1
|
Karabacak M, Patil S, Feng R, Shrivastava RK, Margetis K. A large scale multi institutional study for radiomics driven machine learning for meningioma grading. Sci Rep 2024; 14:26191. [PMID: 39478140 PMCID: PMC11525589 DOI: 10.1038/s41598-024-78311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/30/2024] [Indexed: 11/02/2024] Open
Abstract
This study aims to develop and evaluate radiomics-based machine learning (ML) models for predicting meningioma grades using multiparametric magnetic resonance imaging (MRI). The study utilized the BraTS-MEN dataset's training split, including 698 patients (524 with grade 1 and 174 with grade 2-3 meningiomas). We extracted 4872 radiomic features from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. LASSO regression reduced features to 176. The data was split into training (60%), validation (20%), and test (20%) sets. Five ML algorithms (TabPFN, XGBoost, LightGBM, CatBoost, and Random Forest) were employed to build models differentiating low-grade (grade 1) from high-grade (grade 2-3) meningiomas. Hyperparameter tuning was performed using Optuna, optimizing model-specific parameters and feature selection. The CatBoost model demonstrated the best performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.838 [95% confidence interval (CI): 0.689-0.935], precision of 0.492 (95% CI: 0.371-0.623), recall of 0.838 (95% CI: 0.689-0.935), F1 score of 0.620 (95% CI: 0.495-0.722), accuracy of 0.729 (95% CI: 0.650-0.800), an area under the precision-recall curve (AUPRC) of 0.620 (95% CI: 0.433-0.753), and Brier score of 0.156 (95% CI: 0.122-0.200). Other models showed comparable performance, with mean AUROCs ranging from 0.752 to 0.784. The radiomics-based ML approach presented in this study showcases the potential for non-invasive and pre-operative grading of meningiomas using multiparametric MRI. Further validation on larger and independent datasets is necessary to establish the robustness and generalizability of these findings.
Collapse
Affiliation(s)
- Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Shiv Patil
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rui Feng
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Raj K Shrivastava
- Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | | |
Collapse
|
2
|
Zheng B, Zhao Z, Zheng P, Liu Q, Li S, Jiang X, Huang X, Ye Y, Wang H. The current state of MRI-based radiomics in pituitary adenoma: promising but challenging. Front Endocrinol (Lausanne) 2024; 15:1426781. [PMID: 39371931 PMCID: PMC11449739 DOI: 10.3389/fendo.2024.1426781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/30/2024] [Indexed: 10/08/2024] Open
Abstract
In the clinical diagnosis and treatment of pituitary adenomas, MRI plays a crucial role. However, traditional manual interpretations are plagued by inter-observer variability and limitations in recognizing details. Radiomics, based on MRI, facilitates quantitative analysis by extracting high-throughput data from images. This approach elucidates correlations between imaging features and pituitary tumor characteristics, thereby establishing imaging biomarkers. Recent studies have demonstrated the extensive application of radiomics in differential diagnosis, subtype identification, consistency evaluation, invasiveness assessment, and treatment response in pituitary adenomas. This review succinctly presents the general workflow of radiomics, reviews pertinent literature with a summary table, and provides a comparative analysis with traditional methods. We further elucidate the connections between radiological features and biological findings in the field of pituitary adenoma. While promising, the clinical application of radiomics still has a considerable distance to traverse, considering the issues with reproducibility of imaging features and the significant heterogeneity in pituitary adenoma patients.
Collapse
Affiliation(s)
- Baoping Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingping Zheng
- Department of Neurosurgery, People’s Hospital of Biyang County, Zhumadian, China
| | - Qiang Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Huang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Wei ZY, Zhang Z, Zhao DL, Zhao WM, Meng YG. Magnetic resonance imaging-based radiomics model for preoperative assessment of risk stratification in endometrial cancer. World J Clin Cases 2024; 12:5908-5921. [PMID: 39286374 PMCID: PMC11287501 DOI: 10.12998/wjcc.v12.i26.5908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/19/2024] [Accepted: 07/03/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Preoperative risk stratification is significant for the management of endometrial cancer (EC) patients. Radiomics based on magnetic resonance imaging (MRI) in combination with clinical features may be useful to predict the risk grade of EC. AIM To construct machine learning models to predict preoperative risk stratification of patients with EC based on radiomics features extracted from MRI. METHODS The study comprised 112 EC patients. The participants were randomly separated into training and validation groups with a 7:3 ratio. Logistic regression analysis was applied to uncover independent clinical predictors. These predictors were then used to create a clinical nomogram. Extracted radiomics features from the T2-weighted imaging and diffusion weighted imaging sequences of MRI images, the Mann-Whitney U test, Pearson test, and least absolute shrinkage and selection operator analysis were employed to evaluate the relevant radiomic features, which were subsequently utilized to generate a radiomic signature. Seven machine learning strategies were used to construct radiomic models that relied on the screening features. The logistic regression method was used to construct a composite nomogram that incorporated both the radiomic signature and clinical independent risk indicators. RESULTS Having an accuracy of 0.82 along with an area under the curve (AUC) of 0.915 [95% confidence interval (CI): 0.806-0.986], the random forest method trained on radiomics characteristics performed better than expected. The predictive accuracy of radiomics prediction models surpassed that of both the clinical nomogram (AUC: 0.75, 95%CI: 0.611-0.899) and the combined nomogram (AUC: 0.869, 95%CI: 0.702-0.986) that integrated clinical parameters and radiomic signature. CONCLUSION The MRI-based radiomics model may be an effective tool for preoperative risk grade prediction in EC patients.
Collapse
Affiliation(s)
- Zhi-Yao Wei
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100700, China
| | - Zhe Zhang
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100700, China
| | - Dong-Li Zhao
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100700, China
| | - Wen-Ming Zhao
- National Genomics Data Center and Chinese Academy of Sciences Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100700, China
| | - Yuan-Guang Meng
- Department of Obstetrics and Gynecology, Seventh Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100700, China
| |
Collapse
|
4
|
Fu FX, Cai QL, Li G, Wu XJ, Hong L, Chen WS. The efficacy of using a multiparametric magnetic resonance imaging-based radiomics model to distinguish glioma recurrence from pseudoprogression. Magn Reson Imaging 2024; 111:168-178. [PMID: 38729227 DOI: 10.1016/j.mri.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
OBJECTIVE The early differential diagnosis of the postoperative recurrence or pseudoprogression (psPD) of a glioma is of great guiding significance for individualized clinical treatment. This study aimed to evaluate the ability of a multiparametric magnetic resonance imaging (MRI)-based radiomics model to distinguish between the postoperative recurrence and psPD of a glioma early on and in a noninvasive manner. METHODS A total of 52 patients with gliomas who attended the Hainan Provincial People's Hospital between 2000 and 2021 and met the inclusion criteria were selected for this study. 1137 and 1137 radiomic features were extracted from T1 enhanced and T2WI/FLAIR sequence images, respectively.After clearing some invalid information and LASSO screening, a total of 9 and 10 characteristic radiological features were extracted and randomly divided into the training set and the test set according to 7:3 ratio. Select-Kbest and minimum Absolute contraction and selection operator (LASSO) were used for feature selection. Support vector machine and logistic regression were used to form a multi-parameter model for training and prediction. The optimal sequence and classifier were selected according to the area under the curve (AUC) and accuracy. RESULTS Radiomic models 1, 2 and 3 based on T1WI, T2FLAIR and T1WI + T2T2FLAIR sequences have better performance in the identification of postoperative recurrence and false progression of T1 glioma. The performance of model 2 is more stable, and the performance of support vector machine classifier is more stable. The multiparameter model based on CE-T1 + T2WI/FLAIR sequence showed the best performance (AUC:0.96, sensitivity: 0.87, specificity: 0.94, accuracy: 0.89,95% CI:0.93-1). CONCLUSION The use of multiparametric MRI-based radiomics provides a noninvasive, stable, and accurate method for differentiating between the postoperative recurrence and psPD of a glioma, which allows for timely individualized clinical treatment.
