1
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
2
|
Theyagarajan K, Kim YJ. Metal Organic Frameworks Based Wearable and Point-of-Care Electrochemical Sensors for Healthcare Monitoring. BIOSENSORS 2024; 14:492. [PMID: 39451704 PMCID: PMC11506055 DOI: 10.3390/bios14100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024]
Abstract
The modern healthcare system strives to provide patients with more comfortable and less invasive experiences, focusing on noninvasive and painless diagnostic and treatment methods. A key priority is the early diagnosis of life-threatening diseases, which can significantly improve patient outcomes by enabling treatment at earlier stages. While most patients must undergo diagnostic procedures before beginning treatment, many existing methods are invasive, time-consuming, and inconvenient. To address these challenges, electrochemical-based wearable and point-of-care (PoC) sensing devices have emerged, playing a crucial role in the noninvasive, continuous, periodic, and remote monitoring of key biomarkers. Due to their numerous advantages, several wearable and PoC devices have been developed. In this focused review, we explore the advancements in metal-organic frameworks (MOFs)-based wearable and PoC devices. MOFs are porous crystalline materials that are cost-effective, biocompatible, and can be synthesized sustainably on a large scale, making them promising candidates for sensor development. However, research on MOF-based wearable and PoC sensors remains limited, and no comprehensive review has yet to synthesize the existing knowledge in this area. This review aims to fill that gap by emphasizing the design of materials, fabrication methodologies, sensing mechanisms, device construction, and real-world applicability of these sensors. Additionally, we underscore the importance and potential of MOF-based wearable and PoC sensors for advancing healthcare technologies. In conclusion, this review sheds light on the current state of the art, the challenges faced, and the opportunities ahead in MOF-based wearable and PoC sensing technologies.
Collapse
Affiliation(s)
- K Theyagarajan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Young-Joon Kim
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Semiconductor Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
3
|
Zhang S, Wang M, Wang X, Song J, Yang X. Electrocatalysis in MOF Films for Flexible Electrochemical Sensing: A Comprehensive Review. BIOSENSORS 2024; 14:420. [PMID: 39329795 PMCID: PMC11430114 DOI: 10.3390/bios14090420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface's dynamics. Among various materials that have been explored for flexible electronics, metal-organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications. We systematically categorize the design and fabrication techniques used in preparing MOF films, including in situ growth, layer-by-layer assembly, and polymer-assisted strategies. The implications of MOF-based flexible electrochemical sensors are examined in the context of wearable devices, environmental monitoring, and healthcare diagnostics. Future research is anticipated to shift from traditional microcrystalline powder synthesis to MOF thin-film deposition, which is expected to not only enhance the performance of MOFs in flexible electronics but also improve sensing efficiency and reliability, paving the way for more robust and versatile sensor technologies.
Collapse
Affiliation(s)
- Suyuan Zhang
- Sinopec (Shanghai) Research Institute of Petrochemical Technology Co., Ltd., Shanghai 201210, China
| | - Min Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xusheng Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Song
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Dong S, Wu J, Li L, Zhang Y, Qi S, Xiang M, Yang Z. Facile and efficient synthesis of sweater-ball shaped metal-organic framework/nickel sulfide nanoheterojunction for boosting electrochemical glucose sensing. Talanta 2024; 275:126129. [PMID: 38678929 DOI: 10.1016/j.talanta.2024.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The synthesis of heterojunction materials is regarded as an efficient way to enhance catalytic activities in various catalytic reactions. However, the existing fabrication approaches often rely on complex multi-step synthesis process. In this work, we fabricate sweater-ball shaped nanostructured MOF/TMS (Ni-MOF/NiS1.03) heterojunction by one-pot, one-step solvothermal method. According to the results of discrete Fourier transform (DFT) calculations and experiments, the formation of Ni-MOF/NiS1.03 heterojunction interfaces improves electron transfer and charge redistribution, and increases the adsorption energy of glucose molecules as well, which is conducive to enhance electrochemical activity of electrode materials. The as-prepared Ni-MOF/NiS1.03 heterojunction exhibit enhanced glucose sensitivity, wide detection range and low detection limit. This study paves the way towards the development of MOF-based heterojunctions for electrochemical applications.
