1
|
Wang S, Li S, He Y, Wang S, Cheng Q, Li Y. Full-color biomass carbon dots for high-level information encryption and multi-color light emitting diode applications. Mikrochim Acta 2024; 191:538. [PMID: 39145785 DOI: 10.1007/s00604-024-06614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Six biomass carbon dots (BCDs) with adjustable emission from 450 to 680 nm under a single wavelength excitation were successfully synthesized from spinach via solvent control strategy. The obtained BCDs show blue, green, yellow, violet, pink, and red emission with high photoluminescence quantum yield (PLQY = 12.68 ~ 30.77%). Detailed characterizations disclose that the tunable-emission mechanism is caused by the synergistic effect of carbon conjugate and surface oxidation degree. Meanwhile, full-color photoluminescence BCDs/PVP powder and BCDs/PVP/PVA films were fabricated by utilizing the prepared BCDs combined with polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA), respectively, which presented excellent high-level information encryption application. Importantly, multi-color and white light-emitting diode (LED) with Commission Internationale de L' Eclairage (CIE) of blue (0.25, 0.29); green (0.25, 0.31); yellow (0.42, 0.45); red (0.52, 0.31); and white (0.32, 0.31) were achieved by only using our prepared BCDs. This work provides a valuable strategy of preparing multi-color BCDs using readily available biomass materials and paves a way for high-level information encryption and LED applications.
Collapse
Affiliation(s)
- Shipeng Wang
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shenghui Li
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Yuxuan He
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China
| | - Shanrong Wang
- Heilongjiang Red Cross Sengong General Hospital, Harbin, 150040, China
| | - Qian Cheng
- Key Laboratory of Bio-based Materials Science & Technology (Northeast Forestry University), Ministry of Education, Harbin, 150040, China.
| | - Yu Li
- College of Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Jin X, Zheng M. Orange carbon dots based smart sensing platforms for rapid, visual, quantitative identification of sodium copper chlorophyllin. Talanta 2024; 275:126090. [PMID: 38642544 DOI: 10.1016/j.talanta.2024.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
A highly affordable, sensitive and portable detection platform for the quantitative identification of sodium copper chlorophyllin (SCC) in food and environment is a crucial need. Even though many carbon dots (CDs) based sensors have been developed, few reports on using CDs as optical probes for SCC detection have been published so far. In this paper, orange luminescent CDs (OLCDs) were prepared via solvothermal method, which have high fluorescence quantum yield (27.20 %) and excellent photostability. OLCDs can detect SCC via inner filter effect (IFE), with fast response, high selectivity, outstanding sensitivity and superior anti-interference ability. Benefiting from the remarkable properties of OLCDs, a portable sensing platform was triumphantly constructed, which facilitated the in situ, real-time quantitative determination of SCC in diverse actual samples, by catching the fluorescence change of OLCDs-based paper sensors via smartphone RGB colorimetric analysis. This first CDs-based smart sensing system displays great potential for quantification of SCC in various fields.
Collapse
Affiliation(s)
- Xiao Jin
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin, 130022, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin, 130022, PR China.
| |
Collapse
|
3
|
Guan L, Wang W, Zhang X, Zhang Y, Wu J, Xue W, Huang S. Functionalized Green Carbon dots for Specific Detection of Copper in Human Serum Samples and Living Cells. J Fluoresc 2024:10.1007/s10895-024-03586-z. [PMID: 38421599 DOI: 10.1007/s10895-024-03586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024]
Abstract
Intracellular copper ion (Cu2+) is irreplaceable and essential in regulation of physiological and biological processes, while excessive copper from bioaccumulation may cause potential hazards to human health. Hence, effective and sensitive recognition is urgently significant to prevent over-intake of copper. In this work, a novel highly sensitive and green carbon quantum dots (Green-CQDs) were synthesized by a low-cost and facile one-step microwave auxiliary method, which utilized gallic acid, carbamide and PEG400 as carbon source, nitrogen source and surface passivation agent, respectively. The decreased fluorescence illustrated excellent linear relationship with the increasing of Cu2+ concentration in a wide range. Substantial surface amino and hydroxyl group introduced by PEG400 significantly improved selectivity and sensitivity of Green-CQDs. The surface amino chelation mechanism and fluorescence internal filtration effect were demonstrated by the restored fluorescence after addition of EDTA. Crucially, the nanosensor illustrated good cell permeability, high biocompatibility and recovery rate, significantly practical application in fluorescent imaging and biosensing of intracellular Cu2+ in HepG-2 cells, which revealed a potential and promising biological applications in early diagnosis and treatment of copper ion related disease.
