1
|
Daum N, Blaivas M, Goudie A, Hoffmann B, Jenssen C, Neubauer R, Recker F, Moga TV, Zervides C, Dietrich CF. Student ultrasound education, current view and controversies. Role of Artificial Intelligence, Virtual Reality and telemedicine. Ultrasound J 2024; 16:44. [PMID: 39331224 PMCID: PMC11436506 DOI: 10.1186/s13089-024-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/11/2024] [Indexed: 09/28/2024] Open
Abstract
The digitization of medicine will play an increasingly significant role in future years. In particular, telemedicine, Virtual Reality (VR) and innovative Artificial Intelligence (AI) systems offer tremendous potential in imaging diagnostics and are expected to shape ultrasound diagnostics and teaching significantly. However, it is crucial to consider the advantages and disadvantages of employing these new technologies and how best to teach and manage their use. This paper provides an overview of telemedicine, VR and AI in student ultrasound education, presenting current perspectives and controversies.
Collapse
Affiliation(s)
- Nils Daum
- Department of Anesthesiology and Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität Zu Berlin, Berlin, Germany
- Brandenburg Institute for Clinical Ultrasound (BICUS) at Brandenburg Medical University, Neuruppin, Germany
| | - Michael Blaivas
- Department of Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | - Beatrice Hoffmann
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christian Jenssen
- Brandenburg Institute for Clinical Ultrasound (BICUS) at Brandenburg Medical University, Neuruppin, Germany
- Department for Internal Medicine, Krankenhaus Märkisch Oderland, Strausberg, Germany
| | | | - Florian Recker
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Tudor Voicu Moga
- Department of Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, Piața Eftimie Murgu 2, 300041, Timișoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, "Victor Babeș" University of Medicine and Pharmacy, 300041, Timisoara, Romania
| | | | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permanence, Bern, Switzerland.
| |
Collapse
|
2
|
Bala W, Li H, Moon J, Trivedi H, Gichoya J, Balthazar P. Enhancing radiology training with GPT-4: Pilot analysis of automated feedback in trainee preliminary reports. Curr Probl Diagn Radiol 2024:S0363-0188(24)00149-X. [PMID: 39179466 DOI: 10.1067/j.cpradiol.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
RATIONALE AND OBJECTIVES Radiology residents often receive limited feedback on preliminary reports issued during independent call. This study aimed to determine if Large Language Models (LLMs) can supplement traditional feedback by identifying missed diagnoses in radiology residents' preliminary reports. MATERIALS & METHODS A randomly selected subset of 500 (250 train/250 validation) paired preliminary and final reports between 12/17/2022 and 5/22/2023 were extracted and de-identified from our institutional database. The prompts and report text were input into the GPT-4 language model via the GPT-4 API (gpt-4-0314 model version). Iterative prompt tuning was used on a subset of the training/validation sets to direct the model to identify important findings in the final report that were absent in preliminary reports. For testing, a subset of 10 reports with confirmed diagnostic errors were randomly selected. Fourteen residents with on-call experience assessed the LLM-generated discrepancies and completed a survey on their experience using a 5-point Likert scale. RESULTS The model identified 24 unique missed diagnoses across 10 test reports with i% model prediction accuracy as rated by 14 residents. Five additional diagnoses were identified by users, resulting in a model sensitivity of 79.2 %. Post-evaluation surveys showed a mean satisfaction rating of 3.50 and perceived accuracy rating of 3.64 out of 5 for LLM-generated feedback. Most respondents (71.4 %) favored a combination of LLM-generated and traditional feedback. CONCLUSION This pilot study on the use of LLM-generated feedback for radiology resident preliminary reports demonstrated notable accuracy in identifying missed diagnoses and was positively received, highlighting LLMs' potential role in supplementing conventional feedback methods.
Collapse
Affiliation(s)
- Wasif Bala
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, USA.
| | - Hanzhou Li
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, USA
| | - John Moon
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, USA
| | - Hari Trivedi
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, USA
| | - Judy Gichoya
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, USA
| | - Patricia Balthazar
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, USA
| |
Collapse
|
3
|
Dingel J, Kleine AK, Cecil J, Sigl AL, Lermer E, Gaube S. Predictors of Health Care Practitioners' Intention to Use AI-Enabled Clinical Decision Support Systems: Meta-Analysis Based on the Unified Theory of Acceptance and Use of Technology. J Med Internet Res 2024; 26:e57224. [PMID: 39102675 PMCID: PMC11333871 DOI: 10.2196/57224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Artificial intelligence-enabled clinical decision support systems (AI-CDSSs) offer potential for improving health care outcomes, but their adoption among health care practitioners remains limited. OBJECTIVE This meta-analysis identified predictors influencing health care practitioners' intention to use AI-CDSSs based on the Unified Theory of Acceptance and Use of Technology (UTAUT). Additional predictors were examined based on existing empirical evidence. METHODS The literature search using electronic databases, forward searches, conference programs, and personal correspondence yielded 7731 results, of which 17 (0.22%) studies met the inclusion criteria. Random-effects meta-analysis, relative weight analyses, and meta-analytic moderation and mediation analyses were used to examine the relationships between relevant predictor variables and the intention to use AI-CDSSs. RESULTS The meta-analysis results supported the application of the UTAUT to the context of the intention to use AI-CDSSs. The results showed that performance expectancy (r=0.66), effort expectancy (r=0.55), social influence (r=0.66), and facilitating conditions (r=0.66) were positively associated with the intention to use AI-CDSSs, in line with the predictions of the UTAUT. The meta-analysis further identified positive attitude (r=0.63), trust (r=0.73), anxiety (r=-0.41), perceived risk (r=-0.21), and innovativeness (r=0.54) as additional relevant predictors. Trust emerged as the most influential predictor overall. The results of the moderation analyses show that the relationship between social influence and use intention becomes weaker with increasing age. In addition, the relationship between effort expectancy and use intention was stronger for diagnostic AI-CDSSs than for devices that combined diagnostic and treatment recommendations. Finally, the relationship between facilitating conditions and use intention was mediated through performance and effort expectancy. CONCLUSIONS This meta-analysis contributes to the understanding of the predictors of intention to use AI-CDSSs based on an extended UTAUT model. More research is needed to substantiate the identified relationships and explain the observed variations in effect sizes by identifying relevant moderating factors. The research findings bear important implications for the design and implementation of training programs for health care practitioners to ease the adoption of AI-CDSSs into their practice.
