Li BV, Jiang B. Responses of forest structure, functions, and biodiversity to livestock disturbances: A global meta-analysis.
GLOBAL CHANGE BIOLOGY 2021;
27:4745-4757. [PMID:
34322964 DOI:
10.1111/gcb.15781]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Habitat degradation and land-use change driven by the livestock sector are among the major causes of global biodiversity loss. Forests are crucial in maintaining biodiversity and mitigating climate change. Apart from continuing deforestation, forests also face increasing pressure from livestock grazing in the system, which is less understood compared to grasslands. Through a meta-analysis of 156 articles with 1936 data entries, this study assesses the effect of livestock on forest biodiversity, structure, and functions, varying with livestock types, livestock density, grazing history, and climatic factors. Our results show that livestock overall had a negative impact on the forest structure and functions, reduced species abundance but increased richness. Medium and large mammals, plant communities, and soil were more negatively affected compared to other groups such as birds and invertebrates. Livestock also influenced the role of forests in mitigating climate change. They changed forest carbon stock by reducing plant biomass; however, they did not significantly impact the soil carbon stock or soil greenhouse gas emissions. Ecosystem attributes were more affected in warmer and drier regions and by single species grazing than the mixed grazing. Past livestock grazing history moderates the impacts of livestock, with the strongest negative effect occurred with a history of 1-5 years. Nonetheless, livestock activities also had a positive impact on forest management, such as reducing forest flammability. Our results also indicate the lack of studies on how higher trophic levels respond to livestock disturbances and how grazing intensity moderates the effect, which includes grazing duration and livestock density. The complex responses of forests to livestock in different conditions call for more adaptive management depending on the conservation targets and evolution history.
Collapse