1
|
Mansouri S. Recent developments of (bio)-sensors for detection of main microbiological and non-biological pollutants in plastic bottled water samples: A critical review. Talanta 2024; 274:125962. [PMID: 38537355 DOI: 10.1016/j.talanta.2024.125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024]
Abstract
The importance of water in all biological processes is undeniable. Ensuring access to clean and safe drinking water is crucial for maintaining sustainable water resources. To elaborate, the consumption of water of inadequate quality can have a repercussion on human health. Furthermore, according to the instability of tap water quality, the consumption rate of bottled water is increasing every day at the global level. Although most people believe bottled water is safe, it can also be contaminated by microbiological or chemical pollution, which can increase the risk of disease. Over the last decades, several conventional analytical tools applied to analyze the contamination of bottled water. On the other hand, some limitations restrict their application in this field. Therefore, biosensors, as emerging analytical method, attract tremendous attention for detection both microbial and chemical contamination of bottled water. Biosensors enjoy several facilities including selectivity, affordability, and sensitivity. In this review, the developed biosensors for analyzing contamination of bottled water were highlighted, as along with working strategies, pros and cons of studies. Challenges and prospects were also examined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia; University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Laboratory of Biophysics and Medical Technologies, Tunis, Tunisia.
| |
Collapse
|
2
|
Bai C, Yao J, Meng Q, Dong Y, Chen M, Liu X, Wang X, Qiao R, Huang H, Wei B, Qu C, Miao H. A near-infrared fluorescent ratiometric probe with large Stokes shift for multi-mode sensing of Pb 2+ and bioimaging. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133968. [PMID: 38452682 DOI: 10.1016/j.jhazmat.2024.133968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Pb2+ is a heavy metal ion pollutant that poses a serious threat to human health and ecosystems. The conventional methods for detecting Pb2+ have several limitations. In this study, we introduce a novel fluorescent probe that enables the detection of Pb2+ in the near-infrared region, free from interference from other common ions. A unique characteristic of this probe is its ability to rapidly and accurately identify Pb2+ through ratiometric measurements accompanied by a large Stokes shift of 201 nm. The limit of detection achieved by probe was remarkably low, surpassing the standards set by the World Health Organization, and outperforming previously reported probes. To the best of our knowledge, this is the first organic small-molecule fluorescent probe with both near-infrared emission and ratiometric properties for the detection of Pb2+. We present a triple-mode sensing platform constructed using a probe that allows for the sensitive and selective recognition of Pb2+ in common food items. Furthermore, we successfully conducted high-quality fluorescence imaging of Pb2+ in various samples from common edible plants, HeLa cells, Caenorhabditis elegans, and mice. Importantly, the probe-Pb2+ complex exhibited tumour-targeting capabilities. Overall, this study presents a novel approach for the development of fluorescent probes for Pb2+ detection.
Collapse
Affiliation(s)
- Cuibing Bai
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Junxiong Yao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Qian Meng
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Yajie Dong
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Mengyu Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyi Liu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyu Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Huanan Huang
- College of Chemistry and Chemical Engineering, Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Xinghuo Organosilicon Industry Research Center, Jiujiang University, Jiujiang 332005, PR China.
| | - Biao Wei
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Changqing Qu
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang, Anhui 236037, PR China
| | - Hui Miao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| |
Collapse
|
3
|
Wang X, Xu M, Kuang Y, Liu X, Yuan J. A novel ratiometric electrochemical aptasensor based on M-shaped functional DNA complexes for simultaneous detection of trace lead and mercury ions in series aquatic edible vegetables. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133169. [PMID: 38070266 DOI: 10.1016/j.jhazmat.2023.133169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024]
Abstract
Simultaneous quantification of multiple heavy metal ions (HMIs) is essential due to enhanced toxicity induced by synergistic effects. The currently available detection methods suffer from drawbacks such as costly devices, poor anti-interference, and specificity. In this work, a ratiometric electrochemical aptasensor for simultaneous detection of trace lead (Pb2+) and mercury ions (Hg2+) was developed. Here, a metal-organic framework, UiO-66-CNTs, with inherent and stable electrochemical signal was used for loading complementary strands (CSs) and internal reference. Guanine-rich and thymine-rich oligonucleotides, labelled with carbon dots (CDs), acted as aptamers (Apts) and hybridized with CSs to form M-shaped DNA complexes. Pb2+ and Hg2+ could be recognized and captured by Apts to form Pb2+-G-quadruplex and T-Hg2+-T complexes, leading to the destruction of M-shaped DNA complexes and changes in CDs' signal. The current ratios, ICDs/IUiO-66-CNTs, were applied to quantify Pb2+ and Hg2+. Benefiting from the anti-interference ability of the ratiometric strategy and the specificity of Apts, the proposed method enabled detection Pb2+ and Hg2+ through simple instrumentation, with detection limits of 2.0 ng mL-1 and 0.5 ng mL-1. Moreover, it was applied to assess Pb2+ and Hg2+ contamination in series of aquatic edible vegetables. The experimental results were consistent with inductively coupled plasma-mass spectrometry (ICP-MS), demonstrating its potential in practical applications.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Mingming Xu
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yijing Kuang
- Key Laboratory of the Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiangping Liu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| | - Jinhua Yuan
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| |
Collapse
|
4
|
Huang R, Li M, Qu Z, Liu Y, Lu X, Li R, Zou L. Label-free fluorescence detection of mercury ions based on thymine-mercury-thymine structure and CRISPR-Cas12a. Food Res Int 2024; 180:114058. [PMID: 38395579 DOI: 10.1016/j.foodres.2024.114058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
In this work, we developed a novel label-free fluorescent sensor for the highly sensitive detection of mercury ions (Hg2+) based on the coordination chemistry of thymine-Hg2+-thymine (T-Hg2+-T) structures and the properties of CRISPR-Cas12a systems. Most notably, two T-rich sequences (a blocker and an activator) were designed to form stable double-stranded structures in the presence of Hg2+ via the T-Hg2+-T base pairing. The formation of T-T mismatched double-stranded DNA between the blocker and the activator prevented the cleavage of G-rich sequences by Cas12a, allowing them to fold into G-quadruplex-thioflavin T complexes, resulting in significantly enhanced fluorescence. Under the optimized conditions, the developed sensor showed an excellent response for Hg2+ detection in the linear range of 0.05 to 200 nM with a detection limit of 23 pM. Moreover, this fluorescent sensor exhibited excellent selectivity and was successfully used for the detection of Hg2+ in real samples of Zhujiang river water and tangerine peel, demonstrating its potential in environmental monitoring and food safety applications.