Collapse
Affiliation(s)
- Fang-Xiong Fu
- Department of Radiology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Qin-Lei Cai
- Department of Radiology, Hainan General Hospital, Haikou 570311, China
| | - Guo Li
- Department of Radiology, Hainan General Hospital, Haikou 570311, China
| | - Xiao-Jing Wu
- Department of Radiology, Hainan General Hospital, Haikou 570311, China
| | - Lan Hong
- Department of Gynecology, Hainan General Hospital, Haikou 570311, China.
| | - Wang-Sheng Chen
- Department of Radiology, Hainan General Hospital, Haikou 570311, China.
| |
Collapse
|
5
|
Gui Y, Zhang J. Research Progress of Artificial Intelligence in the Grading and Classification of Meningiomas. Acad Radiol 2024; 31:3346-3354. [PMID: 38413314 DOI: 10.1016/j.acra.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
A meningioma is a common primary central nervous system tumor. The histological features of meningiomas vary significantly depending on the grade and subtype, leading to differences in treatment and prognosis. Therefore, early diagnosis, grading, and typing of meningiomas are crucial for developing comprehensive and individualized diagnosis and treatment plans. The advancement of artificial intelligence (AI) in medical imaging, particularly radiomics and deep learning (DL), has contributed to the increasing research on meningioma grading and classification. These techniques are fast and accurate, involve fully automated learning, are non-invasive and objective, enable the efficient and non-invasive prediction of meningioma grades and classifications, and provide valuable assistance in clinical treatment and prognosis. This article provides a summary and analysis of the research progress in radiomics and DL for meningioma grading and classification. It also highlights the existing research findings, limitations, and suggestions for future improvement, aiming to facilitate the future application of AI in the diagnosis and treatment of meningioma.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Radiology, the fifth affiliated hospital of zunyi medical university, zhufengdadao No.1439, Doumen District, Zhuhai, China
| | - Jing Zhang
- Department of Radiology, the fifth affiliated hospital of zunyi medical university, zhufengdadao No.1439, Doumen District, Zhuhai, China.
| |
Collapse
|
6
|
Zhang Y, Zou Y, Tan W, Lv C. Value of radiomics-based automatic grading of muscle edema in polymyositis/dermatomyositis based on MRI fat-suppressed T2-weighted images. Acta Radiol 2024; 65:632-640. [PMID: 38591947 DOI: 10.1177/02841851241244507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
BACKGROUND The precise and objective assessment of thigh muscle edema is pivotal in diagnosing and monitoring the treatment of dermatomyositis (DM) and polymyositis (PM). PURPOSE Radiomic features are extracted from fat-suppressed (FS) T2-weighted (T2W) magnetic resonance imaging (MRI) of thigh muscles to enable automatic grading of muscle edema in cases of polymyositis and dermatomyositis. MATERIAL AND METHODS A total of 241 MR images were analyzed and classified into five levels using the Stramare criteria. The correlation between muscle edema grading and T2-mapping values was assessed using Spearman's correlation. The dataset was divided into a 7:3 ratio of training (168 samples) and testing (73 samples). Thigh muscle boundaries in FS T2W images were manually delineated with 3D-Slicer. Radiomics features were extracted using Python 3.7, applying Z-score normalization, Pearson correlation analysis, and recursive feature elimination for reduction. A Naive Bayes classifier was trained, and diagnostic performance was evaluated using receiver operating characteristic (ROC) curves and comparing sensitivity and specificity with senior doctors. RESULTS A total of 1198 radiomics parameters were extracted and reduced to 18 features for Naive Bayes modeling. In the testing set, the model achieved an area under the ROC curve of 0.97, sensitivity of 0.85, specificity of 0.98, and accuracy of 0.91. The Naive Bayes classifier demonstrated grading performance comparable to senior doctors. A significant correlation (r = 0.82, P <0.05) was observed between Stramare edema grading and T2-mapping values. CONCLUSION The Naive Bayes model, utilizing radiomics features extracted from thigh FS T2W images, accurately assesses the severity of muscle edema in cases of PM/DM.
Collapse
Affiliation(s)
- Yumei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yuefen Zou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenfeng Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Chengyin Lv
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
7
|
Park JH, Quang LT, Yoon W, Baek BH, Park I, Kim SK. Predicting Histologic Grade of Meningiomas Using a Combined Model of Radiomic and Clinical Imaging Features from Preoperative MRI. Biomedicines 2023; 11:3268. [PMID: 38137489 PMCID: PMC10741678 DOI: 10.3390/biomedicines11123268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Meningiomas are common primary brain tumors, and their accurate preoperative grading is crucial for treatment planning. This study aimed to evaluate the value of radiomics and clinical imaging features in predicting the histologic grade of meningiomas from preoperative MRI. We retrospectively reviewed patients with intracranial meningiomas from two hospitals. Preoperative MRIs were analyzed for tumor and edema volumes, enhancement patterns, margins, and tumor-brain interfaces. Radiomics features were extracted, and machine learning models were employed to predict meningioma grades. A total of 212 patients were included. In the training group (Hospital 1), significant differences were observed between low-grade and high-grade meningiomas in terms of tumor volume (p = 0.012), edema volume (p = 0.004), enhancement (p = 0.001), margin (p < 0.001), and tumor-brain interface (p < 0.001). Five radiomics features were selected for model development. The prediction model for radiomics features demonstrated an average validation accuracy of 0.74, while the model for clinical imaging features showed an average validation accuracy of 0.69. When applied to external test data (Hospital 2), the radiomics model achieved an area under the receiver operating characteristics curve (AUC) of 0.72 and accuracy of 0.69, while the clinical imaging model achieved an AUC of 0.82 and accuracy of 0.81. An improved performance was obtained from the model constructed by combining radiomics and clinical imaging features. In the combined model, the AUC and accuracy for meningioma grading were 0.86 and 0.73, respectively. In conclusion, this study demonstrates the potential value of radiomics and clinical imaging features in predicting the histologic grade of meningiomas. The combination of both radiomics and clinical imaging features achieved the highest AUC among the models. Therefore, the combined model of radiomics and clinical imaging features may offer a more effective tool for predicting clinical outcomes in meningioma patients.
Collapse
Affiliation(s)
- Jae Hyun Park
- Department of Radiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (J.H.P.); (W.Y.)
| | - Le Thanh Quang
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61469, Republic of Korea;
| | - Woong Yoon
- Department of Radiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (J.H.P.); (W.Y.)
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Byung Hyun Baek
- Department of Radiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (J.H.P.); (W.Y.)
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ilwoo Park
- Department of Radiology, Chonnam National University Hospital, Gwangju 61469, Republic of Korea; (J.H.P.); (W.Y.)
- Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61469, Republic of Korea;
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Department of Data Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seul Kee Kim
- Department of Radiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Republic of Korea
| |
Collapse
|
8
|
Zhu F, Yang C, Zou J, Ma W, Wei Y, Zhao Z. The classification of benign and malignant lung nodules based on CT radiomics: a systematic review, quality score assessment, and meta-analysis. Acta Radiol 2023; 64:3074-3084. [PMID: 37817511 DOI: 10.1177/02841851231205737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Radiomics methods are increasingly used to identify benign and malignant lung nodules, and early monitoring is essential in prognosis and treatment strategy formulation. To evaluate the diagnostic performance of computed tomography (CT)-based radiomics for distinguishing between benign and malignant lung nodules by performing a meta-analysis. Between January 2000 and December 2021, we searched the PubMed and Embase electronic databases for studies in English. Studies were included if they demonstrated the sensitivity and specificity of CT-based radiomics for diagnosing benign and malignant lung nodules. The studies were evaluated using the QUADAS-2 and radiomics quality scores (RQS). The inhomogeneity of the data and publishing bias were also evaluated. Some subgroup analyses were performed to investigate the impact of diagnostic efficiency. The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) Guidelines were followed for this meta-analysis. A total of 20 studies involving 3793 patients were included. The combined sensitivity, specificity, diagnostic odds ratio, and area under the summary receiver operating characteristic curve based on CT radiomics diagnosis of benign and malignant lung nodules were 0.81, 0.86, 27.00, and 0.91, respectively. Deek's funnel plot asymmetry test confirmed no significant publication bias in all studies. Fagan nomograms showed a 40% increase in post-test probability among pretest-positive patients. Current evidence shows that CT-based radiomics has high accuracy in the diagnosis of benign and malignant lung nodules.