Collapse
Affiliation(s)
- Lijiao Guan
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Wenxian Wang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Xianfen Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Yuding Zhang
- School of Chemical Engineering, Northwest University, Xi'an, PR China
| | - Jiyong Wu
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China, 250022.
| | - Weiming Xue
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| | - Saipeng Huang
- School of Chemical Engineering, Northwest University, Xi'an, PR China.
| |
Collapse
|
4
|
Wang C, Yang L, Chu K, Xu J, Wang D, Zhao W. Fluorescent carbon dots synthesized by waste wind turbine blade for photocatalytic degradation. LUMINESCENCE 2024; 39:e4608. [PMID: 37918949 DOI: 10.1002/bio.4608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
Developing novel waste recycling strategies has become a feasible solution to overcome environmental pollution. In this work, a method of using waste wind turbine blade (WTB) as a carbon source to synthesize blue fluorescent carbon dots (B-CDs) by hydrothermal treatment is proposed. B-CDs are spherical and have an average particle size of 5.2 nm. The surface is rich in C-O, C=O, -CH3 , and N-H bond functional groups, containing five elements: C, O, N, Si, and Ca. The optimal emission wavelength of B-CDs is 463 nm, corresponding to an excitation wavelength of 380 nm. Notably, a relatively high quantum yield of 29.9% and a utilization rate of 40% were obtained. In addition, B-CDs can serve as a photocatalyst to degrade methylene blue dye, with a degradation efficiency of 64% under 40-min irradiation conditions. The presence of holes has a significant influence on the degradation process.
Collapse
Affiliation(s)
- Congling Wang
- School of Materials Science and Engineering, Hunan University, Changsha, China
| | - Lilin Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Kunyu Chu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Jun Xu
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, China
| | - Dongzhi Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Weilin Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
5
|
Bosu S, Rajamohan N, Sagadevan S, Raut N. Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. CHEMOSPHERE 2023; 345:140471. [PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
Collapse
Affiliation(s)
- Subrajit Bosu
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman.
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nitin Raut
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, P C-311, Oman
| |
Collapse
|
6
|
Qurtulen, Ahmad A. Green tea waste-derived carbon dots: efficient degradation of RhB dye and selective sensing of Cu 2+ ions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121630-121646. [PMID: 37957492 DOI: 10.1007/s11356-023-30735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
Herein, we have synthesized carbon dots (CDs) using a one-step hydrothermal method from green tea waste, a biomass-derived source with high fluorescent properties and excellent solubility in water. The synthesis of CDs was confirmed through a comprehensive range of characterization techniques, including HRTEM (high-resolution transmission electron microscopy), XPS (X-ray photoelectron spectroscopy), and EDX (energy-dispersive X-ray spectroscopy). The optical properties of the synthesized CDs were assessed using UV-Vis spectroscopy and fluorescence (FL) spectroscopy. The CDs displayed exceptional stability across a wide pH range and various concentrations. Moreover, these CDs exhibited a photoluminescence quantum yield (PLQY) of 21.6%, indicating their efficiency in emitting fluorescent light upon excitation. The CDs also showcased their prowess in fluorometrically detecting Cu2+ ions, displaying high sensitivity and selectivity. They presented two distinct linear ranges: 0.02 to 50 µM and 50 to 100 µM, with recovery rates ranging from 94.2 to 104.06%. Moreover, under visible light irradiation, the CDs exhibited significant efficiency in the photocatalytic removal of dyes. Specifically, the CDs achieved degradation rate of 97.89% for Rhodamine B (RhB) within a 30-min irradiation period. In the context of RhB adsorption, it is evident that the experimental data align more closely with the Freundlich isotherm than the Langmuir isotherm. This is substantiated by a higher R2 value (0.97) for the Freundlich isotherm model compared to the Langmuir adsorption isotherm model (0.93). Notably, the adsorption kinetics was effectively described by pseudo first-order kinetics models. Overall, these results highlight the promising potential of CDs in applications such as environmental remediation and waste treatment processes due to their photocatalytic and sensing capabilities.