Collapse
Affiliation(s)
- Ruoying Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Mengyan Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zenglin Qu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yang Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoxing Lu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Ruimin Li
- School of Chemical Engineering and Technology, Guangdong Industry Polytechnic, Guangzhou 510300, PR China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510699, PR China.
| |
Collapse
|
5
|
Chen J, Tao J, Yu HF, Ma CP, Tan F, Wang XC. Highly selective chemosensor for the sensitive detection of Hg 2+ in aqueous media and its cell imaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 296:122648. [PMID: 36966729 DOI: 10.1016/j.saa.2023.122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
The deleterious toxicity of Hg2+ on ecological and biological system makes it crucial for the precise monitoring of Hg2+. Herein, we prepared a novel "turn-on" chemosensor N'-(4-(methylthio)butan-2-ylidene) rhodamine B hydrazide (denoted as MTRH) by a simple two-step reaction. MTRH exhibited an ultra-low detection limit (LOD) in fluorescence measurement of Hg2+ in pure aqueous media, which was estimated to be 1.3 × 10-9 mol·L-1. Moreover, the proposed chemosensor holds the ability of visualizing Hg2+ by the distinct color change of the solution. The corresponding recognition mechanism was investigated by Job's plots, mass spectrometry and DFT calculation analysis. Importantly, the characteristics such as high sensitivity, low cytotoxicity and good biocompatibility of MTRH exhibited in the application of detecting Hg2+ in real water sample and bioimaging of intracellular Hg2+ prove that MTRH is a promising tool to evaluate the levels of Hg2+ in complex biological systems.
Collapse
Affiliation(s)
- Jin Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing Tao
- College of Chemistry and Life Science, Anshan Normal University, Anshan 114016, China
| | - Hai-Feng Yu
- College of Chemistry, Baicheng Normal University, Baicheng, Jilin 137000, China
| | - Cui-Ping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Chun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
6
|
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:3313. [PMID: 36992023 PMCID: PMC10051322 DOI: 10.3390/s23063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.
Collapse
Affiliation(s)
- Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Yi Z, Ren Y, Li Y, Long F, Zhu A. Development of portable and reusable optical fiber chemiluminescence biosensing platform for rapid on-site detection of Aflatoxin B1. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Escandar GM, Olivieri AC. A Critical Review on the Development of Optical Sensors for the Determination of Heavy Metals in Water Samples. The Case of Mercury(II) Ion. ACS OMEGA 2022; 7:39574-39585. [PMID: 36385878 PMCID: PMC9648124 DOI: 10.1021/acsomega.2c05215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Recent publications are reviewed concerning the development of sensors for the determination of mercury in drinking water, based on spectroscopic methodologies. A critical analysis is made of the specific details and figures of merit of the developed protocols. Special emphasis is directed to the validation and applicability to real samples in the usual concentration range of mercury, considering the maximum allowed limits in drinking water established by international regulations. It was found that while most publications describe in detail the synthesis, structure, and physicochemical properties of the sensing phases, they do not follow the state of the art in the analytical developments. Recommendations are provided regarding the proper method development and validation, including the setting of the calibration concentration range, the correct estimation of the limits of detection and quantitation, the concentration levels to be set for producing spiked water samples, the number of real samples for adequate validation, the comparison of the developed method with a reference technique, and other analytical features which should be followed.