Collapse
Affiliation(s)
- Fandong Zhu
- Department of Radiology, Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing People's Hospital, Shaoxing, PR China
| | - Chen Yang
- Department of Radiology, Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing People's Hospital, Shaoxing, PR China
| | - Jiajun Zou
- Department of Radiology, Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing People's Hospital, Shaoxing, PR China
| | - Weili Ma
- Department of Radiology, Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yuguo Wei
- Precision Health Institution, GE Healthcare, Hangzhou, Zhejiang, PR China
| | - Zhenhua Zhao
- Department of Radiology, Key Laboratory of Functional Molecular Imaging of Tumor and Interventional Diagnosis and Treatment of Shaoxing City, Shaoxing People's Hospital, Shaoxing, PR China
| |
Collapse
|
9
|
Cai Z, Wong LM, Wong YH, Lee HL, Li KY, So TY. Dual-Level Augmentation Radiomics Analysis for Multisequence MRI Meningioma Grading. Cancers (Basel) 2023; 15:5459. [PMID: 38001719 PMCID: PMC10670283 DOI: 10.3390/cancers15225459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Preoperative, noninvasive prediction of meningioma grade is important for therapeutic planning and decision making. In this study, we propose a dual-level augmentation strategy incorporating image-level augmentation (IA) and feature-level augmentation (FA) to tackle class imbalance and improve the predictive performance of radiomics for meningioma grading on Magnetic Resonance Imaging (MRI). METHODS This study recruited 160 consecutive patients with pathologically proven meningioma (129 low-grade (WHO grade I) tumors; 31 high-grade (WHO grade II and III) tumors) with preoperative multisequence MRI imaging. A dual-level augmentation strategy combining IA and FA was applied and evaluated in 100 repetitions in 3-, 5-, and 10-fold cross-validation. RESULTS The best area under the receiver operating characteristics curve of our method in 100 repetitions was ≥0.78 in all cross-validations. The corresponding cross-validation sensitivities (cross-validation specificity) were 0.72 (0.69), 0.76 (0.71), and 0.63 (0.82) in 3-, 5-, and 10-fold cross-validation, respectively. The proposed method achieved significantly better performance and distribution of results, outperforming single-level augmentation (IA or FA) or no augmentation in each cross-validation. CONCLUSIONS The dual-level augmentation strategy using IA and FA significantly improves the performance of the radiomics model for meningioma grading on MRI, allowing better radiomics-based preoperative stratification and individualized treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Tiffany Y. So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.C.); (L.M.W.); (Y.H.W.); (H.-l.L.); (K.-y.L.)
| |
Collapse
|
10
|
Maniar KM, Lassarén P, Rana A, Yao Y, Tewarie IA, Gerstl JVE, Recio Blanco CM, Power LH, Mammi M, Mattie H, Smith TR, Mekary RA. Traditional Machine Learning Methods versus Deep Learning for Meningioma Classification, Grading, Outcome Prediction, and Segmentation: A Systematic Review and Meta-Analysis. World Neurosurg 2023; 179:e119-e134. [PMID: 37574189 DOI: 10.1016/j.wneu.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Meningiomas are common intracranial tumors. Machine learning (ML) algorithms are emerging to improve accuracy in 4 primary domains: classification, grading, outcome prediction, and segmentation. Such algorithms include both traditional approaches that rely on hand-crafted features and deep learning (DL) techniques that utilize automatic feature extraction. The aim of this study was to evaluate the performance of published traditional ML versus DL algorithms in classification, grading, outcome prediction, and segmentation of meningiomas. METHODS A systematic review and meta-analysis were conducted. Major databases were searched through September 2021 for publications evaluating traditional ML versus DL models on meningioma management. Performance measures including pooled sensitivity, specificity, F1-score, area under the receiver-operating characteristic curve, positive and negative likelihood ratios (LR+, LR-) along with their respective 95% confidence intervals (95% CIs) were derived using random-effects models. RESULTS Five hundred thirty-four records were screened, and 43 articles were included, regarding classification (3 articles), grading (29), outcome prediction (7), and segmentation (6) of meningiomas. Of the 29 studies that reported on grading, 10 could be meta-analyzed with 2 DL models (sensitivity 0.89, 95% CI: 0.74-0.96; specificity 0.91, 95% CI: 0.45-0.99; LR+ 10.1, 95% CI: 1.33-137; LR- 0.12, 95% CI: 0.04-0.59) and 8 traditional ML (sensitivity 0.74, 95% CI: 0.62-0.83; specificity 0.93, 95% CI: 0.79-0.98; LR+ 10.5, 95% CI: 2.91-39.5; and LR- 0.28, 95% CI: 0.17-0.49). The insufficient performance metrics reported precluded further statistical analysis of other performance metrics. CONCLUSIONS ML on meningiomas is mostly carried out with traditional methods. For meningioma grading, traditional ML methods generally had a higher LR+, while DL models a lower LR-.
Collapse
Affiliation(s)
- Krish M Maniar
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Philipp Lassarén
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Aakanksha Rana
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, Massachusetts, United States
| | - Yuxin Yao
- Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Massachusetts, United States
| | - Ishaan A Tewarie
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands; Faculty of Medicine, Erasmus University Rotterdam/Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jakob V E Gerstl
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States
| | - Camila M Recio Blanco
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Northeast National University, Corrientes, Argentina; Prisma Salud, Puerto San Julian, Santa Cruz, Argentina
| | - Liam H Power
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; School of Medicine, Tufts University, Boston, Massachusetts, United States
| | - Marco Mammi
- Neurosurgery Unit, S. Croce e Carle Hospital, Cuneo, Italy
| | - Heather Mattie
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States
| | - Timothy R Smith
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, Massachusetts, United States
| | - Rania A Mekary
- Department of Neurosurgery, Computational Neurosciences Outcomes Center (CNOC), Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts, United States; Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Massachusetts, United States.
| |
Collapse
|
11
|
Koechli C, Zwahlen DR, Schucht P, Windisch P. Radiomics and machine learning for predicting the consistency of benign tumors of the central nervous system: A systematic review. Eur J Radiol 2023; 164:110866. [PMID: 37207398 DOI: 10.1016/j.ejrad.2023.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
PURPOSE Predicting the consistency of benign central nervous system (CNS) tumors prior to surgery helps to improve surgical outcomes. This review summarizes and analyzes the literature on using radiomics and/or machine learning (ML) for consistency prediction. METHOD The Medical Literature Analysis and Retrieval System Online (MEDLINE) database was screened for studies published in English from January 1st 2000. Data was extracted according to the PRISMA guidelines and quality of the studies was assessed in compliance with the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). RESULTS Eight publications were included focusing on pituitary macroadenomas (n = 5), pituitary adenomas (n = 1), and meningiomas (n = 2) using a retrospective (n = 6), prospective (n = 1), and unknown (n = 1) study design with a total of 763 patients for the consistency prediction. The studies reported an area under the curve (AUC) of 0.71-0.99 for their respective best performing model regarding the consistency prediction. Of all studies, four articles validated their models internally whereas none validated their models externally. Two articles stated making data available on request with the remaining publications lacking information with regard to data availability. CONCLUSIONS The research on consistency prediction of CNS tumors is still at an early stage regarding the use of radiomics and different ML techniques. Best-practice procedures regarding radiomics and ML need to be followed more rigorously to facilitate the comparison between publications and, accordingly, the possible implementation into clinical practice in the future.
Collapse
Affiliation(s)
- Carole Koechli
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland; Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland.
| | - Daniel R Zwahlen
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| | - Philippe Schucht
- Universitätsklinik für Neurochirurgie, Bern University Hospital, 3010 Bern, Switzerland
| | - Paul Windisch
- Department of Radiation Oncology, Kantonsspital Winterthur, 8401 Winterthur, Switzerland
| |
Collapse
|
12
|
Hanna C, Willman M, Cole D, Mehkri Y, Liu S, Willman J, Lucke-Wold B. Review of meningioma diagnosis and management. EGYPTIAN JOURNAL OF NEUROSURGERY 2023; 38:16. [PMID: 37124311 PMCID: PMC10138329 DOI: 10.1186/s41984-023-00195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/14/2022] [Indexed: 05/02/2023] Open
Abstract
Meningiomas are the most common intracranial tumors in adult patients. Although the majority of meningiomas are diagnosed as benign, approximately 20% of cases are high-grade tumors that require significant clinical treatment. The gold standard for grading central nervous system tumors comes from the World Health Organization Classification of Tumors of the central nervous system. Treatment options also depend on the location, imaging, and histopathological features of the tumor. This review will cover diagnostic strategies for meningiomas, including 2021 updates to the World Health Organization's grading of meningiomas. Meningioma treatment plans are variable and highly dependent on tumor grading. This review will also update the reader on developments in the treatment of meningiomas, including surgery, radiation therapy and monoclonal antibody treatment.
