1
|
McEvoy NL, Curley MAQ. Do ICU dashboards influence quality of care? Nurs Crit Care 2024; 29:1199-1201. [PMID: 38063408 DOI: 10.1111/nicc.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024]
Affiliation(s)
- Natalie L McEvoy
- Department of Anaesthesia and Critical care, Education and Research Centre, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Martha A Q Curley
- Department of Family and Community Health, University of Pennsylvania School of Nursing, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Ramalingam M, Jaisankar A, Cheng L, Krishnan S, Lan L, Hassan A, Sasmazel HT, Kaji H, Deigner HP, Pedraz JL, Kim HW, Shi Z, Marrazza G. Impact of nanotechnology on conventional and artificial intelligence-based biosensing strategies for the detection of viruses. DISCOVER NANO 2023; 18:58. [PMID: 37032711 PMCID: PMC10066940 DOI: 10.1186/s11671-023-03842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Recent years have witnessed the emergence of several viruses and other pathogens. Some of these infectious diseases have spread globally, resulting in pandemics. Although biosensors of various types have been utilized for virus detection, their limited sensitivity remains an issue. Therefore, the development of better diagnostic tools that facilitate the more efficient detection of viruses and other pathogens has become important. Nanotechnology has been recognized as a powerful tool for the detection of viruses, and it is expected to change the landscape of virus detection and analysis. Recently, nanomaterials have gained enormous attention for their value in improving biosensor performance owing to their high surface-to-volume ratio and quantum size effects. This article reviews the impact of nanotechnology on the design, development, and performance of sensors for the detection of viruses. Special attention has been paid to nanoscale materials, various types of nanobiosensors, the internet of medical things, and artificial intelligence-based viral diagnostic techniques.
Collapse
Affiliation(s)
- Murugan Ramalingam
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Abinaya Jaisankar
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Lijia Cheng
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Sasirekha Krishnan
- Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632014 India
| | - Liang Lan
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Anwarul Hassan
- Department of Mechanical and Industrial Engineering, Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Hilal Turkoglu Sasmazel
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Atilim University, 06836 Ankara, Turkey
| | - Hirokazu Kaji
- Department of Biomechanics, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, 101-0062 Japan
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, 78054 Villingen-Schwenningen, Germany
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 28029 Madrid, Spain
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116 Republic of Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116 Republic of Korea
- BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116 Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116 Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116 South Korea
| | - Zheng Shi
- School of Basic Medical Sciences, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu, 610106 China
| | - Giovanna Marrazza
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
3
|
Vodanović M, Subašić M, Milošević D, Savić Pavičin I. Artificial Intelligence in Medicine and Dentistry. Acta Stomatol Croat 2023; 57:70-84. [PMID: 37288152 PMCID: PMC10243707 DOI: 10.15644/asc57/1/8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/01/2023] [Indexed: 09/14/2023] Open
Abstract
INTRODUCTION Artificial intelligence has been applied in various fields throughout history, but its integration into daily life is more recent. The first applications of AI were primarily in academia and government research institutions, but as technology has advanced, AI has also been applied in industry, commerce, medicine and dentistry. OBJECTIVE Considering that the possibilities of applying artificial intelligence are developing rapidly and that this field is one of the areas with the greatest increase in the number of newly published articles, the aim of this paper was to provide an overview of the literature and to give an insight into the possibilities of applying artificial intelligence in medicine and dentistry. In addition, the aim was to discuss its advantages and disadvantages. CONCLUSION The possibilities of applying artificial intelligence to medicine and dentistry are just being discovered. Artificial intelligence will greatly contribute to developments in medicine and dentistry, as it is a tool that enables development and progress, especially in terms of personalized healthcare that will lead to much better treatment outcomes.
Collapse
Affiliation(s)
- Marin Vodanović
- Department of Dental Anthropology, School of Dental Medicine, University of Zagreb, Croatia
- University Hospital Centre Zagreb, Croatia
| | - Marko Subašić
- Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
| | - Denis Milošević
- Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia
| | - Ivana Savić Pavičin
- Department of Dental Anthropology, School of Dental Medicine, University of Zagreb, Croatia
- University Hospital Centre Zagreb, Croatia
| |
Collapse
|
4
|
Wilson DU, Bailey MQ, Craig J. The role of artificial intelligence in clinical imaging and workflows. Vet Radiol Ultrasound 2022; 63 Suppl 1:897-902. [PMID: 36514227 DOI: 10.1111/vru.13157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/03/2021] [Accepted: 01/09/2022] [Indexed: 12/15/2022] Open
Abstract
Evidence-based medicine, outcomes management, and multidisciplinary systems are laying the foundation for radiology on the cusp of a new day. Environmental and operational forces coupled with technological advancements are redefining the veterinary radiologist of tomorrow. In the past several years, veterinary image volumes have exploded, and the scale of hardware and software required to support it seems boundless. The most dynamic trend within veterinary radiology is implementing digital information systems such as PACS, RIS, PIMS, and Voice Recognition systems. While the digitization of radiography imaging has significantly improved the workflow of the veterinary radiology assistant and radiologist, tedious, redundant tasks are abundant and mind-numbing. They can lead to errors with a significant impact on patient care. Today, these boring and repetitious tasks continue to bog down patient throughput and workflow. Artificial intelligence, particularly machine learning, shows much promise to rocket the workflow and veterinary clinical imaging into a new day where the AI management of mundane tasks allows for efficiency so the radiologist can better concentrate on the quality of patient care. In this article, we briefly discuss the major subsets of artificial intelligence (AI) workflow for the radiologist and veterinary radiology assistant including image acquisition, segmentation and mensuration, rotation and hanging protocol, detection and prioritization, monitoring and registration of lesions, implementation of these subsets, and the ethics of utilizing AI in veterinary medicine.