Collapse
Affiliation(s)
- Julius Dingel
- Human-AI-Interaction Group, Center for Leadership and People Management, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anne-Kathrin Kleine
- Human-AI-Interaction Group, Center for Leadership and People Management, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia Cecil
- Human-AI-Interaction Group, Center for Leadership and People Management, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Leonie Sigl
- Department of Liberal Arts and Sciences, Technical University of Applied Sciences Augsburg, Augsburg, Germany
| | - Eva Lermer
- Human-AI-Interaction Group, Center for Leadership and People Management, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Liberal Arts and Sciences, Technical University of Applied Sciences Augsburg, Augsburg, Germany
| | - Susanne Gaube
- Human Factors in Healthcare, Global Business School for Health, University College London, London, United Kingdom
| |
Collapse
|
4
|
Stewart J, Freeman S, Eroglu E, Dumitrascu N, Lu J, Goudie A, Sprivulis P, Akhlaghi H, Tran V, Sanfilippo F, Celenza A, Than M, Fatovich D, Walker K, Dwivedi G. Attitudes towards artificial intelligence in emergency medicine. Emerg Med Australas 2024; 36:252-265. [PMID: 38044755 DOI: 10.1111/1742-6723.14345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
OBJECTIVE To assess Australian and New Zealand emergency clinicians' attitudes towards the use of artificial intelligence (AI) in emergency medicine. METHODS We undertook a qualitative interview-based study based on grounded theory. Participants were recruited through ED internal mailing lists, the Australasian College for Emergency Medicine Bulletin, and the research teams' personal networks. Interviews were transcribed, coded and themes presented. RESULTS Twenty-five interviews were conducted between July 2021 and May 2022. Thematic saturation was achieved after 22 interviews. Most participants were from either Western Australia (52%) or Victoria (16%) and were consultants (96%). More participants reported feeling optimistic (10/25) than neutral (6/25), pessimistic (2/25) or mixed (7/25) towards the use of AI in the ED. A minority expressed scepticism regarding the feasibility or value of implementing AI into the ED. Multiple potential risks and ethical issues were discussed by participants including skill loss from overreliance on AI, algorithmic bias, patient privacy and concerns over liability. Participants also discussed perceived inadequacies in existing information technology systems. Participants felt that AI technologies would be used as decision support tools and not replace the roles of emergency clinicians. Participants were not concerned about the impact of AI on their job security. Most (17/25) participants thought that AI would impact emergency medicine within the next 10 years. CONCLUSIONS Emergency clinicians interviewed were generally optimistic about the use of AI in emergency medicine, so long as it is used as a decision support tool and they maintain the ability to override its recommendations.
Collapse
Affiliation(s)
- Jonathon Stewart
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Samuel Freeman
- SensiLab, Monash University, Melbourne, Victoria, Australia
- Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Ege Eroglu
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Nicole Dumitrascu
- School of Medicine, The University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Juan Lu
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Department of Computer Science and Software Engineering, The University of Western Australia, Perth, Western Australia, Australia
| | - Adrian Goudie
- Department of Emergency Medicine, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Peter Sprivulis
- Strategy and Governance Division, Western Australia Department of Health, Perth, Western Australia, Australia
| | - Hamed Akhlaghi
- Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Viet Tran
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
- Department of Emergency Medicine, Royal Hobart Hospital, Hobart, Tasmania, Australia
| | - Frank Sanfilippo
- School of Population and Global Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Antonio Celenza
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Emergency Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Martin Than
- Department of Emergency Medicine, Christchurch Hospital, Christchurch, New Zealand
| | - Daniel Fatovich
- Emergency Medicine, Royal Perth Hospital, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Katie Walker
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Girish Dwivedi
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
- Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
- Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Santomartino SM, Kung J, Yi PH. Systematic review of artificial intelligence development and evaluation for MRI diagnosis of knee ligament or meniscus tears. Skeletal Radiol 2024; 53:445-454. [PMID: 37584757 DOI: 10.1007/s00256-023-04416-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
OBJECTIVE The purpose of this systematic review was to summarize the results of original research studies evaluating the characteristics and performance of deep learning models for detection of knee ligament and meniscus tears on MRI. MATERIALS AND METHODS We searched PubMed for studies published as of February 2, 2022 for original studies evaluating development and evaluation of deep learning models for MRI diagnosis of knee ligament or meniscus tears. We summarized study details according to multiple criteria including baseline article details, model creation, deep learning details, and model evaluation. RESULTS 19 studies were included with radiology departments leading the publications in deep learning development and implementation for detecting knee injuries via MRI. Among the studies, there was a lack of standard reporting and inconsistently described development details. However, all included studies reported consistently high model performance that significantly supplemented human reader performance. CONCLUSION From our review, we found radiology departments have been leading deep learning development for injury detection on knee MRIs. Although studies inconsistently described DL model development details, all reported high model performance, indicating great promise for DL in knee MRI analysis.
Collapse
Affiliation(s)
- Samantha M Santomartino
- Drexel University College of Medicine, Philadelphia, PA, USA
- University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Justin Kung
- Department of Orthopaedic Surgery, University of South Carolina, Columbia, SC, USA
| | - Paul H Yi
- University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, University of Maryland School of Medicine, Baltimore, MD, USA.