Collapse
Affiliation(s)
- Chadwin Hanna
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Matthew Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Dwayne Cole
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Sophie Liu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan Willman
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
13
|
Mori N, Mugikura S, Endo T, Endo H, Oguma Y, Li L, Ito A, Watanabe M, Kanamori M, Tominaga T, Takase K. Principal component analysis of texture features for grading of meningioma: not effective from the peritumoral area but effective from the tumor area. Neuroradiology 2023; 65:257-274. [PMID: 36044063 DOI: 10.1007/s00234-022-03045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE To investigate whether texture features from tumor and peritumoral areas based on sequence combinations can differentiate between low- and non-low-grade meningiomas. METHODS Consecutive patients diagnosed with meningioma by surgery (77 low-grade and 28 non-low-grade meningiomas) underwent preoperative magnetic resonance imaging including T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and contrast-enhanced T1WI (CE-T1WI). Manual segmentation of the tumor area was performed to extract texture features. Segmentation of the peritumoral area was performed for peritumoral high-signal intensity (PHSI) on T2WI. Principal component analysis was performed to fuse the texture features to principal components (PCs), and PCs of each sequence of the tumor and peritumoral areas were compared between low- and non-low-grade meningiomas. Only PCs with statistical significance were used for the model construction using a support vector machine algorithm. k-fold cross-validation with receiver operating characteristic curve analysis was used to evaluate diagnostic performance. RESULTS Two, one, and three PCs of T1WI, apparent diffusion coefficient (ADC), and CE-T1WI, respectively, for the tumor area, were significantly different between low- and non-low-grade meningiomas, while PCs of T2WI for the tumor area and PCs for the peritumoral area were not. No significant differences were observed in PHSI. Among models of sequence combination, the model with PCs of ADC and CE-T1WI for the tumor area showed the highest area under the curve (0.84). CONCLUSION The model with PCs of ADC and CE-T1WI for the tumor area showed the highest diagnostic performance for differentiating between low- and non-low-grade meningiomas. Neither PHSI nor PCs in the peritumoral area showed added value.
Collapse
Affiliation(s)
- Naoko Mori
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan.
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Toshiki Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Neurosurgery, Kohnan Hospital, Sendai, Japan
| | - Yo Oguma
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Li Li
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| | - Akira Ito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika Watanabe
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takase
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Zheng M, Chen Q, Ge Y, Yang L, Tian Y, Liu C, Wang P, Deng K. Development and validation of CT-based radiomics nomogram for the classification of benign parotid gland tumors. Med Phys 2023; 50:947-957. [PMID: 36273307 DOI: 10.1002/mp.16042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Accurate preoperative diagnosis of parotid tumor is essential for the formulation of optimal individualized surgical plans. The study aims to investigate the diagnostic performance of radiomics nomogram based on contrast-enhanced computed tomography (CT) images in the differentiation of the two most common benign parotid gland tumors. METHODS One hundred and ten patients with parotid gland tumors including 76 with pleomorphic adenoma (PA) and 34 with adenolymphoma (AL) confirmed by histopathology were included in this study. Radiomics features were extracted from contrast-enhanced CT images of venous phase. A radiomics model was established and a radiomics score (Rad-score) was calculated. Clinical factors including clinical data and CT features were assessed to build a clinical factor model. Finally, a nomogram incorporating the Rad-score and independent clinical factors was constructed. Receiver operator characteristics (ROC) curve was generated and the area under the ROC curve (AUC) was calculated to quantify the discriminative performance of each model on both the training and validation cohorts. Decision curve analysis (DCA) was conducted to evaluate the clinical usefulness of each model. RESULTS The radiomics model showed good discrimination in the training cohort [AUC, 0.89; 95% confidence interval (CI), 0.80-0.98] and validation cohort (AUC, 0.89; 95% CI, 0.77-1.00). The radiomics nomogram showed excellent discrimination in the training cohort (AUC, 0.98; 95% CI, 0.96-1.00) and validation cohort (AUC, 0.95; 95% CI, 0.88-1.00) and displayed better discrimination efficacy compared with the clinical factor model (AUC, 0.93; 95% CI, 0.88-0.99) in the training cohort (p < 0.05). The DCA demonstrated that the combined radiomics nomogram provided superior clinical usefulness than clinical factor model and radiomics model. CONCLUSIONS The CT-based radiomics nomogram combining Rad-score and clinical factors exhibits excellent predictive capability for differentiating parotid PA from AL, which might hold promise in assisting radiologists and clinicians in the exact differential diagnosis and formulation of appropriate treatment strategy.
Collapse
Affiliation(s)
- Menglong Zheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qi Chen
- Department of Radiology, Kunshan Third People's Hospital, Kunshan, Jiangsu, China
| | | | - Liping Yang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yulong Tian
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chang Liu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Kexue Deng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
15
|
Development of MRI-based radiomics predictive model for classifying endometrial lesions. Sci Rep 2023; 13:1590. [PMID: 36709399 PMCID: PMC9884294 DOI: 10.1038/s41598-023-28819-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 01/25/2023] [Indexed: 01/30/2023] Open
Abstract
An unbiased and accurate diagnosis of benign and malignant endometrial lesions is essential for the gynecologist, as each type might require distinct treatment. Radiomics is a quantitative method that could facilitate deep mining of information and quantification of the heterogeneity in images, thereby aiding clinicians in proper lesion diagnosis. The aim of this study is to develop an appropriate predictive model for the classification of benign and malignant endometrial lesions, and evaluate potential clinical applicability of the model. 139 patients with pathologically-confirmed endometrial lesions from January 2018 to July 2020 in two independent centers (center A and B) were finally analyzed. Center A was used for training set, while center B was used for test set. The lesions were manually drawn on the largest slice based on the lesion area by two radiologists. After feature extraction and feature selection, the possible associations between radiomics features and clinical parameters were assessed by Uni- and multi- variable logistic regression. The receiver operator characteristic (ROC) curve and DeLong validation were employed to evaluate the possible predictive performance of the models. Decision curve analysis (DCA) was used to evaluate the net benefit of the radiomics nomogram. A radiomics prediction model was established from the 15 selected features, and were found to be relatively high discriminative on the basis of the area under the ROC curve (AUC) for both the training and the test cohorts (AUC = 0.90 and 0.85, respectively). The radiomics nomogram also showed good performance of discrimination for both the training and test cohorts (AUC = 0.91 and 0.86, respectively), and the DeLong test shows that AUCs were significantly different between clinical parameters and nomogram. The result of DCA demonstrated the clinical usefulness of this novel nomogram method. The predictive model constructed based on MRI radiomics and clinical parameters indicated a highly diagnostic efficiency, thereby implying its potential clinical usefulness for the precise identification and prediction of endometrial lesions.
Collapse
|
16
|
Duan C, Li N, Liu X, Cui J, Wang G, Xu W. Performance comparison of 2D and 3D MRI radiomics features in meningioma grade prediction: A preliminary study. Front Oncol 2023; 13:1157379. [PMID: 37035216 PMCID: PMC10076744 DOI: 10.3389/fonc.2023.1157379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Objectives The objective of this study was to compare the predictive performance of 2D and 3D radiomics features in meningioma grade based on enhanced T1 WI images. Methods There were 170 high grade meningioma and 170 low grade meningioma were selected randomly. The 2D and 3D features were extracted from 2D and 3D ROI of each meningioma. The Spearman correlation analysis and least absolute shrinkage and selection operator (LASSO) regression were used to select the valuable features. The 2D and 3D predictive models were constructed by naive Bayes (NB), gradient boosting decision tree (GBDT), and support vector machine (SVM). The ROC curve was drawn and AUC was calculated. The 2D and 3D models were compared by Delong test of AUCs and decision curve analysis (DCA) curve. Results There were 1143 features extracted from each ROI. Six and seven features were selected. The AUC of 2D and 3D model in NB, GBDT, and SVM was 0.773 and 0.771, 0.722 and 0.717, 0.733 and 0.743. There was no significant difference in two AUCs (p=0.960, 0.913, 0.830) between 2D and 3D model. The 2D features had a better performance than 3D features in NB models and the 3D features had a better performance than 2D features in GBDT models. The 2D features and 3D features had an equal performance in SVM models. Conclusions The 2D and 3D features had a comparable performance in predicting meningioma grade. Considering the issue of time and labor, 2D features could be selected for radiomics study in meningioma. Key points There was a comparable performance between 2D and 3D features in meningioma grade prediction. The 2D features was a proper selection in meningioma radiomics study because of its time and labor saving.