Collapse
Affiliation(s)
- Diane U Wilson
- Antech Imaging Services, Fountain Valley, California, USA
| | | | - John Craig
- EponaTech LLC, dba MetronMind, Paso Robles, California, USA
| |
Collapse
|
5
|
Peres IT, Hamacher S, Oliveira FLC, Bozza FA, Salluh JIF. Data-driven methodology to predict the ICU length of stay: A multicentre study of 99,492 admissions in 109 Brazilian units. Anaesth Crit Care Pain Med 2022; 41:101142. [PMID: 35988701 DOI: 10.1016/j.accpm.2022.101142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The length of stay (LoS) is one of the most used metrics for resource use in Intensive Care Units (ICU). We propose a structured data-driven methodology to predict the ICU length of stay and the risk of prolonged stay, and its application in a large multicenter Brazilian ICU database. METHODS Demographic data, comorbidities, complications, laboratory data, and primary and secondary diagnosis were prospectively collected and retrospectively analysed by a data-driven methodology, which includes eight different machine learning models and a stacking model. The study setting included 109 mixed-type ICUs from 38 Brazilian hospitals and the external validation was performed by 93 medical-surgical ICUs of 55 hospitals in Brazil. RESULTS A cohort of 99,492 adult ICU admissions were included from the 01st of January to the 31st of December 2019. The stacking model combining Random Forests and Linear Regression presented the best results to predict ICU length of stay (RMSE = 3.82; MAE = 2.52; R² = 0.36). The prediction model for the risk of long stay were accurate to early identify prolonged stay patients (Brier Score = 0.04, AUC = 0.87, PPV = 0.83, NPV = 0.95). CONCLUSION The data-driven methodology to predict ICU length of stay and the risk of long-stay proved accurate in a large multicentre cohort of general ICU patients. The proposed models are helpful to predict the individual length of stay and to early identify patients with high risk of prolonged stay.
Collapse
Affiliation(s)
- Igor Tona Peres
- Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Silvio Hamacher
- Department of Industrial Engineering, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Fernando Augusto Bozza
- Evandro Chagas National Institute of Infectious Disease, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil; IDOR, D'Or Institute for Research and Education, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
6
|
Martin L, Peine A, Gronholz M, Marx G, Bickenbach J. [Artificial Intelligence: Challenges and Applications in Intensive Care Medicine]. Anasthesiol Intensivmed Notfallmed Schmerzther 2022; 57:199-209. [PMID: 35320842 DOI: 10.1055/a-1423-8006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The high workload in intensive care medicine arises from the exponential growth of medical knowledge, the flood of data generated by the permanent and intensive monitoring of intensive care patients, and the documentation burden. Artificial intelligence (AI) is predicted to have a great impact on ICU work in the near future as it will be applicable in many areas of critical care medicine. These applications include documentation through speech recognition, predictions for decision support, algorithms for parameter optimisation and the development of personalised intensive care medicine. AI-based decision support systems can augment human therapy decisions. Primarily through machine learning, a sub-discipline of AI, self-adaptive algorithms can learn to recognise patterns and make predictions. For actual use in clinical settings, the explainability of such systems is a prerequisite. Intensive care staff spends a large amount of their working hours on documentation, which has increased up to 50% of work time with the introduction of PDMS. Speech recognition has the potential to reduce this documentation burden. It is not yet precise enough to be usable in the clinic. The application of AI in medicine, with the help of large data sets, promises to identify diagnoses more quickly, develop individualised, precise treatments, support therapeutic decisions, use resources with maximum effectiveness and thus optimise the patient experience in the near future.
Collapse
|
7
|
Diagnostic and prognostic prediction models in ventilator-associated pneumonia: Systematic review and meta-analysis of prediction modelling studies. J Crit Care 2021; 67:44-56. [PMID: 34673331 DOI: 10.1016/j.jcrc.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Existing expert systems have not improved the diagnostic accuracy of ventilator-associated pneumonia (VAP). The aim of this systematic literature review was to review and summarize state-of-the-art prediction models detecting or predicting VAP from exhaled breath, patient reports and demographic and clinical characteristics. METHODS Both diagnostic and prognostic prediction models were searched from a representative list of multidisciplinary databases. An extensive list of validated search terms was added to the search to cover papers failing to mention predictive research in their title or abstract. Two authors independently selected studies, while three authors extracted data using predefined criteria and data extraction forms. The Prediction Model Risk of Bias Assessment Tool was used to assess both the risk of bias and the applicability of the prediction modelling studies. Technology readiness was also assessed. RESULTS Out of 2052 identified studies, 20 were included. Fourteen (70%) studies reported the predictive performance of diagnostic models to detect VAP from exhaled human breath with a high degree of sensitivity and a moderate specificity. In addition, the majority of them were validated on a realistic dataset. The rest of the studies reported the predictive performance of diagnostic and prognostic prediction models to detect VAP from unstructured narratives [2 (10%)] as well as baseline demographics and clinical characteristics [4 (20%)]. All studies, however, had either a high or unclear risk of bias without significant improvements in applicability. CONCLUSIONS The development and deployment of prediction modelling studies are limited in VAP and related outcomes. More computational, translational, and clinical research is needed to bring these tools from the bench to the bedside. REGISTRATION PROSPERO CRD42020180218, registered on 05-07-2020.
Collapse
|