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore Street First Floor Rm. 1172, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Chavoshi M, Zamani S, Mirshahvalad SA. Diagnostic performance of deep learning models versus radiologists in COVID-19 pneumonia: A systematic review and meta-analysis. Clin Imaging 2024; 107:110092. [PMID: 38301371 DOI: 10.1016/j.clinimag.2024.110092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE Although several studies have compared the performance of deep learning (DL) models and radiologists for the diagnosis of COVID-19 pneumonia on CT of the chest, these results have not been collectively evaluated. We performed a meta-analysis of original articles comparing the performance of DL models versus radiologists in detecting COVID-19 pneumonia. METHODS A systematic search was conducted on the three main medical literature databases, Scopus, Web of Science, and PubMed, for articles published as of February 1st, 2023. We included original scientific articles that compared DL models trained to detect COVID-19 pneumonia on CT to radiologists. Meta-analysis was performed to determine DL versus radiologist performance in terms of model sensitivity and specificity, taking into account inter and intra-study heterogeneity. RESULTS Twenty-two articles met the inclusion criteria. Based on the meta-analytic calculations, DL models had significantly higher pooled sensitivity (0.933 vs. 0.829, p < 0.001) compared to radiologists with similar pooled specificity (0.905 vs. 0.897, p = 0.746). In the differentiation of COVID-19 versus community-acquired pneumonia, the DL models had significantly higher sensitivity compared to radiologists (0.915 vs. 0.836, p = 0.001). CONCLUSIONS DL models have high performance for screening of COVID-19 pneumonia on chest CT, offering the possibility of these models for augmenting radiologists in clinical practice.
Collapse
Affiliation(s)
- Mohammadreza Chavoshi
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Zamani
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Mirshahvalad
- Joint Department of Medical Imaging, University Health Network, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Hassankhani A, Amoukhteh M, Valizadeh P, Jannatdoust P, Sabeghi P, Gholamrezanezhad A. Radiology as a Specialty in the Era of Artificial Intelligence: A Systematic Review and Meta-analysis on Medical Students, Radiology Trainees, and Radiologists. Acad Radiol 2024; 31:306-321. [PMID: 37349157 DOI: 10.1016/j.acra.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/24/2023]
Abstract
RATIONALE AND OBJECTIVES Artificial intelligence (AI) is changing radiology by automating tasks and assisting in abnormality detection and understanding perceptions of medical students, radiology trainees, and radiologists is vital for preparing them for AI integration in radiology. MATERIALS AND METHODS A systematic review and meta-analysis were conducted following established guidelines. PubMed, Scopus, and Web of Science were searched up to March 5, 2023. Eligible studies reporting outcomes of interest were included, and relevant data were extracted and analyzed using STATA software version 17.0. RESULTS A meta-analysis of 21 studies revealed that 22.36% of individuals were less likely to choose radiology as a career due to concerns about advances in AI. Medical students showed higher rates of concern (31.94%) compared to radiology trainees and radiologists (9.16%) (P < .01). Radiology trainees and radiologists also demonstrated higher basic AI knowledge (71.84% vs 35.38%). Medical students had higher rates of belief that AI poses a threat to the radiology job market (42.66% vs 6.25%, P < .02). The pooled rate of respondents who believed that "AI will revolutionize radiology in the future" was 79.48%, with no significant differences based on participants' positions. The pooled rate of responders who believed in the integration of AI in medical curricula was 81.75% among radiology trainees and radiologists and 70.23% among medical students. CONCLUSION The study revealed growing concerns regarding the impact of AI in radiology, particularly among medical students, which can be addressed by revamping education, providing direct AI experience, addressing limitations, and emphasizing medico-legal issues to prepare for AI integration in radiology.
Collapse
Affiliation(s)
- Amir Hassankhani
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Avenue Ste 2315, Los Angeles, CA 90089 (A.H., M.A., P.V., P.J., P.S., A.G.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (A.H., M.A.).
| | - Melika Amoukhteh
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Avenue Ste 2315, Los Angeles, CA 90089 (A.H., M.A., P.V., P.J., P.S., A.G.); Department of Radiology, Mayo Clinic, Rochester, Minnesota (A.H., M.A.)
| | - Parya Valizadeh
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Avenue Ste 2315, Los Angeles, CA 90089 (A.H., M.A., P.V., P.J., P.S., A.G.)
| | - Payam Jannatdoust
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Avenue Ste 2315, Los Angeles, CA 90089 (A.H., M.A., P.V., P.J., P.S., A.G.)
| | - Paniz Sabeghi
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Avenue Ste 2315, Los Angeles, CA 90089 (A.H., M.A., P.V., P.J., P.S., A.G.)
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine, University of Southern California (USC), 1441 Eastlake Avenue Ste 2315, Los Angeles, CA 90089 (A.H., M.A., P.V., P.J., P.S., A.G.)
| |
Collapse
|
8
|
Wang K, Xing Z, Kong Z, Yu Y, Chen Y, Zhao X, Song B, Wang X, Wu P, Wang X, Xue Y. Artificial intelligence as diagnostic aiding tool in cases of Prostate Imaging Reporting and Data System category 3: the results of retrospective multi-center cohort study. Abdom Radiol (NY) 2023; 48:3757-3765. [PMID: 37740046 DOI: 10.1007/s00261-023-03989-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/24/2023]
Abstract
PURPOSE To study the effect of artificial intelligence (AI) on the diagnostic performance of radiologists in interpreting prostate mpMRI images of the PI-RADS 3 category. METHODS In this multicenter study, 16 radiologists were invited to interpret prostate mpMRI cases with and without AI. The study included a total of 87 cases initially diagnosed as PI-RADS 3 by radiologists without AI, with 28 cases being clinically significant cancers (csPCa) and 59 cases being non-csPCa. The study compared the diagnostic efficacy between readings without and with AI, the reading time, and confidence levels. RESULTS AI changed the diagnosis in 65 out of 87 cases. Among the 59 non-csPCa cases, 41 were correctly downgraded to PI-RADS 1-2, and 9 were incorrectly upgraded to PI-RADS 4-5. For the 28 csPCa cases, 20 were correctly upgraded to PI-RADS 4-5, and 5 were incorrectly downgraded to PI-RADS 1-2. Radiologists assisted by AI achieved higher diagnostic specificity and accuracy than those without AI [0.695 vs 0.000 and 0.736 vs 0.322, both P < 0.001]. Sensitivity with AI was not significantly different from that without AI [0.821 vs 1.000, P = 1.000]. AI reduced reading time significantly compared to without AI (mean: 351 seconds, P < 0.001). The diagnostic confidence score with AI was significantly higher than that without AI (Cohen Kappa: -0.016). CONCLUSION With the help of AI, there was an improvement in the diagnostic accuracy of PI-RADS category 3 cases by radiologists. There is also an increase in diagnostic efficiency and diagnostic confidence.
