1
|
Daurai B, Baruah AJ, Gogoi M. Recent advances in point-of-care biosensors for pancreatic diseases. Trends Analyt Chem 2024; 179:117867. [DOI: 10.1016/j.trac.2024.117867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Song P, Xu JJ, Ye JY, Shao RJ, Xu X, Wang AJ, Mei LP, Xue Y, Feng JJ. Self-shedding MOF-nanocarriers modulated CdS/MoSe 2 heterojunction activity through in-situ ion exchange: An enhanced split-type photoelectrochemical sensor for deoxynivalenol. Talanta 2024; 278:126464. [PMID: 38936106 DOI: 10.1016/j.talanta.2024.126464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Deoxynivalenol (DON), a mycotoxin produced by Fusarium, poses a significant risk to human health and the environment. Therefore, the development of a highly sensitive and accurate detection method is essential to monitor the pollution situation. In response to this imperative, we have devised an advanced split-type photoelectrochemical (PEC) sensor for DON analysis, which leverages self-shedding MOF-nanocarriers to modulate the photoelectric response ability of PEC substrate. The PEC sensing interface was constructed using CdS/MoSe2 heterostructures, while the self-shedding copper peroxide nanodots@ZIF-8 (CPNs@ZIF-8) served as the Cu2+ source for the in-situ ion exchange reaction, which generated a target-related signal reduction. The constructed PEC sensor exhibited a broad linear range of 0.1 pg mL-1 to 500 ng mL-1 with a low detection limit of 0.038 pg mL-1, demonstrating high stability, selectivity, and proactivity. This work not only introduces innovative ideas for the design of photosensitive materials, but also presents novel sensing strategies for detecting various environmental pollutants.
Collapse
Affiliation(s)
- Pei Song
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China; College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jin-Jin Xu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jia-Yan Ye
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Rui-Jin Shao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoping Xu
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yadong Xue
- Central Laboratory, Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Hao Y, Zhu X, Dong Y, Zhang N, Wang H, Li X, Ren X, Ma H, Wei Q. Self-Assembled Perylene Diimide (PDI) Nanowire Sensitized In 2O 3@MgIn 2S 4 S-Scheme Heterojunction as Photoelectrochemical Biosensing Platform for the Detection of CA15-3. Anal Chem 2024. [PMID: 39087207 DOI: 10.1021/acs.analchem.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Inorganic/organic heterojunctions show promising applications as high-performance sensing platforms for photoelectrochemical (PEC) immunosensors. This work reports constructing a PEC biosensor for CA15-3 based on a self-assembled perylene diimide (PDI) nanowire sensitized In2O3@MgIn2S4 S-scheme heterojunction platform. P-type semiconductor Cu2O nanoparticles were designed as a signal burst source and were used as immunoassay labels. The carboxyl group on self-assembled PDI nanowires eliminates the step of additional surface functionalization for covalent immobilization of the capture elements. The π-π stacking of PDI enhances electron generation efficiency, while the carboxylic acid groups on PDI promote electron transfer. The performance of the constructed sensor was validated using CA15-3 as a model. The experimental results showed that the sensor based on In2O3@MgIn2S4/PDI has excellent selectivity, stability, and reproducibility, and can sensitively detect CA15-3 in the range of 0.001-100 U·mL-1 with the detection limit of 0.00056 U·mL-1. The sensor has a broad application prospect. It is hoped that this research work based on the unique advantages of the organic compound PDI will inspire other researchers to design light-responsive materials and promote the development of the field of photoelectrochemical sensing.
