biopolymer composition within DMG-2, featuring distinct functional groups associated with PHA and polyphosphate. Phylogenetic analysis placed DMG-2 within the Hanseniaspora valbyensis NRRL Y-1626 group, highlighting its distinct taxonomic classification. Subsequent investigation into DMG-2's PHA biosynthesis genes yielded promising outcomes, with successful cloning and efficient PHA accumulation confirmed in transgenic E. coli cells. Protein analysis of ORF1 revealed its involvement in sugar metabolism, supported by its cellular localization and identification of functional motifs. Genomic analysis revealed regulatory elements within ORF1, shedding light on potential splice junctions and transcriptional networks influencing PHA synthesis pathways. Spectroscopic analysis of the biopolymer extracted from transgenic E. coli DMG2-1 provided insights into its co-polymer nature, comprising segments of PHB, PHV, and polyphosphate. GC-MS analysis further elucidated the intricate molecular architecture of the polymer. In conclusion, this study represents a pioneering endeavor in exploring PHA biosynthesis genes within yeast cells, with isolate DMG-2 demonstrating remarkable potential. The findings offer valuable insights for advancing sustainable bioplastic production and hold significant implications for biotechnological applications.
Collapse
Affiliation(s)
- Desouky A M Abd-El-Haleem
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt.
| | - Marwa R Elkatory
- Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications SRTA-City, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Gadallah M Abu-Elreesh
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Institute, City of Scientific Research and Technological Applications SRTA-City, Alexandria, 21934, New Burelarab, Egypt
| |
Collapse
|
3
|
Zhang G, Zhang Q, Zhu H, Ma R, Huang X, Cen S, Yang C, Su R, Zhu Z. Fast Isolation and Sensitive Multicolor Visual Detection of Small Extracellular Vesicles by Multifunctional Polydopamine Nanospheres. Anal Chem 2024. [PMID: 39155608 DOI: 10.1021/acs.analchem.4c02062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Small extracellular vesicles (sEVs) assume pivotal roles as vital messengers in intercellular communication, boasting a plethora of biological functions and promising clinical applications. However, efficient isolation and sensitive detection of sEVs continue to present formidable challenges. In this study, we report a novel method for fast isolation and highly sensitive multicolor visual detection of sEVs using aptamer-functionalized polydopamine nanospheres (SIMPLE). In the SIMPLE strategy, aptamer-functionalized polydopamine nanospheres (Apt-PDANS) with 170 nm diameters were synthesized and exhibited a remarkable ability to selectively bind to specific proteins on the surface of sEVs. The binding between sEVs and Apt-PDANS engenders an increase in the overall size of the sEVs, allowing fast isolation of sEVs by filtration (a filter membrane with a pore size of 200 nm). The fast isolation strategy not only circumvents the interference posed by unbound proteins and excessive probes as well as the intricacies associated with conventional ultracentrifugation methods but also expedites the separation of sEVs. Concurrently, the incorporation of Fe3+-doped PDANS permits the multicolor visual detection of sEVs, enabling quantitative analysis by the discernment of visual cues. The proposed strategy achieves a detection limit of 3.2 × 104 sEV mL-1 within 1 h, devoid of any reliance on instrumental apparatus. Furthermore, we showcase the potential application of this methodology in epithelial-mesenchymal transition monitoring and cancer diagnosis, while also envisioning its widespread adoption as a straightforward, rapid, sensitive, and versatile platform for disease monitoring and functional exploration.
Collapse
Affiliation(s)
- Guihua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qiannan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huanghuang Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaodan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiyun Cen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rui Su
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Jang YO, Roh Y, Shin W, Jo S, Koo B, Liu H, Kim MG, Lee HJ, Qiao Z, Lee EY, Lee M, Lee J, Lee EJ, Shin Y. Transferrin-conjugated magnetic nanoparticles for the isolation of brain-derived blood exosomal MicroRNAs: A novel approach for Parkinson's disease diagnosis. Anal Chim Acta 2024; 1306:342623. [PMID: 38692796 DOI: 10.1016/j.aca.2024.342623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Brain-derived exosomes circulate in the bloodstream and other bodily fluids, serving as potential indicators of neurological disease progression. These exosomes present a promising avenue for the early and precise diagnosis of neurodegenerative conditions. Notably, miRNAs found in plasma extracellular vesicles (EVs) offer distinct diagnostic benefits due to their stability, abundance, and resistance to breakdown. RESULTS In this study, we introduce a method using transferrin conjugated magnetic nanoparticles (TMNs) to isolate these exosomes from the plasma of patients with neurological disorders. This TMNs technique is both quick (<35 min) and cost-effective, requiring no high-priced ingredients or elaborate equipment for EV extraction. Our method successfully isolated EVs from 33 human plasma samples, including those from patients with Parkinson's disease (PD), Multiple Sclerosis (MS), and Dementia. Using quantitative polymerase chain reaction (PCR) analysis, we evaluated the potential of 8 exosomal miRNA profiles as biomarker candidates. Six exosomal miRNA biomarkers (miR-195-5p, miR-495-3p, miR-23b-3P, miR-30c-2-3p, miR-323a-3p, and miR-27a-3p) were consistently linked with all stages of PD. SIGNIFICANCE The TMNs method provides a practical, cost-efficient way to isolate EVs from biological samples, paving the way for non-invasive neurological diagnoses. Furthermore, the identified miRNA biomarkers in these exosomes may emerge as innovative tools for precise diagnosis in neurological disorders including PD.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeonjeong Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Wangyong Shin
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Yeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minju Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Hu J, Liu Y, Du Y, Peng X, Liu Z. Cellular organelles as drug carriers for disease treatment. J Control Release 2023; 363:114-135. [PMID: 37742846 DOI: 10.1016/j.jconrel.2023.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Organelles not only constitute the basic structure of the cell but also are important in maintaining the normal physiological activities of the cell. With the development of biomimetic nanoscience, researchers have developed technologies to use organelles as drug carriers for disease treatment. Compared with traditional drug carriers, organelle drug carriers have the advantages of good biocompatibility, high drug loading efficiency, and modifiability, and the surface biomarkers of organelles can also participate in intracellular signal transduction to enhance intracellular and intercellular communication, and assist in enhancing the therapeutic effect of drugs. Among different types of organelles, extracellular vesicles, lipid droplets, lysosomes, and mitochondria have been used as drug carriers. This review briefly reviews the biogenesis, isolation methods, and drug-loading methods of four types of organelles, and systematically summarizes the research progress in using organelles as drug-delivery systems for disease treatment. Finally, the challenges faced by organelle-based drug delivery systems are discussed. Although the organelle-based drug delivery systems still face challenges before they can achieve clinical translation, they offer a new direction and vision for the development of next-generation drug carriers.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Yimin Du
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan Province, PR China.