Collapse
Affiliation(s)
- Chongfeng Duan
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Li
- Department of Information Management, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuejun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jiufa Cui
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Gang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Wenjian Xu,
| |
Collapse
|
17
|
Liu X, Wang Y, Han T, Liu H, Zhou J. Preoperative surgical risk assessment of meningiomas: a narrative review based on MRI radiomics. Neurosurg Rev 2022; 46:29. [PMID: 36576657 DOI: 10.1007/s10143-022-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Meningiomas are one of the most common intracranial primary central nervous system tumors. Regardless of the pathological grading and histological subtypes, maximum safe resection is the recommended treatment option for meningiomas. However, considering tumor heterogeneity, surgical treatment options and prognosis often vary greatly among meningiomas. Therefore, an accurate preoperative surgical risk assessment of meningiomas is of great clinical importance as it helps develop surgical treatment strategies and improve patient prognosis. In recent years, an increasing number of studies have proved that magnetic resonance imaging (MRI) radiomics has wide application values in the diagnostic, identification, and prognostic evaluations of brain tumors. The vital importance of MRI radiomics in the surgical risk assessment of meningiomas must be apprehended and emphasized in clinical practice. This narrative review summarizes the current research status of MRI radiomics in the preoperative surgical risk assessment of meningiomas, focusing on the applications of MRI radiomics in preoperative pathological grading, assessment of surrounding tissue invasion, and evaluation of tumor consistency. We further analyze the prospects of MRI radiomics in the preoperative assessment of meningiomas angiogenesis and adhesion with surrounding tissues, while pointing out the current challenges of MRI radiomics research.
Collapse
Affiliation(s)
- Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, People's Republic of China
- Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Yuzhu Wang
- Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, People's Republic of China
- Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Hong Liu
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, People's Republic of China
- Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Cuiyingmen No.82, Lanzhou, 730030, People's Republic of China.
- Second Clinical School, Lanzhou University, Lanzhou, People's Republic of China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, People's Republic of China.
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, People's Republic of China.
| |
Collapse
|
18
|
Duan C, Zhou X, Wang J, Li N, Liu F, Gao S, Liu X, Xu W. A radiomics nomogram for predicting the meningioma grade based on enhanced T1WI images. Br J Radiol 2022; 95:20220141. [PMID: 35816518 PMCID: PMC10996951 DOI: 10.1259/bjr.20220141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES The objective of this study was to develop a radiomics nomogram for predicting the meningioma grade based on enhanced T1 weighted imaging (T1WI) images. METHODS 188 patients with meningioma were analyzed retrospectively. There were 94 high-grade meningioma to form high-grade group and 94 low-grade meningioma were selected randomly to form low-grade group. Clinical data and MRI features were analyzed and compared. The clinical model was built by using the significant variables. The least absolute shrinkage and selection operator regression was used to select the most valuable radiomics feature. The radiomics signature was built and the Rad-score was calculated. The radiomics nomogram was developed by the significant variables of the clinical factors and Rad-score. The calibration curve and the Hosmer-Lemeshow test were used to evaluate the radiomics nomogram. Different models were compared by Delong test and decision curve analysis curve. RESULTS The sex, size and surrounding invasion were used to build clinical model. The area under the receiver operator characteristic curve (AUC) of clinical model was 0.870 (95% CI: 0.782-0.959). Nine features were used to construct the radiomics signature. The AUC of the radiomics signature was 0.885 (95% CI: 0.802-0.968). The AUC of radiomics nomogram was 0.952 (95% CI: 0.904-1). The AUC of radiomics nomogram was higher than that of clinical model and radiomics signature with a significant difference (p<0.05). The decision curve analysis curve showed that the radiomics nomogram had a larger net benefit than the clinical model and radiomics signature. CONCLUSION The radiomics nomogram based on enhanced T1 weighted imaging images for predicting the meningioma grade showed high predictive value and might contribute to the diagnosis and treatment of meningioma. ADVANCES IN KNOWLEDGE 1. We first constructed a radiomic nomogram to predict the meningioma grade.2. We compared the results of the clinical model, radiomics signature and radiomics nomogram.
Collapse
Affiliation(s)
- Chongfeng Duan
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| | - Xiaoming Zhou
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| | - Jiachen Wang
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| | - Nan Li
- Department of Information Management, The Affiliated Hospital
of Qingdao University, Qingdao,
China
| | - Fang Liu
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| | - Song Gao
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| | - Xuejun Liu
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao
University, Qingdao,
China
| |
Collapse
|
19
|
Machine Learning for the Detection and Segmentation of Benign Tumors of the Central Nervous System: A Systematic Review. Cancers (Basel) 2022; 14:cancers14112676. [PMID: 35681655 PMCID: PMC9179850 DOI: 10.3390/cancers14112676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Machine learning in radiology of the central nervous system has seen many interesting publications in the past few years. Since the focus has largely been on malignant tumors such as brain metastases and high-grade gliomas, we conducted a systematic review on benign tumors to summarize what has been published and where there might be gaps in the research. We found several studies that report good results, but the descriptions of methodologies could be improved to enable better comparisons and assessment of biases. Abstract Objectives: To summarize the available literature on using machine learning (ML) for the detection and segmentation of benign tumors of the central nervous system (CNS) and to assess the adherence of published ML/diagnostic accuracy studies to best practice. Methods: The MEDLINE database was searched for the use of ML in patients with any benign tumor of the CNS, and the records were screened according to PRISMA guidelines. Results: Eleven retrospective studies focusing on meningioma (n = 4), vestibular schwannoma (n = 4), pituitary adenoma (n = 2) and spinal schwannoma (n = 1) were included. The majority of studies attempted segmentation. Links to repositories containing code were provided in two manuscripts, and no manuscripts shared imaging data. Only one study used an external test set, which raises the question as to whether some of the good performances that have been reported were caused by overfitting and may not generalize to data from other institutions. Conclusions: Using ML for detecting and segmenting benign brain tumors is still in its infancy. Stronger adherence to ML best practices could facilitate easier comparisons between studies and contribute to the development of models that are more likely to one day be used in clinical practice.
Collapse
|
20
|
Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization. Cancers (Basel) 2022; 14:cancers14112605. [PMID: 35681585 PMCID: PMC9179263 DOI: 10.3390/cancers14112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Meningiomas are typically benign, common extra-axial tumors of the central nervous system. Routine clinical assessment by radiologists presents some limitations regarding long-term patient outcome prediction and risk stratification. Given the exponential growth of interest in radiomics and artificial intelligence in medical imaging, numerous studies have evaluated the potential of these tools in the setting of meningioma imaging. These were aimed at the development of reliable and reproducible models based on quantitative data. Although several limitations have yet to be overcome for their routine use in clinical practice, their innovative potential is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging. Abstract Meningiomas are the most common extra-axial tumors of the central nervous system (CNS). Even though recurrence is uncommon after surgery and most meningiomas are benign, an aggressive behavior may still be exhibited in some cases. Although the diagnosis can be made by radiologists, typically with magnetic resonance imaging, qualitative analysis has some limitations in regard to outcome prediction and risk stratification. The acquisition of this information could help the referring clinician in the decision-making process and selection of the appropriate treatment. Following the increased attention and potential of radiomics and artificial intelligence in the healthcare domain, including oncological imaging, researchers have investigated their use over the years to overcome the current limitations of imaging. The aim of these new tools is the replacement of subjective and, therefore, potentially variable medical image analysis by more objective quantitative data, using computational algorithms. Although radiomics has not yet fully entered clinical practice, its potential for the detection, diagnostic, and prognostic characterization of tumors is evident. In this review, we present a wide-ranging overview of radiomics and artificial intelligence applications in meningioma imaging.
Collapse
|
21
|
Brunasso L, Ferini G, Bonosi L, Costanzo R, Musso S, Benigno UE, Gerardi RM, Giammalva GR, Paolini F, Umana GE, Graziano F, Scalia G, Sturiale CL, Di Bonaventura R, Iacopino DG, Maugeri R. A Spotlight on the Role of Radiomics and Machine-Learning Applications in the Management of Intracranial Meningiomas: A New Perspective in Neuro-Oncology: A Review. Life (Basel) 2022; 12:life12040586. [PMID: 35455077 PMCID: PMC9026541 DOI: 10.3390/life12040586] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
Background: In recent decades, the application of machine learning technologies to medical imaging has opened up new perspectives in neuro-oncology, in the so-called radiomics field. Radiomics offer new insight into glioma, aiding in clinical decision-making and patients’ prognosis evaluation. Although meningiomas represent the most common primary CNS tumor and the majority of them are benign and slow-growing tumors, a minor part of them show a more aggressive behavior with an increased proliferation rate and a tendency to recur. Therefore, their treatment may represent a challenge. Methods: According to PRISMA guidelines, a systematic literature review was performed. We included selected articles (meta-analysis, review, retrospective study, and case–control study) concerning the application of radiomics method in the preoperative diagnostic and prognostic algorithm, and planning for intracranial meningiomas. We also analyzed the contribution of radiomics in differentiating meningiomas from other CNS tumors with similar radiological features. Results: In the first research stage, 273 papers were identified. After a careful screening according to inclusion/exclusion criteria, 39 articles were included in this systematic review. Conclusions: Several preoperative features have been identified to increase preoperative intracranial meningioma assessment for guiding decision-making processes. The development of valid and reliable non-invasive diagnostic and prognostic modalities could have a significant clinical impact on meningioma treatment.