Collapse
Affiliation(s)
- Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Anees Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
7
|
Chen X, Huang H, Wu Q, Xue F, Zhao Z, Liu J, Duan H, Chen H. Triggering "signal-on" photoelectrochemical responses by heterojunction transition for selective detection of copper(II) based on Pd/MoS 2@g-C 3N 4 nanocomposites. Anal Chim Acta 2023; 1283:341940. [PMID: 37977776 DOI: 10.1016/j.aca.2023.341940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/29/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Controlling the concentration of copper(II) in aquatic systems is of importance for human health. Numerous traditional technologies to detect Cu2+ may encounter with limitations, such as high signal background and complicated operation. Herein, a highly selective photoelectrochemical (PEC) sensor is proposed for the "signal-on" detection of Cu2+ employing g-C3N4 nanosheets with MoS2 and Pd quantum dots deposited (Pd/MoS2@g-C3N4). Pd/MoS2@g-C3N4 could present the enhanced photocurrents of specific responses to Cu2+ under light irradiation. MoS2 quantum dots on the sensor are agglomerated into MoS2 bulk during sensing Cu2+, forming an efficient Z-scheme heterojunction. The heterojunction transition induced photoelectrons transferring from the bulk MoS2 to g-C3N4, resulting in "signal-on" PEC responses. Such Z-scheme heterojunction has conquered the traditional heterojunction towards "signal-on" mechanism, that was further verified by band structure measurements and DMPO spin trapping ESR analysis. Photocurrent intensities increased gradually with the addition of incremental Cu2+ concentrations, achieving a detection limit of 0.21 μM and a broad linear interval range from 1 μM to 1 mM with high selectivity and stability. This work may open a new door towards the in situ construction of g-C3N4-based Z-scheme heterojunctions for the signal-on PEC sensing platform, providing wide applications in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Xi Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haicai Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Qingping Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Fei Xue
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ziming Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jingqiu Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Haoyu Duan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
8
|
Wu L, Li M, Zhou B, Xu S, Yuan L, Wei J, Wang J, Zou S, Xie W, Qiu Y, Rao M, Chen G, Ding L, Yan K. Reversible Stacking of 2D ZnIn 2 S 4 Atomic Layers for Enhanced Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303821. [PMID: 37328439 DOI: 10.1002/smll.202303821] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Indexed: 06/18/2023]
Abstract
It is technically challenging to reversibly tune the layer number of 2D materials in the solution. Herein, a facile concentration modulation strategy is demonstrated to reversibly tailor the aggregation state of 2D ZnIn2 S4 (ZIS) atomic layers, and they are implemented for effective photocatalytic hydrogen (H2 ) evolution. By adjusting the colloidal concentration of ZIS (ZIS-X, X = 0.09, 0.25, or 3.0 mg mL-1 ), ZIS atomic layers exhibit the significant aggregation of (006) facet stacking in the solution, leading to the bandgap shift from 3.21 to 2.66 eV. The colloidal stacked layers are further assembled into hollow microsphere after freeze-drying the solution into solid powders, which can be redispersed into colloidal solution with reversibility. The photocatalytic hydrogen evolution of ZIS-X colloids is evaluated, and the slightly aggregated ZIS-0.25 displays the enhanced photocatalytic H2 evolution rates (1.11 µmol m-2 h-1 ). The charge-transfer/recombination dynamics are characterized by time-resolved photoluminescence (TRPL) spectroscopy, and ZIS-0.25 displays the longest lifetime (5.55 µs), consistent with the best photocatalytic performance. This work provides a facile, consecutive, and reversible strategy for regulating the photo-electrochemical properties of 2D ZIS, which is beneficial for efficient solar energy conversion.