Collapse
Affiliation(s)
- Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhangli Xing
- Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Zixuan Kong
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China
| | - Yang Yu
- Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610044, Sichuan Province, China
| | - Xiangpeng Zhao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610044, Sichuan Province, China
| | - Xiangpeng Wang
- Beijing Smart Tree Medical Technology Co. Ltd., No. 97, Changping Road, Shahe Town, Changping District, Beijing, 102200, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd., No. 97, Changping Road, Shahe Town, Changping District, Beijing, 102200, China
| | - Xiaoying Wang
- Peking University First Hospital, No. 8, Xishku Road, Xicheng District, Beijing, 100034, China.
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
9
|
Pupic N, Ghaffari-Zadeh A, Hu R, Singla R, Darras K, Karwowska A, Forster BB. An evidence-based approach to artificial intelligence education for medical students: A systematic review. PLOS DIGITAL HEALTH 2023; 2:e0000255. [PMID: 38011214 PMCID: PMC10681314 DOI: 10.1371/journal.pdig.0000255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/14/2023] [Indexed: 11/29/2023]
Abstract
The exponential growth of artificial intelligence (AI) in the last two decades has been recognized by many as an opportunity to improve the quality of patient care. However, medical education systems have been slow to adapt to the age of AI, resulting in a paucity of AI-specific education in medical schools. The purpose of this systematic review is to evaluate the current evidence-based recommendations for the inclusion of an AI education curriculum in undergraduate medicine. Six databases were searched from inception to April 23, 2022 for cross sectional and cohort studies of fair quality or higher on the Newcastle-Ottawa scale, systematic, scoping, and integrative reviews, randomized controlled trials, and Delphi studies about AI education in undergraduate medical programs. The search yielded 991 results, of which 27 met all the criteria and seven more were included using reference mining. Despite the limitations of a high degree of heterogeneity among the study types and a lack of follow-up studies evaluating the impacts of current AI strategies, a thematic analysis of the key AI principles identified six themes needed for a successful implementation of AI in medical school curricula. These themes include ethics, theory and application, communication, collaboration, quality improvement, and perception and attitude. The themes of ethics, theory and application, and communication were further divided into subthemes, including patient-centric and data-centric ethics; knowledge for practice and knowledge for communication; and communication for clinical decision-making, communication for implementation, and communication for knowledge dissemination. Based on the survey studies, medical professionals and students, who generally have a low baseline knowledge of AI, have been strong supporters of adding formal AI education into medical curricula, suggesting more research needs to be done to push this agenda forward.
Collapse
Affiliation(s)
- Nikola Pupic
- Faculty of Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| | - Aryan Ghaffari-Zadeh
- Faculty of Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| | - Ricky Hu
- Faculty of Medicine, Queen's University, Ontario, Kingston, Canada
| | - Rohit Singla
- Faculty of Medicine, University of British Columbia, British Columbia, Vancouver, Canada
| | - Kathryn Darras
- Faculty of Medicine, Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada
| | - Anna Karwowska
- Association of Faculties of Medicine of Canada, Ontario, Ottawa, Canada
- Faculty of Medicine, Department of Pediatrics, University of Ottawa, Ontario, Ottawa, Canada
| | - Bruce B Forster
- Faculty of Medicine, Department of Radiology, University of British Columbia, British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Chen Y, Wu Z, Wang P, Xie L, Yan M, Jiang M, Yang Z, Zheng J, Zhang J, Zhu J. Radiology Residents' Perceptions of Artificial Intelligence: Nationwide Cross-Sectional Survey Study. J Med Internet Res 2023; 25:e48249. [PMID: 37856181 PMCID: PMC10623237 DOI: 10.2196/48249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) is transforming various fields, with health care, especially diagnostic specialties such as radiology, being a key but controversial battleground. However, there is limited research systematically examining the response of "human intelligence" to AI. OBJECTIVE This study aims to comprehend radiologists' perceptions regarding AI, including their views on its potential to replace them, its usefulness, and their willingness to accept it. We examine the influence of various factors, encompassing demographic characteristics, working status, psychosocial aspects, personal experience, and contextual factors. METHODS Between December 1, 2020, and April 30, 2021, a cross-sectional survey was completed by 3666 radiology residents in China. We used multivariable logistic regression models to examine factors and associations, reporting odds ratios (ORs) and 95% CIs. RESULTS In summary, radiology residents generally hold a positive attitude toward AI, with 29.90% (1096/3666) agreeing that AI may reduce the demand for radiologists, 72.80% (2669/3666) believing AI improves disease diagnosis, and 78.18% (2866/3666) feeling that radiologists should embrace AI. Several associated factors, including age, gender, education, region, eye strain, working hours, time spent on medical images, resilience, burnout, AI experience, and perceptions of residency support and stress, significantly influence AI attitudes. For instance, burnout symptoms were associated with greater concerns about AI replacement (OR 1.89; P<.001), less favorable views on AI usefulness (OR 0.77; P=.005), and reduced willingness to use AI (OR 0.71; P<.001). Moreover, after adjusting for all other factors, perceived AI replacement (OR 0.81; P<.001) and AI usefulness (OR 5.97; P<.001) were shown to significantly impact the intention to use AI. CONCLUSIONS This study profiles radiology residents who are accepting of AI. Our comprehensive findings provide insights for a multidimensional approach to help physicians adapt to AI. Targeted policies, such as digital health care initiatives and medical education, can be developed accordingly.
