1
|
Guo X, Feng S, Peng Y, Li B, Zhao J, Xu H, Meng X, Zhai W, Pang H. Emerging insights into the application of metal-organic framework (MOF)-based materials for electrochemical heavy metal ion detection. Food Chem 2025; 463:141387. [PMID: 39332375 DOI: 10.1016/j.foodchem.2024.141387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Heavy metal ions are one of the main sources of water pollution, which has become a major global problem. Given the growing need for heavy metal ion detection, electrochemical sensor stands out for its high sensitivity and efficiency. Metal-organic frameworks (MOFs) have garnered much interest as electrode modifiers for electrochemical detection of heavy metal ions owing to their significant specific surface area, tailored pore size, and catalytic activity. This review summarizes the progress of MOF-based materials, including pristine MOFs and MOF composites, in the electrochemical detection of various heavy metal ions. The synthetic methods of pristine MOFs, the detection mechanisms of heavy metal ions and the modification strategies of MOFs are introduced. Besides, the diverse applications of MOF-based materials in detecting both single and multiple heavy metal ions are presented. Furthermore, we present the current challenges and prospects for MOF-based materials in electrochemical heavy metal ion detection.
Collapse
Affiliation(s)
- Xiaotian Guo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Siyi Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Yi Peng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 211189, PR China
| | - Bing Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xiangren Meng
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China.
| | - Weiwei Zhai
- Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, PR China.
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
2
|
Baranwal A, Polash SA, Aralappanavar VK, Behera BK, Bansal V, Shukla R. Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:244. [PMID: 38334515 PMCID: PMC10856890 DOI: 10.3390/nano14030244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.
Collapse
Affiliation(s)
- Anupriya Baranwal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Shakil Ahmed Polash
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Vijay Kumar Aralappanavar
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Bijay Kumar Behera
- NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
| | - Ravi Shukla
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia (V.B.)
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|