Collapse
Affiliation(s)
- Yong Hao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiaodi Zhu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yujia Dong
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiaojian Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Cheng Z, He G, Liao R, Tan Y, Deng W. A sensitive immunosensing platform based on the high cathodic photoelectrochemical activity of Zr-MOF and dual-signal amplification of peroxidase-mimetic Fe-MOF. Bioelectrochemistry 2024; 157:108677. [PMID: 38430576 DOI: 10.1016/j.bioelechem.2024.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/04/2024]
Abstract
Cathodic photoelectrochemical (PEC) analysis has received special concerns because of its outstanding anti-interference capability toward reductive substances in samples, so it is highly desirable to develop high-performance photocathodic materials for PEC analysis. Herein, a Zr-based metal-organic framework (Zr-MOF), MOF-525, is explored as a photoactive material in aqueous solution for the first time, which shows a narrow band-gap of 1.82 eV, excellent visible-light absorption, and high cathodic PEC activity. A sandwiched-type PEC immunosensor for detecting prostate-specific antigen (PSA) is fabricated by using MIL-101-NH2(Fe) label and MOF-525 photoactive material. MIL-101-NH2(Fe) as a typical Fe-MOF can serve as a peroxidase mimic to catalyze the production of precipitates on the photoelectrode. Both the produced precipitates and the MIL-101-NH2(Fe) labels can quench the photocathodic current, enabling "signal-off" immunosensing of PSA. The detection limit is 3 fg mL-1, and the linear range is between 10 fg mL-1 and 100 ng mL-1 for detecting PSA. The present study not only develops a high-performance Zr-MOF photoactive material for cathodic PEC analysis but also constructs a sensitive PEC immunosensing platform based on the dual-signal amplification of peroxidase-mimetic Fe-MOF.
Collapse
Affiliation(s)
- Zhong Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guihua He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Rong Liao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yueming Tan
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Wenfang Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
5
|
Fu W, Yue Y, Song Y, Zhang S, Shi J, Zhao R, Wang Q, Zhang R. Comparable analysis of six immunoassays for carcinoembryonic antigen detection. Heliyon 2024; 10:e25158. [PMID: 38322892 PMCID: PMC10845681 DOI: 10.1016/j.heliyon.2024.e25158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Objective This study aimed to assess the current status of carcinoembryonic antigen (CEA) detection. We evaluated the correlation, consistency, and comparability of CEA results among six automated immunoassays, and combined with the results of CEA trueness verification of the Beijing Center for Clinical Laboratories (BCCL) for further analysis. Methods Abbott Architect i2000, Beckman DxI800, Roche Cobas E601, Diasorin Liaison XL, Maccura IS1200, and Autolumo A2000 were used to detect 40 individual serum CEA samples. Taking the optimal analytical quality specifications calculated from data on biological variation as the evaluation criterion. Passing-Bablok regression and Bland-Altman analysis were performed between each assay and all-assays median values to evaluate the correlation and relative difference. The concordance correlation coefficient (CCC) was used for consistency analysis. Additionally, the trueness verification program used samples at three concentration levels to assess the bias, coefficient of variation (CV), and total error (TE) between the average measured values and the target value. Results The Spearman's rank correlation coefficient (rs) was ≥0.996 and the CCC ranged between 0.9448 and 0.9990 for each assay vs. all-assays median. Considering the all-assays median value of each sample as a reference, there were proportional and systematic differences according to the Passing-bablok regression analysis. The relative difference of the four assays (Abbott Architect i2000, Autolumo A2000, Diasorin Liaison XL, and Maccura IS1200) met the optimal analytical quality specifications. On the other hand, Beckman DxI800 (13.2 %) and Roche Cobas E601 (-9.0 %) were only able to fulfill the desirable analytical quality specifications. The average pass rates for bias, CV, and TE of the trueness verification program were 80 %, 98 %, and 96 %, respectively. Conclusions The six automated immunoassays vs. all-assays median have a good correlation in CEA detection. However, there is a lack of comparability of CEA results. Further improvements are needed in harmonization among CEA detections.