Collapse
Affiliation(s)
- Liqin Wu
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Mingjie Li
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Biao Zhou
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Shuang Xu
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Ligang Yuan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Jianwu Wei
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Jiarong Wang
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Shibing Zou
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Weiguang Xie
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Mumin Rao
- Guangdong Energy Group Science and Technology Research Institute of Co., Ltd., Guangzhou, 510630, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| | - Liming Ding
- Center of Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keyou Yan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, China
| |
Collapse
|
9
|
Hydrophobic self-cleaning micro-nano composite polyethylene-based agricultural plastic film with light conversion and abrasion resistance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Wang B, Lan J, Bo C, Gong B, Ou J. Preparation of Ganoderma Lucidum Bran-Based Biological Activated Carbon for Dual-Functional Adsorption and Detection of Copper Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:689. [PMID: 36676426 PMCID: PMC9866797 DOI: 10.3390/ma16020689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In this paper, Ganoderma lucidum bran was explored as the precursor to fabricate biomass activated carbon. When potassium hydroxide was selected as an activator (1:6, mass ratio of AC-12 to potassium hydroxide), and the activation condition was 700 °C at 5 h, the highest specific surface area reached 3147 m2 g-1. Carbon dots were prepared with citric acid monohydrate and thiourea as precursors and then loaded onto the surface of activated carbon by a simple and green method. Activated carbon for dual-functional had a high adsorption capacity. Additionally, based on its unique optical properties, the fluorescence response for detecting copper ion was established. The fluorescence intensity of the materials decreased linearly with the increase of copper ion concentration, in the range of 10-50 nmol L-1. The research opened up a new way for applying biomass activated carbon in the field of adsorption and detection. Highlights: (1) Carbon dots were loaded on the surface of activated carbon; (2) the simultaneous adsorption and detection were realized; (3) it provides a way for the preparation of dual-functional materials.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
11
|
Li J, Peng G, Yu Y, Lin B, Zhang L, Guo M, Cao Y, Wang Y. Cu 2+-mediated turn-on fluorescence biosensor based on DNA-templated silver nanoclusters for label-free and sensitive detection of adenosine triphosphate. Mikrochim Acta 2022; 190:41. [PMID: 36585965 DOI: 10.1007/s00604-022-05617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/01/2023]
Abstract
A Cu2+-mediated turn-on fluorescence biosensor based on the DNA-templated green-emitting silver nanoclusters (DNA@g-AgNCs) was developed for label-free and sensitive detection of adenosine 5'-triphosphate (ATP). Cu2+ was able to quench the bright green fluorescence of DNA@g-AgNCs because of the coordination and photoinduced electron transfer between DNA@g-AgNCs and Cu2+. Therefore, a unique and effective fluorescence biosensor can be constructed with the formation of DNA@g-AgNCs/Cu2+/ATP ternary-competition system. With the introduction of ATP, the DNA@g-AgNCs/Cu2+ fluorescence sensing system will be disrupted and the fluorescence of DNA@g-AgNCs was recovered due to higher affinity of ATP towards Cu2+. On the basis of this feature, the DNA@g-AgNCs/Cu2+ fluorescence sensing system demonstrated quantitative determination of ATP in the range 0.05 - 3 μM and a detection limit of 16 nM. Moreover, the fluorescence sensing system was successfully applied to the quantitative determination of ATP in human urine and serum samples with recoveries ranging from 98.6 to 106.5%, showing great promise to provide a label-free, cost-efficient, and rapid platform for ATP-related clinical disease diagnosis.
Collapse
Affiliation(s)
- Jingze Li
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
- School of Materials Engineering, Jiangxi College of Applied Technology, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Guibin Peng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ying Yu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
| | - Bixia Lin
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Li Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Manli Guo
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yujuan Cao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Yumin Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, People's Republic of China.
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Lv W, Yang C, Ping M, Fu F. Sensitive detection and intracellular imaging of free copper ions based on DNA-templated silver nanoclusters aggregation-inducing fluorescence enhancement effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121734. [PMID: 35970089 DOI: 10.1016/j.saa.2022.