Collapse
Affiliation(s)
- Lara Brunasso
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
- Correspondence:
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia SRL, 95125 Catania, Italy;
| | - Lapo Bonosi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Roberta Costanzo
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto E. Benigno
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa M. Gerardi
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe R. Giammalva
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe E. Umana
- Gamma Knife Center, Trauma Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy;
| | - Francesca Graziano
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Gianluca Scalia
- Unit of Neurosurgery, Garibaldi Hospital, 95124 Catania, Italy; (F.G.); (G.S.)
| | - Carmelo L. Sturiale
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Rina Di Bonaventura
- Division of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Domenico G. Iacopino
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (R.C.); (S.M.); (U.E.B.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
22
|
Gui S, Lan M, Wang C, Nie S, Fan B. Application Value of Radiomic Nomogram in the Differential Diagnosis of Prostate Cancer and Hyperplasia. Front Oncol 2022; 12:859625. [PMID: 35494065 PMCID: PMC9047828 DOI: 10.3389/fonc.2022.859625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Prostate cancer and hyperplasia require different treatment strategies and have completely different outcomes; thus, preoperative identification of prostate cancer and hyperplasia is very important. The purpose of this study was to evaluate the application value of magnetic resonance imaging (MRI)-derived radiomic nomogram based on T2-weighted images (T2WI) in differentiating prostate cancer and hyperplasia. Materials and Methods One hundred forty-six patients (66 cases of prostate cancer and 80 cases of prostate hyperplasia) who were confirmed by surgical pathology between September 2019 and September 2019 were selected. We manually delineated T2WI of all patients using ITK-SNAP software and radiomic analysis using Analysis Kit (AK) software. A total of 396 tumor texture features were extracted. Subsequently, the effective features were selected using the LASSO algorithm, and the radiomic feature model was constructed. Next, combined with independent clinical risk factors, a multivariate Logistic regression model was used to establish a radiomic nomogram. The receiver operator characteristic (ROC) curve was used to evaluate the prediction performance of the radiomic nomogram. Finally, the clinical application value of the nomogram was evaluated by decision curve analysis. Results The PSA and the selected imaging features were significantly correlated with the differential diagnosis of prostate cancer and hyperplasia. The radiomic model had good discrimination efficiency for prostate cancer and hyperplasia. The training set (AUC = 0.85; 95% CI: 0.77–0.92) and testing set (AUC = 0.84; 95% CI: 0.72–0.96) were effective. The radiomic nomogram, combined with the radiomic characteristics of MRI and independent clinical risk factors, showed better differentiation efficiency in the training set (AUC = 0.91; 95% CI: 0.85–0.97) and testing set (AUC = 0.90; 95% CI: 0.81–0.99). The decision curve showed the clinical application value of the radiomic nomogram. Conclusion The radiomic nomogram of T2-MRI combined with clinical risk factors can easily identify prostate cancer and hyperplasia. It also provides suggestions for further clinical events.
Collapse
Affiliation(s)
- Shaogao Gui
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Min Lan
- Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Chaoxiong Wang
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Si Nie
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Si Nie, ; Bing Fan,
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- *Correspondence: Si Nie, ; Bing Fan,
| |
Collapse
|
23
|
Galldiks N, Angenstein F, Werner JM, Bauer EK, Gutsche R, Fink GR, Langen KJ, Lohmann P. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathol 2022; 32:e13015. [PMID: 35213083 PMCID: PMC8877736 DOI: 10.1111/bpa.13015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion‐weighted imaging, diffusion‐weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular‐genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robin Gutsche
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
24
|
Vedmurthy P, Pinto ALR, Lin DDM, Comi AM, Ou Y. Study protocol: retrospectively mining multisite clinical data to presymptomatically predict seizure onset for individual patients with Sturge-Weber. BMJ Open 2022; 12:e053103. [PMID: 35121603 PMCID: PMC8819809 DOI: 10.1136/bmjopen-2021-053103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 01/13/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Secondary analysis of hospital-hosted clinical data can save time and cost compared with prospective clinical trials for neuroimaging biomarker development. We present such a study for Sturge-Weber syndrome (SWS), a rare neurovascular disorder that affects 1 in 20 000-50 000 newborns. Children with SWS are at risk for developing neurocognitive deficit by school age. A critical period for early intervention is before 2 years of age, but early diagnostic and prognostic biomarkers are lacking. We aim to retrospectively mine clinical data for SWS at two national centres to develop presymptomatic biomarkers. METHODS AND ANALYSIS We will retrospectively collect clinical, MRI and neurocognitive outcome data for patients with SWS who underwent brain MRI before 2 years of age at two national SWS care centres. Expert review of clinical records and MRI quality control will be used to refine the cohort. The merged multisite data will be used to develop algorithms for abnormality detection, lesion-symptom mapping to identify neural substrate and machine learning to predict individual outcomes (presence or absence of seizures) by 2 years of age. Presymptomatic treatment in 0-2 years and before seizure onset may delay or prevent the onset of seizures by 2 years of age, and thereby improve neurocognitive outcomes. The proposed work, if successful, will be one of the largest and most comprehensive multisite databases for the presymptomatic phase of this rare disease. ETHICS AND DISSEMINATION This study involves human participants and was approved by Boston Children's Hospital Institutional Review Board: IRB-P00014482 and IRB-P00025916 Johns Hopkins School of Medicine Institutional Review Board: NA_00043846. Participants gave informed consent to participate in the study before taking part. The Institutional Review Boards at Kennedy Krieger Institute and Boston Children's Hospital approval have been obtained at each site to retrospectively study this data. Results will be disseminated by presentations, publication and sharing of algorithms generated.