Collapse
Affiliation(s)
- Wenxuan Fu
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yuhong Yue
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Yichuan Song
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Shunli Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Jie Shi
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhao
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qingtao Wang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Rui Zhang
- Department of Clinical Laboratory, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Wang B, Zhang N, Wang Y, Chen D, Qi J, Tu J. S-induced Phase Change Forming In 2 O 3 /In 2 S 3 Heterostructure for Photoelectrochemical Glucose Sensor. Chemistry 2024; 30:e202303514. [PMID: 38081143 DOI: 10.1002/chem.202303514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 02/03/2024]
Abstract
In the past several decades, Photoelectrochemical (PEC) sensing still remains a great challenge to design highly-efficient semiconductor photocatalysts via a facile method. It is of much importance to design and synthesize various novel nanostructured sensing materials for further improving the response performance. Herein, we present an In2 O3 /In2 S3 heterostructure obtained by combining microwave assisted hydrothermal method with S-induced phase change, whose energy band and electronic structure could be adjusted by changing the S content. Combining theoretical calculation and spectroscopic techniques, the introduction of sulfur was proved to produce multifunctional interfaces, inducing the change of phase, oxygen vacancies and band gap, which accelerates the separation of photoexcited carriers and reduces their recombination, improving the electronic injection efficiency around the interface of In2 O3 /In2 S3 . As anticipated, an enhanced glucose response performance with a photocurrent of 0.6 mA cm-2 , a linear range of 0.1-1 mM and a detection limit as low as 14.5 μM has been achieved based on the In2 O3 /In2 S3 heterostructure, which is significant superior over its pure In2 O3 and S-doped In2 O3 counterparts. This efficient interfacial strategy may open a new route to manipulate the electrical structure, and energy band structure regulation of sensing material to improve the performance of photoelectrodes for PEC.
Collapse
Affiliation(s)
- Bingrong Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Nan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Yifeng Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Delun Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and, Joining Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Jinchun Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
7
|
Wang C, Tang Y, Zhang B, Zhong Z, Zhao F, Zeng B. Sensitive photoelectrochemical immunosensor for carcinoembryonic antigen detection based on copolymer of thiophene and thiophene-3-acetic acid modified phosphate-doped Bi 2WO 6. Anal Chim Acta 2023; 1262:341243. [PMID: 37179060 DOI: 10.1016/j.aca.2023.341243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
In this study, PO43- doped Bi2WO6 (BWO-PO) was prepared by hydrothermal method, and then copolymer of thiophene and thiophene-3-acetic acid (P(Th-T3A)) was chemically deposited on the BWO-PO surface. The introduction of PO43- created point defects, greatly improving the photoelectric catalytic performance of Bi2WO6; the copolymer semiconductor could form heterojunction with Bi2WO6 to promote the separation of photo-generated carriers, due to its proper band gap. Furthermore, the copolymer could enhance the light absorption ability and photo-electronic conversion efficiency. Hence, the composite had good photoelectrochemical properties. When it was combined with carcinoembryonic antibody through the interaction of -COOH groups of the copolymer and the end groups of antibody for constructing ITO-based PEC immunosensor, the resulting sensor exhibited superb response to carcinoembryonic antigen (CEA), with a wide linear range of 1 pg/mL-20 ng/mL, and a relatively low detection limit of 0.41 pg/mL. It also showed high anti-interference ability, stability, and simplicity. The sensor has been successfully applied to monitor the concentration of CEA in serum. The sensing strategy can also be applied to the detection of other markers by changing the recognition elements, hence it has good application potential.
Collapse
Affiliation(s)
- Chunfang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Bihong Zhang
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang Province, 310018, PR China
| | - Ziying Zhong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei Province, 430072, PR China.