Collapse
Affiliation(s)
- Yanhua Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Ziye Wu
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Peicheng Wang
- Vanke School of Public Health, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Linbo Xie
- Vanke School of Public Health, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Mengsha Yan
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Maoqing Jiang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingfeng Zhang
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo, China
| | - Jiming Zhu
- Vanke School of Public Health, Tsinghua University, Beijing, China
- Institute for Healthy China, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Martiniussen MA, Larsen M, Larsen ASF, Hovda T, Koch HW, Bjørnerud A, Hofvind S. Norwegian radiologists' expectations of artificial intelligence in mammographic screening - A cross-sectional survey. Eur J Radiol 2023; 167:111061. [PMID: 37657381 DOI: 10.1016/j.ejrad.2023.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
PURPOSE To explore Norwegian breast radiologists' expectations of adding artificial intelligence (AI) in the interpretation procedure of screening mammograms. METHODS All breast radiologists involved in interpretation of screening mammograms in BreastScreen Norway during 2021 and 2022 (n = 98) were invited to take part in this anonymous cross-sectional survey about use of AI in mammographic screening. The questionnaire included background information of the respondents, their expectations, considerations of biases, and ethical and social implications of implementing AI in screen reading. Data was collected digitally and analyzed using descriptive statistics. RESULTS The response rate was 61% (60/98), and 67% (40/60) of the respondents were women. Sixty percent (36/60) reported ≥10 years' experience in screen reading, while 82% (49/60) reported no or limited experience with AI in health care. Eighty-two percent of the respondents were positive to explore AI in the interpretation procedure in mammographic screening. When used as decision support, 68% (41/60) expected AI to increase the radiologists' sensitivity for cancer detection. As potential challenges, 55% (33/60) reported lack of trust in the AI system and 45% (27/60) reported discrepancy between radiologists and AI systems as possible challenges. The risk of automation bias was considered high among 47% (28/60). Reduced time spent reading mammograms was rated as a potential benefit by 70% (42/60). CONCLUSION The radiologists reported positive expectations of AI in the interpretation procedure of screening mammograms. Efforts to minimize the risk of automation bias and increase trust in the AI systems are important before and during future implementation of the tool.
Collapse
Affiliation(s)
- Marit A Martiniussen
- Department of Radiology, Østfold Hospital Trust, Kalnes, Norway; University of Oslo, Institute of Clinical Medicine, Oslo, Norway
| | - Marthe Larsen
- Section for Breast Cancer Screening, Cancer Registry of Norway, Oslo, Norway
| | | | - Tone Hovda
- Department of Radiology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Henrik W Koch
- Department of Radiology, Stavanger University Hospital, Stavanger, Norway; Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
| | - Atle Bjørnerud
- Computational Radiology & Artificial Intelligence (CRAI) Unit, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway; Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Solveig Hofvind
- Section for Breast Cancer Screening, Cancer Registry of Norway, Oslo, Norway; Department of Health and Care Sciences, UiT, The Artic University of Norway, Tromsø, Norway.
| |
Collapse
|
12
|
Deng F, Moy L. The U.S. Radiology Residency Match: Update and Multidecade Trends. Radiology 2023; 308:e232064. [PMID: 37698476 DOI: 10.1148/radiol.232064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Affiliation(s)
- Francis Deng
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287 (F.D.); and Department of Radiology, New York University, New York, NY (L.M.)
| | - Linda Moy
- From the Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 600 N Wolfe St, Baltimore, MD 21287 (F.D.); and Department of Radiology, New York University, New York, NY (L.M.)
| |
Collapse
|
13
|
Bhandary S, Kuhn D, Babaiee Z, Fechter T, Benndorf M, Zamboglou C, Grosu AL, Grosu R. Investigation and benchmarking of U-Nets on prostate segmentation tasks. Comput Med Imaging Graph 2023; 107:102241. [PMID: 37201475 DOI: 10.1016/j.compmedimag.2023.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023]
Abstract
In healthcare, a growing number of physicians and support staff are striving to facilitate personalized radiotherapy regimens for patients with prostate cancer. This is because individual patient biology is unique, and employing a single approach for all is inefficient. A crucial step for customizing radiotherapy planning and gaining fundamental information about the disease, is the identification and delineation of targeted structures. However, accurate biomedical image segmentation is time-consuming, requires considerable experience and is prone to observer variability. In the past decade, the use of deep learning models has significantly increased in the field of medical image segmentation. At present, a vast number of anatomical structures can be demarcated on a clinician's level with deep learning models. These models would not only unload work, but they can offer unbiased characterization of the disease. The main architectures used in segmentation are the U-Net and its variants, that exhibit outstanding performances. However, reproducing results or directly comparing methods is often limited by closed source of data and the large heterogeneity among medical images. With this in mind, our intention is to provide a reliable source for assessing deep learning models. As an example, we chose the challenging task of delineating the prostate gland in multi-modal images. First, this paper provides a comprehensive review of current state-of-the-art convolutional neural networks for 3D prostate segmentation. Second, utilizing public and in-house CT and MR datasets of varying properties, we created a framework for an objective comparison of automatic prostate segmentation algorithms. The framework was used for rigorous evaluations of the models, highlighting their strengths and weaknesses.