Collapse
Affiliation(s)
- Pooja Vedmurthy
- Department of Neurology and Developmental Medicine, Hugo Moser Research Institute, Baltimore, Maryland, USA
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Anna L R Pinto
- Department of Neurology, Division of Epilepsy, Harvard Medical School, Boston, Massachusetts, USA
| | - Doris D M Lin
- Neuroradiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Anne M Comi
- Department of Neurology and Developmental Medicine, Hugo Moser Research Institute, Baltimore, Maryland, USA
- Department of Neurology and Pediatrics, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology and Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yangming Ou
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Radiology, Boston Children's Hospital; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Duan C, Li N, Li Y, Liu F, Wang J, Liu X, Xu W. Comparison of different radiomic models based on enhanced T1-weighted images to predict the meningioma grade. Clin Radiol 2022; 77:e302-e307. [DOI: 10.1016/j.crad.2022.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
|
26
|
Zhang J, Zhang G, Cao Y, Ren J, Zhao Z, Han T, Chen K, Zhou J. A Magnetic Resonance Imaging-Based Radiomic Model for the Noninvasive Preoperative Differentiation Between Transitional and Atypical Meningiomas. Front Oncol 2022; 12:811767. [PMID: 35127543 PMCID: PMC8815760 DOI: 10.3389/fonc.2022.811767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 11/14/2022] Open
Abstract
Preoperative distinction between transitional meningioma and atypical meningioma would aid the selection of appropriate surgical techniques, as well as the prognosis prediction. Here, we aimed to differentiate between these two tumors using radiomic signatures based on preoperative, contrast-enhanced T1-weighted and T2-weighted magnetic resonance imaging. A total of 141 transitional meningioma and 101 atypical meningioma cases between January 2014 and December 2018 with a histopathologically confirmed diagnosis were retrospectively reviewed. All patients underwent magnetic resonance imaging before surgery. For each patient, 1227 radiomic features were extracted from contrast-enhanced T1-weighted and T2-weighted images each. Least absolute shrinkage and selection operator regression analysis was performed to select the most informative features of different modalities. Subsequently, stepwise multivariate logistic regression was chosen to further select strongly correlated features and build classification models that can distinguish transitional from atypical meningioma. The diagnostic abilities were evaluated by receiver operating characteristic analysis. Furthermore, a nomogram was built by incorporating clinical characteristics, radiological features, and radiomic signatures, and decision curve analysis was used to validate the clinical usefulness of the nomogram. Sex, tumor shape, brain invasion, and four radiomic features differed significantly between transitional meningioma and atypical meningioma. The clinicoradiomic model derived by fusing the above features resulted in the best discrimination ability, with areas under the curves of 0.809 (95% confidence interval, 0.743-0.874) and 0.795 (95% confidence interval, 0.692-0.899) and sensitivity values of 74.0% and 71.4% in the training and validation cohorts, respectively. The clinicoradiomic model demonstrated good performance for the differentiation between transitional and atypical meningioma. It is a quantitative tool that can potentially aid the selection of surgical techniques and the prognosis prediction and can thus be applied in patients with these two meningioma subtypes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Guojin Zhang
- Department of Radiology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuntai Cao
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, China
| | - Jialiang Ren
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Beijing, China
| | - Zhiyong Zhao
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
| | - Kuntao Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
- *Correspondence: Junlin Zhou, ; Kuntao Chen,
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- *Correspondence: Junlin Zhou, ; Kuntao Chen,
| |
Collapse
|
27
|
Zhou H, Xu R, Mei H, Zhang L, Yu Q, Liu R, Fan B. Application of Enhanced T1WI of MRI Radiomics in Glioma Grading. Int J Clin Pract 2022; 2022:3252574. [PMID: 35685548 PMCID: PMC9159237 DOI: 10.1155/2022/3252574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To explore the application value of the radiomics method based on enhanced T1WI in glioma grading. MATERIALS AND METHODS A retrospective analysis was performed using data of 114 patients with glioma, which was confirmed using surgery and pathological tests, at our hospital between January 2017 and November 2020. The patients were randomly divided into the training and test groups in a ratio of 7 : 3. The Analysis Kit (AK) software was used for radiomic analysis, and a total of 461 tumor texture features were extracted. Spearman correlation analysis and the least absolute shrinkage and selection (LASSO) algorithm were employed to perform feature dimensionality reduction on the training group. A radiomics model was then constructed for glioma grading, and the validation group was used for verification. RESULTS The area under the ROC curve (AUC) of the proposed model was calculated to identify its performance in the training group, which was 0.95 (95% CI = 0.905-0.994), accuracy was 84.8%, sensitivity was 100%, and specificity was 77.8%. The AUC of the validation group was 0.952 (95% CI = 0.871-1.000), accuracy was 93.9%, sensitivity was 90.0%, and specificity was 95.6%. CONCLUSIONS The radiomics model based on enhanced T1WI improved the accuracy of glioma grading and better assisted clinical decision-making.
Collapse
Affiliation(s)
- Hongzhang Zhou
- Medical College of Nanchang University, Nanchang 330036, China
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
| | - Rong Xu
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
- The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Haitao Mei
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
- The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Ling Zhang
- Medical College of Nanchang University, Nanchang 330036, China
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
| | - Qiyun Yu
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
- The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Rong Liu
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
- The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Bing Fan
- Jiangxi Provincial People's Hospital, Nanchang 330006, China
- The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| |
Collapse
|
28
|
Yu Q, Liu J, Lin H, Lei P, Fan B. Application of Radiomics Model of CT Images in the Identification of Ureteral Calculus and Phlebolith. Int J Clin Pract 2022; 2022:5478908. [PMID: 36474549 PMCID: PMC9678460 DOI: 10.1155/2022/5478908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the clinical application of the three-dimensional (3D) radiomics model of the CT image in the diagnosis and identification of ureteral calculus and phlebolith. METHOD Sixty-one cases of ureteral calculus and 61 cases of phlebolith were retrospectively investigated. The enrolled patients were randomly categorized into the training set (n = 86) and the testing set (n = 36) with a ratio of 7 : 3. The plain CT scan images of all samples were manually segmented by the ITK-SNAP software, followed by radiomics analysis through the Analysis Kit software. A total of 1316 texture features were extracted. Then, the maximum correlation minimum redundancy criterion and the least absolute shrinkage and selection operator algorithm were used for texture feature selection. The feature subset with the most predictability was selected to establish the 3D radiomics model. The performance of the model was evaluated by the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) was also calculated. Additionally, the decision curve was used to evaluate the clinical application of the model. RESULTS The 10 selected radiomics features were significantly related to the identification and diagnosis of ureteral calculus and phlebolith. The radiomics model showed good identification efficiency for ureteral calculus and phlebolith in the training set (AUC = 0.98; 95%CI: 0.96-1.00) and testing set (AUC = 0.98; 95%CI: 0.95-1.00). The decision curve thus demonstrated the clinical application of the radiomics model. CONCLUSIONS The 3D radiomics model based on plain CT scan images indicated good performance in the identification and prediction of ureteral calculus and phlebolith and was expected to provide an effective detection method for clinical diagnosis.
Collapse
Affiliation(s)
- Qiuyue Yu
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Jiaqi Liu
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Huashan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha 410005, China
| | - Pinggui Lei
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550000, China
| | - Bing Fan
- Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| |
Collapse
|
29
|
Li Y, Xu L, Liu C, Lai H, Zhong T, Chen Z. Comments on "Value of MRI Radiomics Based on Enhanced T1WI Images in Prediction of Meningiomas Grade". Acad Radiol 2021; 28:1826. [PMID: 34740528 DOI: 10.1016/j.acra.2021.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 11/25/2022]
|
30
|
Wang S, Sun Y, Mao N, Duan S, Li Q, Li R, Jiang T, Wang Z, Xie H, Gu Y. Incorporating the clinical and radiomics features of contrast-enhanced mammography to classify breast lesions: a retrospective study. Quant Imaging Med Surg 2021; 11:4418-4430. [PMID: 34603996 DOI: 10.21037/qims-21-103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Background Contrast-enhanced mammography (CEM) is a promising breast imaging technique. A limited number of studies have focused on the radiomics analysis of CEM. We intended to explore whether a model constructed with both clinical and radiomics features of CEM can better classify benign and malignant breast lesions. Methods This retrospective, double-center study included women who underwent CEM between August 2017 and February 2020. The data from Center 1 were used as training set and the data from Center 2 were used as external testing set (training: testing =2:1). Models were constructed with the clinical, radiomics, and clinical + radiomics features of CEM. The clinical features included patient age and clinical image features interpreted by the radiologists. The radiomics features were extracted from high-energy (HE), low-energy (LE), and dual-energy subtraction (DES) images of CEM. The Mann-Whitney U test, Pearson correlation and Boruta's approach were used to select the radiomics features. Random Forest (RF) and logistic regression were used to establish the models. For the testing set, the areas under the curve (AUCs) and 95% confidence intervals (CIs) were employed to evaluate the performance of the models. For the training set, the mean AUCs were obtained by performing internal validation for 100 iterations and then compared by the Kruskal-Wallis and Mann-Whitney U tests. Results A total of 226 women (mean age: 47.4±10.1 years) with 226 pathologically proven breast lesions (101 benign; 125 malignant) were included. For the external testing set, the AUCs were 0.964 (95% CI: 0.918-1.000) for the combined model, 0.947 (95% CI: 0.891-0.997) for the radiomics model, and 0.882 (95% CI: 0.803-0.962) for the clinical model. In the internal validation process, the combined model achieved a mean AUC of 0.934±0.030, which was significantly higher than those of the radiomics (mean AUC =0.921±0.031, adjusted P<0.050) and clinical models (mean AUC =0.907±0.036; adjusted P<0.050). Conclusions Incorporating both clinical and radiomics features of CEM may achieve better classification results for breast lesions.
