1
|
Lima DA, Gonçalves LO, Reis-Cunha JL, Guimarães PAS, Ruiz JC, Liarte DB, Murta SMF. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasit Vectors 2023; 16:167. [PMID: 37217925 DOI: 10.1186/s13071-023-05775-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.
Collapse
Affiliation(s)
- Davi Alvarenga Lima
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil
| | - Leilane Oliveira Gonçalves
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Paul Anderson Souza Guimarães
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | - Jeronimo Conceição Ruiz
- Informática de Biossistemas, Genômica e Bioengenharia, Instituto René Rachou (IRR/Fiocruz Minas), Belo Horizonte, MG, Brazil
| | | | - Silvane Maria Fonseca Murta
- Genômica Funcional de Parasitos, Instituto René Rachou (IRR/Fiocruz Minas), Av. Augusto de Lima 1715, Belo Horizonte, MG, CEP 30190-002, Brazil.
| |
Collapse
|
2
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
3
|
Santi AMM, Ribeiro JM, Reis-Cunha JL, Burle-Caldas GDA, Santos IFM, Silva PA, Resende DDM, Bartholomeu DC, Teixeira SMR, Murta SMF. Disruption of multiple copies of the Prostaglandin F2alpha synthase gene affects oxidative stress response and infectivity in Trypanosoma cruzi. PLoS Negl Trop Dis 2022; 16:e0010845. [PMID: 36260546 PMCID: PMC9581433 DOI: 10.1371/journal.pntd.0010845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a serious chronic parasitic disease, currently treated with Nifurtimox (NFX) and Benznidazole (BZ). In addition to high toxicity, these drugs have low healing efficacy, especially in the chronic phase of the disease. The existence of drug-resistant T. cruzi strains and the occurrence of cross-resistance between BZ and NFX have also been described. In this context, it is urgent to study the metabolism of these drugs in T. cruzi, to better understand the mechanisms of resistance. Prostaglandin F2α synthase (PGFS) is an enzyme that has been correlated with parasite resistance to BZ, but the mechanism by which resistance occurs is still unclear. Our results show that the genome of the CL Brener clone of T. cruzi, contains five PGFS sequences and three potential pseudogenes. Using CRISPR/Cas9 we generated knockout cell lines in which all PGFS sequences were disrupted, as shown by PCR and western blotting analyses. The PGFS deletion did not alter the growth of the parasites or their susceptibility to BZ and NFX when compared to wild-type (WT) parasites. Interestingly, NTR-1 transcripts were shown to be upregulated in ΔPGFS mutants. Furthermore, the ΔPGFS parasites were 1.6 to 1.7-fold less tolerant to oxidative stress generated by menadione, presented lower levels of lipid bodies than the control parasites during the stationary phase, and were less infective than control parasites.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Martins Ribeiro
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Paula Alves Silva
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela de Melo Resende
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Silvane Maria Fonseca Murta
- Grupo Genômica Funcional de Parasitos, Instituto René Rachou, Fiocruz Minas, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
4
|
Almeida-Silva J, Menezes DS, Fernandes JMP, Almeida MC, Vasco-Dos-Santos DR, Saraiva RM, Viçosa AL, Perez SAC, Andrade SG, Suarez-Fontes AM, Vannier-Santos MA. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: Searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol 2022; 12:926699. [PMID: 35967878 PMCID: PMC9372510 DOI: 10.3389/fcimb.2022.926699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chagas disease (CD) affects at least 6 million people in 21 South American countries besides several thousand in other nations all over the world. It is estimated that at least 14,000 people die every year of CD. Since vaccines are not available, chemotherapy remains of pivotal relevance. About 30% of the treated patients cannot complete the therapy because of severe adverse reactions. Thus, the search for novel drugs is required. Here we tested the benznidazole (BZ) combination with the repositioned drug disulfiram (DSF) and its derivative diethyldithiocarbamate (DETC) upon Trypanosoma cruzi in vitro and in vivo. DETC-BZ combination was synergistic diminishing epimastigote proliferation and enhancing selective indexes up to over 10-fold. DETC was effective upon amastigotes of the BZ- partially resistant Y and the BZ-resistant Colombiana strains. The combination reduced proliferation even using low concentrations (e.g., 2.5 µM). Scanning electron microscopy revealed membrane discontinuities and cell body volume reduction. Transmission electron microscopy revealed remarkable enlargement of endoplasmic reticulum cisternae besides, dilated mitochondria with decreased electron density and disorganized kinetoplast DNA. At advanced stages, the cytoplasm vacuolation apparently impaired compartmentation. The fluorescent probe H2-DCFDA indicates the increased production of reactive oxygen species associated with enhanced lipid peroxidation in parasites incubated with DETC. The biochemical measurement indicates the downmodulation of thiol expression. DETC inhibited superoxide dismutase activity on parasites was more pronounced than in infected mice. In order to approach the DETC effects on intracellular infection, peritoneal macrophages were infected with Colombiana trypomastigotes. DETC addition diminished parasite numbers and the DETC-BZ combination was effective, despite the low concentrations used. In the murine infection, the combination significantly enhanced animal survival, decreasing parasitemia over BZ. Histopathology revealed that low doses of BZ-treated animals presented myocardial amastigote, not observed in combination-treated animals. The picrosirius collagen staining showed reduced myocardial fibrosis. Aminotransferase de aspartate, Aminotransferase de alanine, Creatine kinase, and urea plasma levels demonstrated that the combination was non-toxic. As DSF and DETC can reduce the toxicity of other drugs and resistance phenotypes, such a combination may be safe and effective.