Collapse
Affiliation(s)
- Shuang Dong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, PR China
| | - Jing Wu
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Le Li
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Yuyao Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China
| | - Shanfei Qi
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, PR China
| | - Meng Xiang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China.
| | - Zhou Yang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, PR China.
| |
Collapse
|
5
|
Thirumalai D, Santhamoorthy M, Kim SC, Lim HR. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024; 10:459. [PMID: 39057482 PMCID: PMC11275512 DOI: 10.3390/gels10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are gaining popularity for use in wearable electronics owing to their inherent biomimetic characteristics, flexible physicochemical properties, and excellent biocompatibility. Among various hydrogels, conductive polymer-based hydrogels (CP HGs) have emerged as excellent candidates for future wearable sensor designs. These hydrogels can attain desired properties through various tuning strategies extending from molecular design to microstructural configuration. However, significant challenges remain, such as the limited strain-sensing range, significant hysteresis of sensing signals, dehydration-induced functional failure, and surface/interfacial malfunction during manufacturing/processing. This review summarizes the recent developments in polymer-hydrogel-based wearable electrochemical biosensors over the past five years. Initially serving as carriers for biomolecules, polymer-hydrogel-based sensors have advanced to encompass a wider range of applications, including the development of non-enzymatic sensors facilitated by the integration of nanomaterials such as metals, metal oxides, and carbon-based materials. Beyond the numerous existing reports that primarily focus on biomolecule detection, we extend the scope to include the fabrication of nanocomposite conductive polymer hydrogels and explore their varied conductivity mechanisms in electrochemical sensing applications. This comprehensive evaluation is instrumental in determining the readiness of these polymer hydrogels for point-of-care translation and state-of-the-art applications in wearable electrochemical sensing technology.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Hyo-Ryoung Lim
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Promphet N, Thanawattano C, Buekban C, Laochai T, Lormaneenopparat P, Sukmas W, Rattanawaleedirojn P, Puthongkham P, Potiyaraj P, Leewattanakit W, Rodthongkum N. Smartphone based wearable sweat glucose sensing device correlated with machine learning for real-time diabetes screening. Anal Chim Acta 2024; 1312:342761. [PMID: 38834276 DOI: 10.1016/j.aca.2024.342761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Diabetes is a significant health threat, with its prevalence and burden increasing worldwide indicating its challenge for global healthcare management. To decrease the disease severity, the diabetic patients are recommended to regularly check their blood glucose levels. The conventional finger-pricking test possesses some drawbacks, including painfulness and infection risk. Nowadays, smartphone has become a part of our lives offering an important benefit in self-health monitoring. Thus, non-invasive wearable sweat glucose sensor connected with a smartphone readout is of interest for real-time glucose detection. RESULTS Wearable sweat glucose sensing device is fabricated for self-monitoring of diabetes. This device is designed as a body strap consisting of a sensing strip and a portable potentiostat connected with a smartphone readout via Bluetooth. The sensing strip is modified by carbon nanotubes (CNTs)-cellulose nanofibers (CNFs), followed by electrodeposition of Prussian blue. To preserve the activity of glucose oxidase (GOx) immobilized on the modified sensing strip, chitosan is coated on the top layer of the electrode strip. Herein, machine learning is implemented to correlate between the electrochemical results and the nanomaterial content along with deposition cycle of prussian blue, which provide the highest current response signal. The optimized regression models provide an insight, establishing a robust framework for design of high-performance glucose sensor. SIGNIFICANCE This wearable glucose sensing device connected with a smartphone readout offers a user-friendly platform for real-time sweat glucose monitoring. This device provides a linear range of 0.1-1.5 mM with a detection limit of 0.1 mM that is sufficient enough for distinguishing between normal and diabetes patient with a cut-off level of 0.3 mM. This platform might be an alternative tool for improving health management for diabetes patients.