Collapse
Affiliation(s)
- Shrajan Bhandary
- Cyber-Physical Systems Division, Institute of Computer Engineering, Faculty of Informatics, Technische Universität Wien, Vienna, 1040, Austria.
| | - Dejan Kuhn
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, 79106, Germany; Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, 79106, Germany
| | - Zahra Babaiee
- Cyber-Physical Systems Division, Institute of Computer Engineering, Faculty of Informatics, Technische Universität Wien, Vienna, 1040, Austria
| | - Tobias Fechter
- Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, 79106, Germany; Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, 79106, Germany
| | - Matthias Benndorf
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Constantinos Zamboglou
- Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, 79106, Germany; Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, 79106, Germany; German Oncology Center, European University, Limassol, 4108, Cyprus
| | - Anca-Ligia Grosu
- Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg, 79106, Germany; Department of Radiation Oncology, Medical Center University of Freiburg, Freiburg, 79106, Germany
| | - Radu Grosu
- Cyber-Physical Systems Division, Institute of Computer Engineering, Faculty of Informatics, Technische Universität Wien, Vienna, 1040, Austria; Department of Computer Science, State University of New York at Stony Brook, NY, 11794, USA
| |
Collapse
|
14
|
Hashmi OU, Chan N, de Vries CF, Gangi A, Jehanli L, Lip G. Artificial intelligence in radiology: trainees want more. Clin Radiol 2023; 78:e336-e341. [PMID: 36746724 DOI: 10.1016/j.crad.2022.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/08/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023]
Abstract
AIM To understand the attitudes of UK radiology trainees towards artificial intelligence (AI) in Radiology, in particular, assessing the demand for AI education. MATERIALS AND METHODS A survey, which ran over a period of 2 months, was created using the Google Forms platform and distributed via email to all UK training programmes. RESULTS The survey was completed by 149 trainee radiologists with at least one response from all UK training programmes. Of the responses, 83.7% were interested in AI use in radiology but 71.4% had no experience of working with AI and 79.9% would like to be involved in AI-based projects. Almost all (98.7%) felt that AI should be taught during their training, yet only one respondent stated that their training programme had implemented AI teaching. Respondents indicated that basic understanding, implementation, and critical appraisal of AI software should be prioritized in teaching. Of the trainees, 74.2% agreed that AI would enhance the job of diagnostic radiologists over the next 20 years. The main concerns raised were information technology/implementation and ethical/regulatory issues. CONCLUSION Despite the current limited availability of AI-based activities and teaching within UK training programmes, UK trainees' attitudes towards AI are mostly positive with many showing interest in being involved with AI-based projects, activities, and teaching.
Collapse
Affiliation(s)
- O-U Hashmi
- East of England Imaging Academy, The Cotman Centre, Norfolk and Norwich University Hospital, Norwich, NR4 7UB, UK.
| | - N Chan
- Department of Interventional Neuroradiology, The Royal London Hospital, Whitechapel Road, London, UK
| | - C F de Vries
- Aberdeen Centre for Health Data Science, Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| | - A Gangi
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - L Jehanli
- North West School of Radiology, Manchester, UK
| | - G Lip
- National Health Service Grampian (NHSG), Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
15
|
Liu DS, Abu-Shaban K, Halabi SS, Cook TS. Changes in Radiology Due to Artificial Intelligence That Can Attract Medical Students to the Specialty. JMIR MEDICAL EDUCATION 2023; 9:e43415. [PMID: 36939823 PMCID: PMC10131993 DOI: 10.2196/43415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The role of artificial intelligence (AI) in radiology has grown exponentially in the recent years. One of the primary worries by medical students is that AI will cause the roles of a radiologist to become automated and thus obsolete. Therefore, there is a greater hesitancy by medical students to choose radiology as a specialty. However, it is in this time of change that the specialty needs new thinkers and leaders. In this succinct viewpoint, 2 medical students involved in AI and 2 radiologists specializing in AI or clinical informatics posit that not only are these fears false, but the field of radiology will be transformed in such a way due to AI that there will be novel reasons to choose radiology. These new factors include greater impact on patient care, new space for innovation, interdisciplinary collaboration, increased patient contact, becoming master diagnosticians, and greater opportunity for global health initiatives, among others. Finally, since medical students view mentorship as a critical resource when deciding their career path, medical educators must also be cognizant of these changes and not give much credence to the prevalent fearmongering. As the field and practice of radiology continue to undergo significant change due to AI, it is urgent and necessary for the conversation to expand from expert to expert to expert to student. Medical students should be encouraged to choose radiology specifically because of the changes brought on by AI rather than being deterred by it.
Collapse
Affiliation(s)
- David Shalom Liu
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Kamil Abu-Shaban
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Safwan S Halabi
- Department of Medical Imaging, Ann & Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Tessa Sundaram Cook
- Department of Radiology, Hospital of the University of Pennsylvania, Pennsylvania, PA, United States
| |
Collapse
|
16
|
Ahmad MN, Abdallah SA, Abbasi SA, Abdallah AM. Student perspectives on the integration of artificial intelligence into healthcare services. Digit Health 2023; 9:20552076231174095. [PMID: 37312954 PMCID: PMC10259127 DOI: 10.1177/20552076231174095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/19/2023] [Indexed: 06/15/2023] Open
Abstract
Background Healthcare workers are often overworked, underfunded, and face many challenges. Integration of artificial intelligence into healthcare service provision can tackle these challenges by relieving burdens on healthcare workers. Since healthcare students are our future healthcare workers, we assessed the knowledge, attitudes, and perspectives of current healthcare students at Qatar University on the implementation of artificial intelligence into healthcare services. Methods This was a cross-sectional study of QU-Health Cluster students via an online survey over a three-week period in November 2021. Chi-squared tests and gamma coefficients were used to compare differences between categorical variables. Results One hundred and ninety-three QU-Health students responded. Most participants had a positive attitude towards artificial intelligence, finding it useful and reliable. The most popular perceived advantage of artificial intelligence was its ability to speed up work processes. Around 40% expressed concern about a threat to job security from artificial intelligence, and a majority believed that artificial intelligence cannot provide sympathetic care (57.9%). Participants who felt that artificial intelligence can better make diagnoses than humans also agreed that artificial intelligence could replace their job (p = 0.005). Male students had more knowledge (p = 0.005) and received more training (p = 0.005) about healthcare artificial intelligence. Participants cited a lack of expert mentorship as a barrier to obtaining knowledge about artificial intelligence, followed by lack of dedicated courses and funding. Conclusions More resources are required for students to develop a good understanding about artificial intelligence. Education needs to be supported by expert mentorship. Further work is needed on how best to integrate artificial intelligence teaching into university curricula.