Collapse
Affiliation(s)
- Juliana Almeida-Silva
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Diego Silva Menezes
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Juan Mateus Pereira Fernandes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Márcio Cerqueira Almeida
- Parasite Biology Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Deyvison Rhuan Vasco-Dos-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Roberto Magalhães Saraiva
- Laboratory of Clinical Research on Chagas Disease, Evandro Chagas Infectious Disease Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Alessandra Lifsitch Viçosa
- Experimental Pharmacotechnics Laboratory, Department of Galenic Innovation, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sandra Aurora Chavez Perez
- Project Management Technical Assistance, Institute of Drug Technology - Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sônia Gumes Andrade
- Experimental Chagas Disease Laboratory, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, Brazil
| | - Ana Márcia Suarez-Fontes
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcos André Vannier-Santos
- Innovations in Therapies, Education and Bioproducts Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
5
|
Hickson J, Athayde LFA, Miranda TG, Junior PAS, Dos Santos AC, da Cunha Galvão LM, da Câmara ACJ, Bartholomeu DC, de Souza RDCM, Murta SMF, Nahum LA. Trypanosoma cruzi iron superoxide dismutases: insights from phylogenetics to chemotherapeutic target assessment. Parasit Vectors 2022; 15:194. [PMID: 35668508 PMCID: PMC9169349 DOI: 10.1186/s13071-022-05319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
Background Components of the antioxidant defense system in Trypanosoma cruzi are potential targets for new drug development. Superoxide dismutases (SODs) constitute key components of antioxidant defense systems, removing excess superoxide anions by converting them into oxygen and hydrogen peroxide. The main goal of the present study was to investigate the genes coding for iron superoxide dismutase (FeSOD) in T. cruzi strains from an evolutionary perspective. Methods In this study, molecular biology methods and phylogenetic studies were combined with drug assays. The FeSOD-A and FeSOD-B genes of 35 T. cruzi strains, belonging to six discrete typing units (Tcl–TcVI), from different hosts and geographical regions were amplified by PCR and sequenced using the Sanger method. Evolutionary trees were reconstructed based on Bayesian inference and maximum likelihood methods. Drugs that potentially interacted with T. cruzi FeSODs were identified and tested against the parasites. Results Our results suggest that T. cruzi FeSOD types are members of distinct families. Gene copies of FeSOD-A (n = 2), FeSOD-B (n = 4) and FeSOD-C (n = 4) were identified in the genome of the T. cruzi reference clone CL Brener. Phylogenetic inference supported the presence of two functional variants of each FeSOD type across the T. cruzi strains. Phylogenetic trees revealed a monophyletic group of FeSOD genes of T. cruzi TcIV strains in both distinct genes. Altogether, our results support the hypothesis that gene duplication followed by divergence shaped the evolution of T. cruzi FeSODs. Two drugs, mangafodipir and polaprezinc, that potentially interact with T. cruzi FeSODs were identified and tested in vitro against amastigotes and trypomastigotes: mangafodipir had a low trypanocidal effect and polaprezinc was inactive. Conclusions Our study contributes to a better understanding of the molecular biodiversity of T. cruzi FeSODs. Herein we provide a successful approach to the study of gene/protein families as potential drug targets. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05319-2.
Collapse
Affiliation(s)
- Jéssica Hickson
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Felipe Almeida Athayde
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thainá Godinho Miranda
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Policarpo Ademar Sales Junior
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Coqueiro Dos Santos
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lúcia Maria da Cunha Galvão
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte State, Natal, Rio Grande do Norte, Brazil
| | - Antônia Cláudia Jácome da Câmara
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte State, Natal, Rio Grande do Norte, Brazil
| | - Daniella Castanheira Bartholomeu
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rita de Cássia Moreira de Souza
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil
| | - Silvane Maria Fonseca Murta
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil.