| |
Collapse
|
8
|
Ouyang R, Zhang W, Liu J, Li Y, Zhang J, Jiang L, Zhao Y, Wang H, Dai C, Tamayo AIB, Liu B, Miao Y. Pt Nanodot Inlaid Mesoporous NaBiOF Nanoblackberry for Remarkable Signal Amplification Toward Biomarker Detection. Mikrochim Acta 2023; 190:214. [PMID: 37171612 DOI: 10.1007/s00604-023-05789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/09/2023] [Indexed: 05/13/2023]
Abstract
A new ultrasensitive sandwich-type electrochemical immunosensor has been successfully constructed to quantitatively detect carcinoembryonic antigen (CEA) using blackberry-like mesoporous bismuth-based nanospheres NaBiOF (NBOF NSs) inlaid with Pt nanodots (NDs) (BiPt NSs) as the antibody capture and signal-amplifying probe. The growth of Pt NDs inside the holes of NBOF NSs formed the nanozyme inlay outside NBOF NSs, greatly increasing the specific surface area and exposure of the catalytic active sites by minimizing the particle size of the Pt to nanodot scale. Such a blackberry-shaped heterojunction structure of BiPt NSs was well-suited to antibody capture and improved the catalytic performance of BiPt NSs in reducing H2O2, amplifying the signal, and yielding highly sensitive detection of CEA. The use of Au nanoparticle-modified multi-walled carbon nanotubes (Au@MWCNTs) as the electrode substrates significantly enhanced the electron transfer behavior over the electrode surface, further increasing the conductivity and sensitivity of the immunosensor. Remarkably, good compatibility with human body fluid was achieved using the newly developed BiPt-based immunosensor resulting from the favorable biocompatibility and stability of both BiPt NSs and Au@MWCNTs. Benefiting from the double signal amplification strategy and the high biocompatibility, the immunosensor responded linearly to CEA in a wide range from 50 fg/mL to 100 ng/ml with an extremely low detection limit of 3.52 fg/mL (S/N = 3). The excellent detection properties of this new immunosensor were evidenced by the satisfactory selectivity, reproducibility, and stability obtained, as well as the reliable and precise determination of CEA in actual human blood samples. This work provides a new strategy for the early clinical diagnosis of cancer. Novel blackberry-like mesoporous NaBiOF nanospheres with Pt nanodot inlay were successfully usedto construct a sandwich-type electrochemical immunosensor for the ultra-sensitive detection ofcarcinoembryonic antigen in human blood plasma based on a remarkable signal amplification strategy.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Weilun Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jinyao Liu
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jing Zhang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lan Jiang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuefeng Zhao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hui Wang
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chenyu Dai
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Abel Ibrahim Balbín Tamayo
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Faculty of Chemistry, University of Havana, 10400, Havana, Cuba
| | - Baolin Liu
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- USST-UH International Joint Laboatory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
9
|
Huang X, Lin Q, Gong H, Lu L, Wei Q, Tang D. Bio-inspired nanozyme with ultra-thin Fe-Bi 2O 2S nanosheets for in-situ amplified photoelectrochemical immunoassay of cancer-related protein. Anal Chim Acta 2023; 1252:341058. [PMID: 36935156 DOI: 10.1016/j.aca.2023.341058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
A Fe-loaded Bi2O2S nanosheet photoanode serving as photoelectric biomonitoring platform for the detection of prostate-specific antigen (PSA) using biologically inspired prussian nanoparticle (PB)-catalyzed biocatalytic precipitation strategy was developed. Primarily, the signal probe PB-mAb2 obtained by electrostatic adsorption was immobilized on a microplate in the presence of target PSA, and 4-chloro-1-naphthol (4-CN) was oxidized to benzo-4-chloro-hexadienone (4-CD) with the assistance of exogenous hydrogen peroxide, which was generated by a large number of hydroxyl radicals catalyzed by PB. The generated 4-CD showed strongly low conductivity characteristics to burst the photocurrent of highly photoactive Fe-Bi2O2S photoanode. The split incubation reaction could be suitable for high volume and low-cost rapid detection. A dynamic response range of 0.1-100 ng mL-1 with a limit of detection of 34.2 pg mL-1 was achieved with the sensor based on a photoelectric sensing platform and a biomimetic catalytic precipitation reaction. Equally important, the sensor also showed good potential in the detection of real samples compared to commercially available ELISA kits. In conclusion, this work provides a fresh scheme for the development of sensitive biosensors through a bio-inspired catalytic strategy of versatility and a photoanode coupling with high photoelectric activity.