Collapse
Affiliation(s)
- Simin Wang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuqi Sun
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | | | - Qin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruimin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tingting Jiang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongyi Wang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Qingdao, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Value of radiomics model based on enhanced computed tomography in risk grade prediction of gastrointestinal stromal tumors. Sci Rep 2021; 11:12009. [PMID: 34103619 PMCID: PMC8187426 DOI: 10.1038/s41598-021-91508-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
To explore the application of computed tomography (CT)-enhanced radiomics for the risk-grade prediction of gastrointestinal stromal tumors (GIST). GIST patients (n = 292) confirmed by surgery or endoscopic pathology during June 2013–2019 were reviewed and categorized into low-grade (very low to low risk) and high-grade (medium to high risk) groups. The tumor region of interest (ROI) was depicted layer by layer on each patient’s enhanced CT venous phase images using the ITK-SNAP. The texture features were extracted using the Analysis Kit (AK) and then randomly divided into the training (n = 205) and test (n = 87) groups in a ratio of 7:3. After dimension reduction by the least absolute shrinkage and the selection operator algorithm (LASSO), a prediction model was constructed using the logistic regression method. The clinical data of the two groups were statistically analyzed, and the multivariate regression prediction model was constructed by using statistically significant features. The ROC curve was applied to evaluate the prediction performance of the proposed model. A radiomics-prediction model was constructed based on 10 characteristic parameters selected from 396 quantitative feature parameters extracted from the CT images. The proposed radiomics model exhibited effective risk-grade prediction of GIST. For the training group, the area under curve (AUC), sensitivity, specificity, and accuracy rate were 0.793 (95%CI: 0.733–0.854), 83.3%, 64.3%, and 72.7%, respectively; the corresponding values for the test group were 0.791 (95%CI: 0.696–0.886), 84.2%, 69.3%, and 75.9%, respectively. There were significant differences in age (t value: − 3.133, P = 0.008), maximum tumor diameter (Z value: − 12.163, P = 0.000) and tumor morphology (χ2 value:10.409, P = 0.001) between the two groups, which were used to establish a clinical prediction model. The area under the receiver operating characteristic curve of the clinical model was 0.718 (95%CI: 0.659–0.776). The proposed CT-enhanced radiomics model exhibited better accuracy and effective performance than the clinical model, which can be used for the assessment of risk grades of GIST.
Collapse
|
32
|
Meningioma MRI radiomics and machine learning: systematic review, quality score assessment, and meta-analysis. Neuroradiology 2021; 63:1293-1304. [PMID: 33649882 PMCID: PMC8295153 DOI: 10.1007/s00234-021-02668-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Purpose To systematically review and evaluate the methodological quality of studies using radiomics for diagnostic and predictive purposes in patients with intracranial meningioma. To perform a meta-analysis of machine learning studies for the prediction of intracranial meningioma grading from pre-operative brain MRI. Methods Articles published from the year 2000 on radiomics and machine learning applications in brain imaging of meningioma patients were included. Their methodological quality was assessed by three readers with the radiomics quality score, using the intra-class correlation coefficient (ICC) to evaluate inter-reader reproducibility. A meta-analysis of machine learning studies for the preoperative evaluation of meningioma grading was performed and their risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies tool. Results In all, 23 studies were included in the systematic review, 8 of which were suitable for the meta-analysis. Total (possible range, −8 to 36) and percentage radiomics quality scores were respectively 6.96 ± 4.86 and 19 ± 13% with a moderate to good inter-reader reproducibility (ICC = 0.75, 95% confidence intervals, 95%CI = 0.54–0.88). The meta-analysis showed an overall AUC of 0.88 (95%CI = 0.84–0.93) with a standard error of 0.02. Conclusions Machine learning and radiomics have been proposed for multiple applications in the imaging of meningiomas, with promising results for preoperative lesion grading. However, future studies with adequate standardization and higher methodological quality are required prior to their introduction in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02668-0.
Collapse
|
33
|
Sun YZ, Yan LF, Han Y, Nan HY, Xiao G, Tian Q, Pu WH, Li ZY, Wei XC, Wang W, Cui GB. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T 1-weighted Contrast-enhanced Imaging. BMC Med Imaging 2021; 21:17. [PMID: 33535988 PMCID: PMC7860032 DOI: 10.1186/s12880-020-00545-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 12/29/2022] Open
Abstract
Background Based on conventional MRI images, it is difficult to differentiatepseudoprogression from true progressionin GBM patients after standard treatment, which isa critical issue associated with survival. The aim of this study was to evaluate the diagnostic performance of machine learning using radiomics modelfrom T1-weighted contrast enhanced imaging(T1CE) in differentiating pseudoprogression from true progression after standard treatment for GBM. Methods Seventy-sevenGBM patients, including 51 with true progression and 26 with pseudoprogression,who underwent standard treatment and T1CE, were retrospectively enrolled.Clinical information, including sex, age, KPS score, resection extent, neurological deficit and mean radiation dose, were also recorded collected for each patient. The whole tumor enhancementwas manually drawn on the T1CE image, and a total of texture 9675 features were extracted and fed to a two-step feature selection scheme. A random forest (RF) classifier was trained to separate the patients by their outcomes.The diagnostic efficacies of the radiomics modeland radiologist assessment were further compared by using theaccuracy (ACC), sensitivity and specificity. Results No clinical features showed statistically significant differences between true progression and pseudoprogression.The radiomic classifier demonstrated ACC, sensitivity, and specificity of 72.78%(95% confidence interval [CI]: 0.45,0.91), 78.36%(95%CI: 0.56,1.00) and 61.33%(95%CI: 0.20,0.82).The accuracy, sensitivity and specificity of three radiologists’ assessment were66.23%(95% CI: 0.55,0.76), 61.50%(95% CI: 0.43,0.78) and 68.62%(95% CI: 0.55,0.80); 55.84%(95% CI: 0.45,0.66),69.25%(95% CI: 0.50,0.84) and 49.13%(95% CI: 0.36,0.62); 55.84%(95% CI: 0.45,0.66), 69.23%(95% CI: 0.50,0.84) and 47.06%(95% CI: 0.34,0.61), respectively. Conclusion T1CE–based radiomics showed better classification performance compared with radiologists’ assessment.The radiomics modelwas promising in differentiating pseudoprogression from true progression.
Collapse
Affiliation(s)
- Ying-Zhi Sun
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Lin-Feng Yan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Yu Han
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Hai-Yan Nan
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Gang Xiao
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Qiang Tian
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Wen-Hui Pu
- Student Brigade, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Ze-Yang Li
- Student Brigade, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | | | - Wen Wang
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Guang-Bin Cui
- Department of Radiology and Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, 569 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
34
|
Zhang J, Yao K, Liu P, Liu Z, Han T, Zhao Z, Cao Y, Zhang G, Zhang J, Tian J, Zhou J. A radiomics model for preoperative prediction of brain invasion in meningioma non-invasively based on MRI: A multicentre study. EBioMedicine 2020; 58:102933. [PMID: 32739863 PMCID: PMC7393568 DOI: 10.1016/j.ebiom.2020.102933] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Prediction of brain invasion pre-operatively rather than postoperatively would contribute to the selection of surgical techniques, predicting meningioma grading and prognosis. Here, we aimed to predict the risk of brain invasion in meningioma pre-operatively using a nomogram by incorporating radiomic and clinical features. Methods In this case-control study, 1728 patients from Beijing Tiantan Hospital (training cohort: n = 1070) and Lanzhou University Second Hospital (external validation cohort: n = 658) were diagnosed with meningiomas by histopathology. Radiomic features were extracted from the T1-weighted post-contrast and T2-weighted magnetic resonance imaging. The least absolute shrinkage and selection operator was used to select the most informative features of different modalities. The support vector machine algorithm was used to predict the risk of brain invasion. Furthermore, a nomogram was constructed by incorporating radiomics signature and clinical risk factors, and decision curve analysis was used to validate the clinical usefulness of the nomogram. Findings Sixteen features were significantly correlated with brain invasion. The clinicoradiomic model derived from the fusing MRI sequences and sex resulted in the best discrimination ability for risk prediction of brain invasion, with areas under the curves (AUCs) of 0•857 (95% CI, 0•831–0•887) and 0•819 (95% CI, 0•775–0•863) and sensitivities of 72•8% and 90•1% in the training and validation cohorts, respectively. Interpretation Our clinicoradiomic model showed good performance and high sensitivity for risk prediction of brain invasion in meningioma, and can be applied in patients with meningiomas. Funding This work was supported by the 10.13039/501100001809National Natural Science Foundation of China (81772006, 81922040); the 10.13039/501100004739Youth Innovation Promotion Association CAS (grant numbers 2019136); special fund project for doctoral training program of 10.13039/100012899Lanzhou University Second Hospital (grant numbers YJS-BD-33).
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China
| | - Kuan Yao
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Panpan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuan Xilu 119, Fengtai District, Beijing, China; Department of Neurosurgery, The Municipal Hospital of Weihai, China
| | - Zhenyu Liu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
| | - Zhiyong Zhao
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China
| | - Yuntai Cao
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
| | - Guojin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Nansihuan Xilu 119, Fengtai District, Beijing, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun East Road, Beijing 100190, , China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100080, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Beihang University, Beijing, 100191, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, 100191, China.
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.
| |
Collapse
|