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation (Functional genomics of parasites group; Biosystems informatics, bioengineering and genomic group), Belo Horizonte, Minas Gerais, Brazil. .,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil. .,Promove College of Technology, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Santi AMM, Murta/ SMF. Antioxidant defence system as a rational target for Chagas disease and Leishmaniasis chemotherapy. Mem Inst Oswaldo Cruz 2022; 117:e210401. [PMID: 35239945 PMCID: PMC8896756 DOI: 10.1590/0074-02760210401] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Chagas disease and leishmaniasis are neglected tropical diseases caused by the protozoan parasites Trypanosoma cruzi and Leishmania spp., respectively. They are among the most important parasitic diseases, affecting millions of people worldwide, being a considerable global challenge. However, there is no human vaccine available against T. cruzi and Leishmania infections, and their control is based mainly on chemotherapy. Treatments for Chagas disease and leishmaniasis have multiple limitations, mainly due to the high toxicity of the available drugs, long-term treatment protocols, and the occurrence of drug-resistant parasite strains. In the case of Chagas disease, there is still the problem of low cure rates in the chronic stage of the disease. Therefore, new therapeutic agents and novel targets for drug development are urgently needed. Antioxidant defence in Trypanosomatidae is a potential target for chemotherapy because the organisms present a unique mechanism for trypanothione-dependent detoxification of peroxides, which differs from that found in vertebrates. Cellular thiol redox homeostasis is maintained by the biosynthesis and reduction of trypanothione, involving different enzymes that act in concert. This study provides an overview of the antioxidant defence focusing on iron superoxide dismutase A, tryparedoxin peroxidase, and ascorbate peroxidase and how the enzymes play an important role in the defence against oxidative stress and their involvement in drug resistance mechanisms in T. cruzi and Leishmania spp.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| | - Silvane Maria Fonseca Murta/
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Genômica Funcional de Parasitos, Belo Horizonte, MG, Brasil
| |
Collapse
|
7
|
Beilstein S, El Phil R, Sahraoui SS, Scapozza L, Kaiser M, Mäser P. Laboratory Selection of Trypanosomatid Pathogens for Drug Resistance. Pharmaceuticals (Basel) 2022; 15:ph15020135. [PMID: 35215248 PMCID: PMC8879015 DOI: 10.3390/ph15020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The selection of parasites for drug resistance in the laboratory is an approach frequently used to investigate the mode of drug action, estimate the risk of emergence of drug resistance, or develop molecular markers for drug resistance. Here, we focused on the How rather than the Why of laboratory selection, discussing different experimental set-ups based on research examples with Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. The trypanosomatids are particularly well-suited to illustrate different strategies of selecting for drug resistance, since it was with African trypanosomes that Paul Ehrlich performed such an experiment for the first time, more than a century ago. While breakthroughs in reverse genetics and genome editing have greatly facilitated the identification and validation of candidate resistance mutations in the trypanosomatids, the forward selection of drug-resistant mutants still relies on standard in vivo models and in vitro culture systems. Critical questions are: is selection for drug resistance performed in vivo or in vitro? With the mammalian or with the insect stages of the parasites? Under steady pressure or by sudden shock? Is a mutagen used? While there is no bona fide best approach, we think that a methodical consideration of these questions provides a helpful framework for selection of parasites for drug resistance in the laboratory.
Collapse
Affiliation(s)
- Sabina Beilstein
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Radhia El Phil
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Suzanne Sherihan Sahraoui
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (R.E.P.); (S.S.S.); (L.S.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Kaiser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Pascal Mäser
- Department Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; (S.B.); (M.K.)
- Swiss TPH, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
- Correspondence: ; Tel.: +41-61-284-8338
| |
Collapse
|
8
|
de Obeso Fernandez del Valle A, Scheckhuber CQ. Superoxide Dismutases in Eukaryotic Microorganisms: Four Case Studies. Antioxidants (Basel) 2022; 11:antiox11020188. [PMID: 35204070 PMCID: PMC8868140 DOI: 10.3390/antiox11020188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/08/2023] Open
Abstract
Various components in the cell are responsible for maintaining physiological levels of reactive oxygen species (ROS). Several different enzymes exist that can convert or degrade ROS; among them are the superoxide dismutases (SODs). If left unchecked, ROS can cause damage that leads to pathology, can contribute to aging, and may, ultimately, cause death. SODs are responsible for converting superoxide anions to hydrogen peroxide by dismutation. Here we review the role of different SODs on the development and pathogenicity of various eukaryotic microorganisms relevant to human health. These include the fungal aging model, Podospora anserina; various members of the genus Aspergillus that can potentially cause aspergillosis; the agents of diseases such as Chagas and sleeping disease, Trypanosoma cruzi and Trypanosoma brucei, respectively; and, finally, pathogenic amoebae, such as Acanthamoeba spp. In these organisms, SODs fulfill essential and often regulatory functions that come into play during processes such as the development, host infection, propagation, and control of gene expression. We explore the contribution of SODs and their related factors in these microorganisms, which have an established role in health and disease.