Collapse
Affiliation(s)
- Muna N Ahmad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Saja A Abdallah
- University of Birmingham Medical School, Edgbaston Campus, Birmingham, UK
| | - Saddam A Abbasi
- Department of Mathematics, Statistics, and Physics, Qatar University, Doha, Qatar
- Statistical Consulting Unit, College of Arts and Science, Qatar University, Doha, Qatar
| | - Atiyeh M Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
17
|
Tejani AS, Elhalawani H, Moy L, Kohli M, Kahn CE. Artificial Intelligence and Radiology Education. Radiol Artif Intell 2023; 5:e220084. [PMID: 36721409 PMCID: PMC9885376 DOI: 10.1148/ryai.220084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 11/02/2022] [Indexed: 06/18/2023]
Abstract
Implementation of artificial intelligence (AI) applications into clinical practice requires AI-savvy radiologists to ensure the safe, ethical, and effective use of these systems for patient care. Increasing demand for AI education reflects recognition of the translation of AI applications from research to clinical practice, with positive trainee attitudes regarding the influence of AI on radiology. However, barriers to AI education, such as limited access to resources, predispose to insufficient preparation for the effective use of AI in practice. In response, national organizations have sponsored formal and self-directed learning courses to provide introductory content on imaging informatics and AI. Foundational courses, such as the National Imaging Informatics Course - Radiology and the Radiological Society of North America Imaging AI Certificate, lay a framework for trainees to explore the creation, deployment, and critical evaluation of AI applications. This report includes additional resources for formal programming courses, video series from leading organizations, and blogs from AI and informatics communities. Furthermore, the scope of "AI and radiology education" includes AI-augmented radiology education, with emphasis on the potential for "precision education" that creates personalized experiences for trainees by accounting for varying learning styles and inconsistent, possibly deficient, clinical case volume. © RSNA, 2022 Keywords: Use of AI in Education, Impact of AI on Education, Artificial Intelligence, Medical Education, Imaging Informatics, Natural Language Processing, Precision Education.
Collapse
|
18
|
Shiang T, Garwood E, Debenedectis CM. Artificial intelligence-based decision support system (AI-DSS) implementation in radiology residency: Introducing residents to AI in the clinical setting. Clin Imaging 2022; 92:32-37. [DOI: 10.1016/j.clinimag.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
|
19
|
Khosravi B, Rouzrokh P, Faghani S, Moassefi M, Vahdati S, Mahmoudi E, Chalian H, Erickson BJ. Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review. Diagnostics (Basel) 2022; 12:2512. [PMID: 36292201 PMCID: PMC9600598 DOI: 10.3390/diagnostics12102512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023] Open
Abstract
Machine-learning (ML) and deep-learning (DL) algorithms are part of a group of modeling algorithms that grasp the hidden patterns in data based on a training process, enabling them to extract complex information from the input data. In the past decade, these algorithms have been increasingly used for image processing, specifically in the medical domain. Cardiothoracic imaging is one of the early adopters of ML/DL research, and the COVID-19 pandemic resulted in more research focus on the feasibility and applications of ML/DL in cardiothoracic imaging. In this scoping review, we systematically searched available peer-reviewed medical literature on cardiothoracic imaging and quantitatively extracted key data elements in order to get a big picture of how ML/DL have been used in the rapidly evolving cardiothoracic imaging field. During this report, we provide insights on different applications of ML/DL and some nuances pertaining to this specific field of research. Finally, we provide general suggestions on how researchers can make their research more than just a proof-of-concept and move toward clinical adoption.
Collapse
Affiliation(s)
- Bardia Khosravi
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Pouria Rouzrokh
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Shahriar Faghani
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mana Moassefi
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sanaz Vahdati
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elham Mahmoudi
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Hamid Chalian
- Department of Radiology, Cardiothoracic Imaging, University of Washington, Seattle, WA 98195, USA
| | - Bradley J. Erickson
- Radiology Informatics Lab (RIL), Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
20
|
Ngo B, Nguyen D, vanSonnenberg E. The Cases for and against Artificial Intelligence in the Medical School Curriculum. Radiol Artif Intell 2022; 4:e220074. [PMID: 36204540 PMCID: PMC9530767 DOI: 10.1148/ryai.220074] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/02/2023]
Abstract
Although artificial intelligence (AI) has immense potential to shape the future of medicine, its place in undergraduate medical education currently is unclear. Numerous arguments exist both for and against including AI in the medical school curriculum. AI likely will affect all medical specialties, perhaps radiology more so than any other. The purpose of this article is to present a balanced perspective on whether AI should be included officially in the medical school curriculum. After presenting the balanced point-counterpoint arguments, the authors provide a compromise. Keywords: Artificial Intelligence, Medical Education, Medical School Curriculum, Medical Students, Radiology, Use of AI in Education © RSNA, 2022.