Collapse
Affiliation(s)
- Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Hexiang Gong
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Qiaohua Wei
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
10
|
Hu R, Xu BF, Xue Y, Xu ZZ, Wang AJ, Mei LP, Song P, Feng JJ. Tailoring enzymatic loading capacity on CdS nanorods@ZnIn 2S 4 nanosheets 1D/2D heterojunctions: Toward ultrasensitive photoelectrochemical bioassay of tobramycin. CHEMOSPHERE 2023; 316:137808. [PMID: 36638929 DOI: 10.1016/j.chemosphere.2023.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/27/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Despite advances in the development of photoelectrochemical (PEC) sensor, modulating the PEC response of assembled heterostructure interface is still a great challenge. Here, an ultrasensitive PEC aptasensor for tobramycin (TOB) assay was conducted based on one-dimensional/two-dimensional CdS nanorods@ZnIn2S4 nanosheets (1D/2D CdS NRs@ZnIn2S4 NSs) heterojunctions by tailoring enzymatic loading capacity. Firstly, alkaline phosphatase modified TOB aptamer (ALP-Apt) was linked via specific base complementary pairing, and insoluble precipitations were then produced through the ALP-triggered catalytic reaction with the aid of Ag+, which prevented the charge transfer and resulted in the decrement of photocurrent. In the presence of TOB, partial ALP-Apt detached from the electrode surface due to the strong affinity between TOB and its aptamer, leading to a reduction in the amount of ALP and insoluble precipitate, in turn the PEC response partially recovered. The photocurrents exhibited a wider linear range towards the TOB concentration of 1.0-5.0 × 104 pg mL-1, with a low detection limit of 0.96 pg mL-1. The constructed PEC aptasensor gained satisfactory results for TOB assay in milk samples as well, which also offered significant promise for other pollutants in environmental analysis.
Collapse
Affiliation(s)
- Rui Hu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Ben-Fang Xu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Yadong Xue
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Zhi-Zhi Xu
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China; Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
11
|
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, Huang Y. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO 4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. BIOSENSORS 2023; 13:103. [PMID: 36671939 PMCID: PMC9855910 DOI: 10.3390/bios13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/06/2023]
Abstract
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron-hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001-200 ng·mL-1 and 0.5-100 ng·mL-1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL-1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiayu Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Chi L, Wang X, Chen H, Tang D, Xue F. Ultrasensitive photoelectrochemical biosensing platform based target-triggered biocatalytic precipitation reactions on a flower-like Bi 2O 2S super-structured photoanode. J Mater Chem B 2022; 10:10018-10026. [PMID: 36458849 DOI: 10.1039/d2tb02283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herein, we reported a novel photoelectrochemical immunoassay method based on a target-triggered on/off signal of the ultra-structured Bi2O2S (BOS) photoanode system for the sensitive testing of carcinoembryonic antigens (CEAs) in serum samples. Well-defined three-dimensional sheet-like self-assembled flower-like Bi2O2S superstructures were obtained using a time-controlled hydrothermal method. Such well-shaped multifaceted surfaces were considered to be good laser cavity mirror surfaces for multifaceted reflection and refraction of excitation light in the material. An elegant enzyme biocatalytic strategy was introduced into the constructed detection model to sensitively detect CEAs. The substrate 4-chloro-1-naphthol (4-CN) was oxidized to 4-chloro-hexadienone (4-CD) under the formation of target-triggered immune complexes against mAb1 and peroxidase-modified mAb2. Subsequently, 4-CD produced by the biocatalytic precipitation reaction was transferred to the photoanodes of Bi2O2S nanoflowers (BOS NFs) to burst their photoelectric signals, thus achieving the quantification of CEAs. Through optimization of the conditions of the immunization protocol, a good negative photocurrent response to the target CEA was found in the wide range of 0.02-50 ng mL-1 with a detection limit of 11.2 pg mL-1. Impressively, the reported biocatalytic PEC sensing strategy on superstructures is comparable, or superior, to the gold standard ELISA kit in terms of sensitivity and the target response range. This study presents a target-mediated PEC immunoassay for biocatalytic precipitation based on a self-assembled superstructure of Bi2O2S, providing a fresh scheme for the analysis of disease-related markers.
Collapse
Affiliation(s)
- Liangjie Chi
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Xiangyu Wang
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Hongyuan Chen
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Fangqin Xue
- Department of Gastrointestinal Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China. .,Clinical Medical Center for Digestive Diseases of Fujian Provincial Hospital, No. 134 Dongjie, Fuzhou 350001, P. R. China
| |
Collapse
|