| |
Collapse
|
6
|
Taylor ML, Giacalone AG, Amrhein KD, Wilson RE, Wang Y, Huang X. Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:524. [PMID: 36770486 PMCID: PMC9920192 DOI: 10.3390/nano13030524] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
7
|
Fang X, Wang Y, Wang S, Liu B. Nanomaterials assisted exosomes isolation and analysis towards liquid biopsy. Mater Today Bio 2022; 16:100371. [PMID: 35937576 PMCID: PMC9352971 DOI: 10.1016/j.mtbio.2022.100371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes has attracted tremendous research interests as they are emerging as a new paradigm of liquid biopsy. Although the concentration of exosomes in blood is relatively abundant, there still exists various vesicle-like nanoparticles, such as microvesicles, apoptotic bodies. It's an urgent need to isolate and enrich exosomes from the complex contaminants in biofluid samples. Moreover, the expressing level of exosomal biomarkers varies a lot, which make the sensitive molecular detection of exosomes in high demand. Unfortunately, the efficient isolation and sensitive molecular quantification of exosomes is still a major obstacle hindering the further development and clinical application of exosome-based liquid biopsy. Nanomaterials, with unique physiochemical properties, have been widely used in biosensing and analysis aspects, thus they are thought as powerful tools for effective purification and molecular analysis of exosomes. In this review, we summarized the most recent progresses in nanomaterials assisted exosome isolation and analysis towards liquid biopsy. On the one hand, nanomaterials can be used as capture substrates to afford large binding area and specific affinity to exosomes. Meanwhile, nanomaterials can also be served as promising signal transducers and amplifiers for molecular detection of exosomes. Furthermore, we also pointed out several potential and promising research directions in nanomaterials assisted exosome analysis. It's envisioned that this review will give the audience a complete outline of nanomaterials in exosome study, and further promote the intersection of nanotechnology and bio-analysis.
Collapse
Affiliation(s)
- Xiaoni Fang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuqing Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Baohong Liu
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Du J, Liu K, Liu J, Zhao D, Bai Y. A novel lateral flow immunoassay strip based on a label-free magnetic Fe 3O 4@UiO-66-NH 2 nanocomposite for rapid detection of Listeria monocytogenes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2423-2430. [PMID: 35674012 DOI: 10.1039/d2ay00506a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Listeria monocytogenes (L. monocytogenes) is one of the most lethal pathogenic bacteria. Although the traditional microbial culture method has high sensitivity and selectivity for the diagnosis of L. monocytogenes, it is time-consuming and not suitable for on-site detection. A rapid, convenient and visualized on-site detection method is particularly needed. In this work, Fe3O4@UiO-66-NH2 was prepared for both magnetic separation and lateral flow immunoassay (LFIA) for the detection of L. monocytogenes by taking advantage of the easy separation of the magnetic core Fe3O4 and the high surface area of the outer layer UiO-66-NH2. Fe3O4@UiO-66-NH2 with a high surface area and good water-dispersibility and optical properties was synthesized by a simple hydrothermal process. It could directly adsorb on the surface of target bacteria and form Fe3O4@UiO-66-NH2-bacteria conjugates, without the labeling of an antibody. After magnetic separation and concentration, the Fe3O4@UiO-66-NH2-bacteria conjugates were detected by the antibody on the test line of the LFIA strip, resulting in a visible orange band. The capture efficiency and LFIA detection of Fe3O4@UiO-66-NH2 were optimized in this study. Under the optimal conditions, a good linear correlation between the test line intensity and the concentration of L. monocytogenes was obtained in the range of 105-108 CFU mL-1, and the limit of detection was 2.2 × 106 CFU mL-1 by the naked eye. The Fe3O4@UiO-66-NH2-based LFIA strip showed strong specificity for L. monocytogenes, and the detection took 45 min without culture enrichment. Therefore, the proposed Fe3O4@UiO-66-NH2-based strip showed the advantages of simple synthesis, being label-free, low cost, good selectivity and convenience.
Collapse
Affiliation(s)
- Juan Du
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Kai Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Jialei Liu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
| | - Dianbo Zhao
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China.
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, China
- Henan Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
9
|
Functionalized nanomaterials in separation and analysis of extracellular vesicles and their contents. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|