Collapse
Affiliation(s)
- Brandon Ngo
- From the University of Arizona College of Medicine – Phoenix, HSEB C536, 475 N 5th St, Phoenix, AZ 85004
| | - Diep Nguyen
- From the University of Arizona College of Medicine – Phoenix, HSEB C536, 475 N 5th St, Phoenix, AZ 85004
| | - Eric vanSonnenberg
- From the University of Arizona College of Medicine – Phoenix, HSEB C536, 475 N 5th St, Phoenix, AZ 85004
| |
Collapse
|
21
|
Chen M, Zhang B, Cai Z, Seery S, Gonzalez MJ, Ali NM, Ren R, Qiao Y, Xue P, Jiang Y. Acceptance of clinical artificial intelligence among physicians and medical students: A systematic review with cross-sectional survey. Front Med (Lausanne) 2022; 9:990604. [PMID: 36117979 PMCID: PMC9472134 DOI: 10.3389/fmed.2022.990604] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Artificial intelligence (AI) needs to be accepted and understood by physicians and medical students, but few have systematically assessed their attitudes. We investigated clinical AI acceptance among physicians and medical students around the world to provide implementation guidance. Materials and methods We conducted a two-stage study, involving a foundational systematic review of physician and medical student acceptance of clinical AI. This enabled us to design a suitable web-based questionnaire which was then distributed among practitioners and trainees around the world. Results Sixty studies were included in this systematic review, and 758 respondents from 39 countries completed the online questionnaire. Five (62.50%) of eight studies reported 65% or higher awareness regarding the application of clinical AI. Although, only 10–30% had actually used AI and 26 (74.28%) of 35 studies suggested there was a lack of AI knowledge. Our questionnaire uncovered 38% awareness rate and 20% utility rate of clinical AI, although 53% lacked basic knowledge of clinical AI. Forty-five studies mentioned attitudes toward clinical AI, and over 60% from 38 (84.44%) studies were positive about AI, although they were also concerned about the potential for unpredictable, incorrect results. Seventy-seven percent were optimistic about the prospect of clinical AI. The support rate for the statement that AI could replace physicians ranged from 6 to 78% across 40 studies which mentioned this topic. Five studies recommended that efforts should be made to increase collaboration. Our questionnaire showed 68% disagreed that AI would become a surrogate physician, but believed it should assist in clinical decision-making. Participants with different identities, experience and from different countries hold similar but subtly different attitudes. Conclusion Most physicians and medical students appear aware of the increasing application of clinical AI, but lack practical experience and related knowledge. Overall, participants have positive but reserved attitudes about AI. In spite of the mixed opinions around clinical AI becoming a surrogate physician, there was a consensus that collaborations between the two should be strengthened. Further education should be conducted to alleviate anxieties associated with change and adopting new technologies.
Collapse
Affiliation(s)
- Mingyang Chen
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziting Cai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Samuel Seery
- Faculty of Health and Medicine, Division of Health Research, Lancaster University, Lancaster, United Kingdom
| | | | - Nasra M. Ali
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Ran Ren
- Global Health Research Center, Dalian Medical University, Dalian, China
| | - Youlin Qiao
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Youlin Qiao,
| | - Peng Xue
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Peng Xue,
| | - Yu Jiang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Yu Jiang,
| |
Collapse
|
22
|
Santomartino SM, Siegel E, Yi PH. Academic Radiology Departments Should Lead Artificial Intelligence Initiatives. Acad Radiol 2022; 30:971-974. [PMID: 35965155 DOI: 10.1016/j.acra.2022.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES With a track record of innovation and unique access to digital data, radiologists are distinctly positioned to usher in a new medical era of artificial intelligence (AI). MATERIALS AND METHODS In this Perspective piece, we summarize AI initiatives that academic radiology departments should consider related to the traditional pillars of education, research, and clinical excellence, while also introducing a new opportunity for engagement with industry. RESULTS We provide early successful examples of each as well as suggestions to guide departments towards future success. CONCLUSION Our goal is to assist academic radiology leaders in bringing their departments into the AI era and realizing its full potential in our field.
Collapse
Affiliation(s)
- Samantha M Santomartino
- University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, W. Baltimore Street, First Floor, Rm. 1172, 21201 Baltimore, MD
| | - Eliot Siegel
- University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, W. Baltimore Street, First Floor, Rm. 1172, 21201 Baltimore, MD
| | - Paul H Yi
- University of Maryland Medical Intelligent Imaging (UM2ii) Center, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, W. Baltimore Street, First Floor, Rm. 1172, 21201 Baltimore, MD; Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
23
|
Heo S, Ha J, Jung W, Yoo S, Song Y, Kim T, Cha WC. Decision effect of a deep-learning model to assist a head computed tomography order for pediatric traumatic brain injury. Sci Rep 2022; 12:12454. [PMID: 35864281 PMCID: PMC9304372 DOI: 10.1038/s41598-022-16313-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022] Open
Abstract
The study aims to measure the effectiveness of an AI-based traumatic intracranial hemorrhage prediction model in the decisions of emergency physicians regarding ordering head computed tomography (CT) scans. We developed a deep-learning model for predicting traumatic intracranial hemorrhages (DEEPTICH) using a national trauma registry with 1.8 million cases. For simulation, 24 cases were selected from previous emergency department cases. For each case, physicians made decisions on ordering a head CT twice: initially without the DEEPTICH assistance, and subsequently with the DEEPTICH assistance. Of the 528 responses from 22 participants, 201 initial decisions were different from the DEEPTICH recommendations. Of these 201 initial decisions, 94 were changed after DEEPTICH assistance (46.8%). For the cases in which CT was initially not ordered, 71.4% of the decisions were changed (p < 0.001), and for the cases in which CT was initially ordered, 37.2% (p < 0.001) of the decisions were changed after DEEPTICH assistance. When using DEEPTICH, 46 (11.6%) unnecessary CTs were avoided (p < 0.001) and 10 (11.4%) traumatic intracranial hemorrhages (ICHs) that would have been otherwise missed were found (p = 0.039). We found that emergency physicians were likely to accept AI based on how they perceived its safety.
Collapse
Affiliation(s)
- Sejin Heo
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Juhyung Ha
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN, USA
| | - Weon Jung
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Suyoung Yoo
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Yeejun Song
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Taerim Kim
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Won Chul Cha
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea. .,Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|