1
|
Peng J, Jia W, Zhu J. Advanced functional materials as reliable tools for capturing food-derived peptides to optimize the peptidomics pre-treatment enrichment workflow. Compr Rev Food Sci Food Saf 2024:e13395. [PMID: 39042377 DOI: 10.1111/1541-4337.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 07/24/2024]
Abstract
Peptidomics strategies with high throughput, sensitivity, and reproducibility are key tools for comprehensively analyzing peptide composition and potential functional activities in foods. Nevertheless, complex signal interference, limited ionization efficiency, and low abundance have impeded food-derived peptides' progress in food detection and analysis. As a result, novel functional materials have been born at the right moment that could eliminate interference and perform efficient enrichment. Of note, few studies have focused on developing peptide enrichment materials for food sample analysis. This work summarizes the development of endogenous peptide, phosphopeptide, and glycopeptide enrichment utilizing materials that have been employed extensively recently: organic framework materials, carbon-based nanomaterials, bio-based materials, magnetic materials, and molecularly imprinted polymers. It focuses on the limitations, potential solutions, and future prospects for application in food peptidomics of various advanced functional materials. The size-exclusion effect of adjustable aperture and the modification of magnetic material enhanced the sensitivity and selectivity of endogenous peptide enrichment and aided in streamlining the enrichment process and cutting down on enrichment time. Not only that, the immobilization of metal ions such as Ti4+ and Nb5+ enhanced the capture of phosphopeptides, and the introduction of hydrophilic groups such as arginine, L-cysteine, and glutathione into bio-based materials effectively optimized the hydrophilic enrichment of glycopeptides. Although a portion of the carefully constructed functional materials currently only exhibit promising applications in the field of peptide enrichment for analytical chemistry, there is reason to believe that they will further advance the field of food peptidomics through improved pre-treatment steps.
Collapse
Affiliation(s)
- Jian Peng
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Wei Jia
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Jiying Zhu
- School of Food and Bioengineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
2
|
Srivastava A, Harijan M, Prasad R, Singh M. Dual template (epitope) imprinted electrode for sensing bacterial protein with high selectivity. J Mol Recognit 2024; 37:e3087. [PMID: 38686731 DOI: 10.1002/jmr.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Manjeet Harijan
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Rajniti Prasad
- Department of Paediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Chamrád I, Simerský R, Lenobel R, Novák O. Exploring affinity chromatography in proteomics: A comprehensive review. Anal Chim Acta 2024; 1306:342513. [PMID: 38692783 DOI: 10.1016/j.aca.2024.342513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Over the past decades, the proteomics field has undergone rapid growth. Progress in mass spectrometry and bioinformatics, together with separation methods, has brought many innovative approaches to the study of the molecular biology of the cell. The potential of affinity chromatography was recognized immediately after its first application in proteomics, and since that time, it has become one of the cornerstones of many proteomic protocols. Indeed, this chromatographic technique exploiting the specific binding between two molecules has been employed for numerous purposes, from selective removal of interfering (over)abundant proteins or enrichment of scarce biomarkers in complex biological samples to mapping the post-translational modifications and protein interactions with other proteins, nucleic acids or biologically active small molecules. This review presents a comprehensive survey of this versatile analytical tool in current proteomics. To navigate the reader, the haphazard space of affinity separations is classified according to the experiment's aims and the separated molecule's nature. Different types of available ligands and experimental strategies are discussed in further detail for each of the mentioned procedures.
Collapse
Affiliation(s)
- Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic.
| | - Radim Simerský
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, CZ-77900, Olomouc, Holice, Czech Republic
| |
Collapse
|
4
|
Zhou J, Mujahid Ali M, Yu W, Cheng X, Gao Y, Hu L. Oriented docking of the template for improved imprinting efficiency toward peptide with modifications. Anal Chim Acta 2024; 1301:342450. [PMID: 38553121 DOI: 10.1016/j.aca.2024.342450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024]
Abstract
Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 μmol/g) and high affinity (Kd = 127.63 ± 9.66 μM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.
Collapse
Affiliation(s)
- Juntao Zhou
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Muhammad Mujahid Ali
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China.
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xianhui Cheng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yujun Gao
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Wu G, Lu F, Zhao J, Feng X, Ren Y, Hu S, Yu W, Dong B, Hu L. Investigation of rare earth-based magnetic nanocomposites for specific enrichment of exosomes from human plasma. J Chromatogr A 2024; 1714:464543. [PMID: 38065027 DOI: 10.1016/j.chroma.2023.464543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
Exosomes, also known as small extracellular vesicles, are widely present in a variety of body fluids (e.g., blood, urine, and saliva). Exosomes are becoming an alternative promising source of diagnostic markers for disease rich in cargo of metabolites, proteins, and nucleic acids. However, due to the low abundance and structure similarity with protein complex, the efficient isolation of exosomes is one of the most important issues for biomedical applications. With a higher order of f-orbitals in rare earth element, it will have strong adsorption toward the phosphate group on the surface of the phospholipid bilayer of exosomes. In this study, we systematically investigated the ability of various rare earths interacting with phosphate-containing molecules and plasma exosomes. One of the best binding europium was selected and used to synthesize core-shell magnetic nanomaterials (Fe3O4@SiO2@Eu2O3) for the enrichment of exosomes from human plasma. The developed nanomaterials exhibited higher enrichment capacity, less time consumption and more convenient handling compared to commonly used ultracentrifugation method. The nanomaterials were applied to separate exosomes from the plasma of patients with hepatocellular carcinoma and healthy controls for metabolomics study with high-resolution mass spectrometry, where 70 differentially expressed metabolites were identified, involving amino acid and lipid metabolic pathway. We anticipated the rare earth-based materials to be an alternative approach on exosome isolation for disease diagnosis or postoperative clinical monitoring.
Collapse
Affiliation(s)
- Guangyao Wu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Feng Lu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiali Zhao
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xin Feng
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yujuan Ren
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songtao Hu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenjing Yu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Lianghai Hu
- Center for Supramolecular Chemical Biology, State Key Laboratory of Supramolecular Structure and Materials, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens Bioelectron 2023; 243:115774. [PMID: 39492184 DOI: 10.1016/j.bios.2023.115774] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Molecularly imprinted polymers (MIPs), which first appeared over half a century ago, are now attracting considerable attention as artificial receptors, particularly for sensing. MIPs, especially applied to biomedical analysis in biofluids, contribute significantly to patient diagnosis at the point of care, thereby allowing health monitoring. Despite the importance given to MIPs, removal of templates and binding of analytes have received little attention and are currently the least focused steps in MIP development. This critical review is dedicated to a comprehensive analysis and discussion of cutting-edge concepts and methodologies in the removal and binding steps pertaining to various types of analytes, including ions, molecules, epitopes, proteins, viruses, and bacteria. The central objective of this review is to comprehensively examine and discuss a range of removal methods, including soxhlet extraction, immersion, microwave-assisted technique, ultrasonication, electrochemical approach, and proteolytic digestion, among others. Additionally, we will explore various binding methods, such as soaking, drop-casting, and batch sorption, to provide a comprehensive overview of the subject. Furthermore, the current challenges and perspectives in removal and binding are highlighted. Our review, at the interface of chemistry and sensors, will offer a wide range of opportunities for researchers whose interests include MIPs, (bio)sensors, analytical chemistry, and diagnostics.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|