Collapse
Affiliation(s)
- Nadtinan Promphet
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chusak Thanawattano
- National Electronics and Computer Technology Center (NECTEC), Pathumthani, 12120, Thailand
| | - Chatchai Buekban
- National Electronics and Computer Technology Center (NECTEC), Pathumthani, 12120, Thailand
| | - Thidarut Laochai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Panlop Lormaneenopparat
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wiwittawin Sukmas
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pranee Rattanawaleedirojn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Pumidech Puthongkham
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pranut Potiyaraj
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Shubhangi, Divya, Rai SK, Chandra P. Shifting paradigm in electrochemical biosensing matrices comprising metal organic frameworks and their composites in disease diagnosis. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1980. [PMID: 38973017 DOI: 10.1002/wnan.1980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 07/09/2024]
Abstract
Metal Organic Frameworks (MOFs) are an evolving category of crystalline microporous materials that have grabbed the research interest for quite some time due to their admirable physio-chemical properties and easy fabrication methods. Their enormous surface area can be a working ground for innumerable molecular adhesions and site for potential sensor matrices. They have been explored in the last decade for incorporation in electrochemical sensor matrices as diagnostic solutions for a plethora of diseases. This review emphasizes on some of the recent advancements in the area of MOF-based electrochemical biosensors with focus on various important diseases and their significance in upgrading the sensor performance. It summarizes MOF-based biosensors for monitoring biomarkers relevant to diabetes, viral and bacterial sepsis infections, neurological disorders, cardiovascular diseases, and cancer in a wide range of real matrices. The discussion has been supplemented with extensive tables elaborating recent trends in the field of MOF-composite probe fabrication strategies with their respective sensing parameters. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Divya
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Sanjay K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| |
Collapse
|
8
|
Zhou F, Liu S, Tang Y, Li W, Hai L, Zhang X, Li Y, Gao F. Wearable electrochemical glucose sensor of high flexibility and sensitivity using novel mushroom-like gold nanowires decorated bendable stainless steel wire sieve. Anal Chim Acta 2024; 1288:342148. [PMID: 38220282 DOI: 10.1016/j.aca.2023.342148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
Long-term high blood glucose levels brings extremely detrimental effect on diabetic patients, such as blindness, renal failure, and cardiovascular diseases. Therefore, there is an urgent need to develop highly flexible and sensitive sensors for precisely non-invasive and continuous monitoring glucose levels. Herein, we present a highly flexible and sensitive wearable sensor for non-enzymatic electrochemical glucose analysis with vertically aligned mushroom-like gold nanowires (v-AuNWs) chemically grown on stainless steel wire sieve (SSWS) as integrated electrode. Owing to the unique nanostructures and excellent catalysis of the v-AuNWs, the as-fabricated glucose sensors exhibit superior flexibility and excellent electro-catalytic capability. In detail, these sensors display rapid response towards glucose within 5 s, and the sensor constructed with v-AuNWs for growth time of 15 min shows the highest sensitivity of 180.1 μA mM-1 cm-2 within a wide linear range of 6.5 × 10-4 mM-12.0 mM and the lowest detection limit of 0.65 μM (S/N = 3). It is noteworthy that due to the good ductility of the v-AuNWs and their strong contact with the SSWS substrate, these glucose sensors exhibit no obvious response variation after repeated bending for 100 times at bending angle of 180°. Additionally, the glucose sensors display superior anti-interfering capability as well as desirable repeatability. More importantly, these glucose sensors can be attached on human skin to determine sweat glucose reliably and analyze glucose concentration in human serum in vitro.
Collapse
Affiliation(s)
- Fan Zhou
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shu Liu
- State Key Laboratory for Manufacturing Systems Engineering, Institute of Precision Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yimei Tang
- Department of Endocrinology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| | - Wenqiang Li
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Lixin Hai
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Xinmiao Zhang
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Yan Li
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| | - Feng Gao
- Key Lab of Manufacturing Equipment of Shaanxi Province, School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
9
|
Lv M, Qiao X, Li Y, Zeng X, Luo X. A stretchable wearable sensor with dual working electrodes for reliable detection of uric acid in sweat. Anal Chim Acta 2024; 1287:342154. [PMID: 38182356 DOI: 10.1016/j.aca.2023.342154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
Wearable sweat sensors with stretch capabilities and robust performances are desired for continuous monitoring of human health, and it remains a challenge for sweat sensors to detect targets reliably in both static and dynamic states. Herein, a flexible sweat sensor was created using a cost-effective approach involving the utilization of three-dimensional graphene foam and polydimethylsiloxane (PDMS). The flexible electrochemical sensor was fabricated based on PDMS and Pt/Pd nanoparticles modified 3D graphene foam for the detection of uric acid in sweat. Pt/Pd nanoparticles were electrodeposited on the graphene foam to markedly enhance the electrocatalytic activity for uric acid detection. The graphene foam with excellent electrical property and high porosity, and PDMS with an ideal mechanical property endow the sensing device with high stretchability (tolerable strain up to 110 %), high sensitivity (0.87 μA μM-1 cm-2), and stability (remaining unchanged for more than 5000 cycles) for daily wear. To eliminate possible interferences, the wearable sensor was designed with dual working electrodes, and their response difference ensured reliable and accurate detection of targets. This strategy of constructing sweat sensors with dual working electrodes based on the flexible composite material represents a promising way for the development of robust wearable sensing devices.