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Free copper ions (Cu+ and Cu2+) have critical toxicity to cells, although copper is an essential element for human body. Hence, sensitive monitoring is crucial to avoid over intake of Cu+/Cu2+. We herein designed a ssDNA sequence (A31) for synthetizing A31-templated silver nanoclusters (AgNCs), and demonstrated that Cu+/Cu2+ can induce the aggregation of A31-templated AgNCs and thus greatly enhanced the fluorescence emission of A31-templated AgNCs. Based on Cu+/Cu2+-induced fluorescence enhancement effect of A31-templated AgNCs, a label-free and signal-on fluorescent sensing platform was developed for the specific and sensitive detection of Cu+/Cu2+ in biological samples and intracellular imaging of Cu+/Cu2+ in cells. The signal-on fluorescent sensing platform could be used to rapidly detect Cu+ and Cu2+ with a detection limit of 0.1 µM within 30 min., and to perform the intracellular imaging of Cu+ and Cu2+ in cells with good cell permeability and biocompatibility. By using the signal-on fluorescent sensing platform, we have successfully detected Cu+ and Cu2+ in cells fluids and human serum with a recovery of 90-104% and a RSD (n = 5) < 5%, and performed the imaging of Cu+/Cu2+ in Hela cells. The developed fluorescent sensing platform has obvious analytical and imaging advantages such as signal-on, simple operation, short analysis time, both Cu+ and Cu2+ detection, similar or higher sensitivity, good cell permeability and biocompatibility, which promising a reliable approach for the rapid and on-site detection or imaging of free copper ions in biological samples in clinical diagnosis.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China; College of Food and Biological Engineering, Zhangzhou Institute of Technology, Zhangzhou, Fujian 36300, China
| | - Wenchao Lv
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chen Yang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, Fujian Provincial Key Lab of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
13
|
Li X, Zhao L, Wu Y, Zhou A, Jiang X, Zhan Y, Sun Z. Nitrogen and boron co-doped carbon dots as a novel fluorescent probe for fluorogenic sensing of Ce 4+ and ratiometric detection of Al 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121638. [PMID: 35908499 DOI: 10.1016/j.saa.2022.121638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots have been widely focused on the field of metal ion detection due to their excellent optical property. Herein, novel orange fluorescent nitrogen and boron co-doped carbon dots (NB-CDs) are obtained by one-pot solvothermal using p-phenylenediamine and boric acid as raw materials. The NB-CDs exhibit excitation-independent emissions and the maximum emission wavelength is 597 nm at 420 nm excitation. The fluorescence can be quenched by Ce4+ effectively and selectively, and the detection range of Ce4+ is gained from 0.14 to 180 μM with a detection limit of as low as 0.14 μM. Furthermore, Al3+ can also recombine with NB-CDs surface functional groups, which shows a detection range from 1.07 to 100 μM and a detection limit of as low as 1.07 μM, accompanied with a blue-shift to 527 nm.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Liuxi Zhao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuhan Wu
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ao Zhou
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xuanfeng Jiang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuan Zhan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zhengguang Sun
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
14
|
Li Z, Zhou Q, Li S, Liu M, Li Y, Chen C. Carbon dots fabricated by solid-phase carbonization using p-toluidine and l-cysteine for sensitive detection of copper. CHEMOSPHERE 2022; 308:136298. [PMID: 36064008 DOI: 10.1016/j.chemosphere.2022.136298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 μM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
15
|
Chen X, Zhuang Y, Chen J, Lin J, Chen J, Han Z. Novel ratiometric fluorescence and colorimetric dual-mode biosensors for Cu2+ and biothiols detection based on norepinephrine modified carbon dots. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Zeng Y, Xu Z, Guo J, Yu X, Zhao P, Song J, Qu J, Chen Y, Li H. Bifunctional Nitrogen and Fluorine Co-Doped Carbon Dots for Selective Detection of Copper and Sulfide Ions in Real Water Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165149. [PMID: 36014385 PMCID: PMC9416385 DOI: 10.3390/molecules27165149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022]
Abstract
Copper ions (Cu2+) and sulfur ions (S2−) are important elements widely used in industry. However, these ions have the risk of polluting the water environment. Therefore, rapid and quantitative detection methods for Cu2+ and S2− are urgently required. Using 2,4-difluorobenzoic acid and L-lysine as precursors, nitrogen and fluorine co-doped dots (N, F-CDs) were synthesized in this study via a hydrothermal method. The aqueous N, F-CDs showed excellent stability, exhibited satisfactory selectivity and excellent anti-interference ability for Cu2+ detection. The N, F-CDs, based on the redox reactions for selective and quantitative detection of Cu2+, showed a wide linear range (0–200 μM) with a detection limit (215 nM). By forming the N, F-CDs@Cu2+ sensing platform and based on the high affinity of S2− to Cu2+, the N, F-CDs@Cu2+ can specifically detect S2− over a linear range of 0–200 μM with a detection limit of 347 nM. In addition, these fluorescent probes achieved good results when used for Cu2+ and S2− detection in environmental water samples, implying the good potential for applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu Chen
- Correspondence: (Y.C.); (H.L.)
| | - Hao Li
- Correspondence: (Y.C.); (H.L.)
| |
Collapse
|
17
|
Lin Y, Yang C, Huang Y, Chang H. Fluorescent carbon dots and noble metal nanoclusters for sensing applications: Minireview. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yu‐Feng Lin
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Cheng‐Ruei Yang
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Yu‐Fen Huang
- Institute of Analytical and Environmental Sciences College of Nuclear Science, National Tsing Hua University Hsinchu Taiwan
- Department of Biomedical Engineering and Environmental Sciences National Tsing Hua University Hsinchu Taiwan
- School of Pharmacy College of Pharmacy, Kaohsiung Medical University Kaohsiung Taiwan
| | - Huan‐Tsung Chang
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|