Collapse
|
9
|
Xu M, Wang X, Liu X. Detection of Heavy Metal Ions by Ratiometric Photoelectric Sensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11468-11480. [PMID: 36074997 DOI: 10.1021/acs.jafc.2c03916] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In recent years, heavy metal pollution has become increasingly serious. Heavy metals exist in an environment mainly in the form of ions (heavy metal ions, HMs). They can contaminate food, water, soil, and the atmosphere, leading to serious harm to plants and animals. With high bioavailability and nonbiodegradability, HMs can accumulate through biomagnification. Consequently, heavy metal pollution has become the cause of many fatal diseases threatening human health and ecological environment. Therefore, the accurate detection of HMs is vital and necessary. In this paper, the harm and limit standards of heavy metals were systematically summarized and the common analysis methods were overviewed and compared. Specifically, the latest research progress of ratiometric photoelectric sensor, including optical and electrical sensor, were mainly described. The research status and advantages and disadvantages of a photoelectric sensor were summarized. Furthermore, the future directions were proposed, which provided the reference for the further research and application of the ratiometric photoelectric sensor.
Collapse
Affiliation(s)
- Mingming Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiangping Liu
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing 210003, China
| |
Collapse
|
10
|
Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, Li Y, Yang Y, Li P. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128606. [PMID: 35278952 DOI: 10.1016/j.jhazmat.2022.128606] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mercury contamination is one of the most severe issues in society due to its threats to public health and the ecological system. However, traditional methods for mercury ion detection are still limited by their time-consuming procedures, requirement of expensive instruments, and low selectivity. In recent decades, tremendous progress has been made in the development of functional nucleic acid-based, especially DNAzyme sensors for mercury (Ⅱ) (Hg2+) determination, including RNA-cleaving DNAzymes and G-quadruplex-based DNAzymes in particular. Researchers have heavily studied the construction of Hg2+ sensors, mainly originating from in vitro selection-derived DNAzymes, by incorporating T-Hg2+-T recognition moieties in existing DNAzyme scaffolds, and interfacing Hg2+-sensitive sequences with nanomaterials. In the last case, the employment of materials (as quenchers, signal transducers and DNA immobilizers) enriches the application scenarios of current Hg2+-DNAzymes, due to a combination of their functions. We summarize a broad range of sensing approaches, including optical, electrochemical, and other sensing methods, and compare their features. This review elaborates on the rational design strategies for engineering DNAzymes to selectively sense Hg2+, critically discusses their properties in different application scenarios, and summarizes recent advances in this field. Additionally, current progress, challenges and future perspectives are also discussed. This minireview provides deeper insights into the chemistry of these functional nucleic acids when working with Hg2+, explains the design ideas of DNAzyme-sensors in each platform, and reveals potential opportunities in developing more advanced DNAzyme sensors for the highly selective and sensitive recognition of Hg2+. ENVIRONMENTAL IMPLICATION: Mercury is one of the most toxic metallic contaminants due to its high toxicity, non-biodegradability, and serious human health risks when accumulated in the body. In the recent decade, intensive studies have focused on exploring mercury sensors by combining DNAzymes with various sensing methods, paving a promising avenue to gain ultra-high sensitivity and selectivity. However, so far, no review has introduced the recent advances on DNAzyme-based sensors for mercury detection in a critical way. In this review, we comprehensively summarized the studies on DNAzyme-based sensors for mercury detection using various sensing techniques including optical, electrochemical and other sensing methods.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liqiang Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuqing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China; Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
11
|
Li YY, Li HD, Fang WK, Liu D, Liu MH, Zheng MQ, Zhang LL, Yu H, Tang HW. Amplification of the Fluorescence Signal with Clustered Regularly Interspaced Short Palindromic Repeats-Cas12a Based on Au Nanoparticle-DNAzyme Probe and On-Site Detection of Pb 2+ Via the Photonic Crystal Chip. ACS Sens 2022; 7:1572-1580. [PMID: 35482449 DOI: 10.1021/acssensors.2c00516] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although great headway has been made in DNAzyme-based detection of Pb2+, its adaptability, sensitivity, and accessibility in complex media still need to be improved. For this, we introduce new ways to surmount these hurdles. First, a spherical nucleic acid (SNA) fluorescence probe (Au nanoparticles-DNAzyme probe) is utilized to specifically identify Pb2+ and its suitability for precise detection of Pb2+ in complex samples due to its excellent nuclease resistance. Second, the sensitivity of Pb2+ detection is greatly enhanced via the use of a clustered regularly interspaced short palindromic repeats-Cas12a with target recognition accuracy to amplify the fluorescent signal upon the trans cleavage of the SNA (signal probe), and the limit of detection reaches as low as 86 fM. Third, we boost the fluorescence on photonic crystal chips with a bionic periodic arrangement by employing a straightforward detection device (smartphone and portable UV lamp) to achieve on-site detection of Pb2+ with the limit of detection as low as 24 pM. Based on the abovementioned efforts, the modified Pb2+ fluorescence sensor has the advantages of higher sensitivity, better specificity, accessibility, less sample consumption, and so forth. Moreover, it can be applied to accurately detect Pb2+ in complex biological or environmental samples, which is of great promise for widespread applications.
Collapse
Affiliation(s)
- Yu-Yao Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hao-Dong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, People’s Republic of China
| | - Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Meng-Han Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Ming-Qiu Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Li-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - He Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|