Collapse
Affiliation(s)
- Mingrui Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
10
|
Hu X, Qiu D, Jiang Q, Xu Q, Li J. Cu 2+-doped zeolitic imidazolate frameworks and gold nanoparticle (AuNPs@ZIF-8/Cu) nanocomposites enable label-free and highly sensitive electrochemical detection of oral cancer-related biomarkers. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:615-623. [PMID: 38197313 DOI: 10.1039/d3ay01918g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
It is of great significance to accurately and sensitively detect oral cancer-related biomarkers (ORAOV 1) for the early diagnosis of oral cancer. Present here is a novel electrochemical biosensor based on Cu2+-doped zeolitic imidazolate frameworks and gold nanoparticle (AuNPs@ZIF-8/Cu) nanocomposites and a one-step strand displacement reaction for label-free, simple and sensitive detection of ORAOV 1 in saliva. It is worth noting that AuNPs@ZIF-8/Cu nanocomposites show large electrochemically effective surface area, good electrical conductivity and electrocatalytic activity due to the synergistic effect of metal nanoparticles (MNPs) and ZIF-8. Consequently, the newly developed electrochemical sensor displays a wide linear range of 0.1-104 pM and a low limit of detection (LOD) of 63 fM. Meanwhile, the electrochemical biosensor can distinguish single base mismatch. The relative standard deviation (RSD) of intra-assays and inter-assays is 1.46% and 1.76%, respectively, and the peak current values decline by 9.20% with a RSD value of 1.35% after being stored at 4 °C for 7 days, suggesting that the newly designed electrochemical sensor exhibits good selectivity, reproducibility and stability to detect ORAOV 1. More importantly, this novel electrochemical sensor is found to be applicable for detecting ORAOV 1 in human saliva samples with a satisfactory result. The RSD values range from 1.15% to 1.77%, and the recoveries range from 95.46% to 112.98%.
Collapse
Affiliation(s)
- Xueting Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Dengxue Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Qi Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P. R. China.
| |
Collapse
|
11
|
Xu Z, Liu Y, Lv M, Qiao X, Fan GC, Luo X. An anti-fouling wearable molecular imprinting sensor based on semi-interpenetrating network hydrogel for the detection of tryptophan in sweat. Anal Chim Acta 2023; 1283:341948. [PMID: 37977778 DOI: 10.1016/j.aca.2023.341948] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The challenge of heavy biofouling in complex sweat environments limits the potential of electrochemical sweat sensors for noninvasive physiological assessment. In this study, a novel semi-interpenetrating hydrogel of PSBMA/PEDOT:PSS was engineered by interlacing PEDOT:PSS conductive polymer with zwitterionic PSBMA network. This versatile hydrogel served as the foundation for developing an anti-fouling wearable molecular imprinting sensor capable of sensitive and robust detection of tryptophan (Trp) in complex sweat. The incorporation of PEDOT:PSS conductive polymer into the semi-interpenetrating hydrogel introduced diverse physical crosslinks, including hydrogen bonding, electrostatic interactions, and chain entanglement. This incorporation considerably boosted the hydrogel's mechanical robustness and imparted commendable self-healing property. At the same time, the synergistic coupling between the well-balanced charge of the zwitterionic network and the high conductivity of the PEDOT:PSS polymer facilitated efficient charge transfer. The formation of the desired molecular imprinting membrane of semi-interpenetrating hydrogel was triggered by self-polymerization of dopamine (DA) in the presence of Trp. The designed biosensor demonstrated good sensitivity, selectivity and stability in detecting the target Trp. Notably, it also exhibited exceptional anti-fouling abilities, allowing for accurate Trp detection in complex real sweat samples, yielding results comparable to commercial enzyme-linked immunoassay (ELISA).
Collapse
Affiliation(s)
- Zhenying Xu
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanyuan Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Mingrui Lv
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Gao-Chao Fan
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|