Collapse
|
9
|
Santi AMM, Silva PA, Santos IFM, Murta SMF. Downregulation of FeSOD-A expression in Leishmania infantum alters trivalent antimony and miltefosine susceptibility. Parasit Vectors 2021; 14:366. [PMID: 34266485 PMCID: PMC8281622 DOI: 10.1186/s13071-021-04838-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Superoxide dismutase (SOD), a central component of the antioxidant defence system of most organisms, removes excess superoxide anions by converting them to oxygen and hydrogen peroxide. As iron (Fe) SOD is absent in the human host, this enzyme is a promising molecular target for drug development against trypanosomatids. Results We obtained Leishmania infantum mutant clones with lower FeSOD-A expression and investigated their phenotypes. Our attempts to delete this enzyme-coding gene using three different methodologies (conventional allelic replacement or two different CRISPR/methods) failed, as FeSOD-A gene copies were probably retained by aneuploidy or gene amplification. Promastigote forms of WT and mutant parasites were used in quantitative reverse-transcription polymerase chain reaction (RT-qPCR) and western blot analyses, and these parasite forms were also used to assess drug susceptibility. RT-qPCR and western blot analyses revealed that FeSOD-A transcript and protein levels were lower in FeSOD-A−/−/+L. infantum mutant clones than in the wild-type (WT) parasite. The decrease in FeSOD-A expression in L. infantum did not interfere with the parasite growth or susceptibility to amphotericin B. Surprisingly, FeSOD-A−/−/+L. infantum mutant clones were 1.5- to 2.0-fold more resistant to trivalent antimony and 2.4- to 2.7-fold more resistant to miltefosine. To investigate whether the decrease in FeSOD-A expression was compensated by other enzymes, the transcript levels of five FeSODs and six enzymes from the antioxidant defence system were assessed by RT-qPCR. The transcript level of the enzyme ascorbate peroxidase increased in both the FeSOD-A−/−/+ mutants tested. The FeSOD-A−/−/+ mutant parasites were 1.4- to 1.75-fold less tolerant to oxidative stress generated by menadione. Infection analysis using THP-1 macrophages showed that 72 h post-infection, the number of infected macrophages and their intracellular multiplication rate were lower in the FeSOD-A−/−/+ mutant clones than in the WT parasite. Conclusions The unsuccessful attempts to delete FeSOD-A suggest that this gene is essential in L. infantum. This enzyme plays an important role in the defence against oxidative stress and infectivity in THP-1 macrophages. FeSOD-A-deficient L. infantum parasites deregulate their metabolic pathways related to antimony and miltefosine resistance. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04838-8.
Collapse
Affiliation(s)
- Ana Maria Murta Santi
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil
| | - Paula Alves Silva
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil
| | - Isabella Fernandes Martins Santos
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil
| | - Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos (GFP), Instituto René Rachou, Fiocruz Minas, Avenida Augusto de Lima 1715, Belo Horizonte, MG, CEP: 30190-002, Brazil.
| |
Collapse
|
10
|
Intrinsic and Chemotherapeutic Stressors Modulate ABCC-Like Transport in Trypanosoma cruzi. Molecules 2021; 26:molecules26123510. [PMID: 34207619 PMCID: PMC8227891 DOI: 10.3390/molecules26123510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi is the etiologic agent for Chagas disease, which affects 6-7 million people worldwide. The biological diversity of the parasite reflects on inefficiency of benznidazole, which is a first choice chemotherapy, on chronic patients. ABC transporters that extrude xenobiotics, metabolites, and mediators are overexpressed in resistant cells and contribute to chemotherapy failure. An ABCC-like transport was identified in the Y strain and extrudes thiol-conjugated compounds. As thiols represent a line of defense towards reactive species, we aimed to verify whether ABCC-like transport could participate in the regulation of responses to stressor stimuli. In order to achieve this, ABCC-like activity was measured by flow cytometry using fluorescent substrates. The present study reveals the participation of glutathione and ceramides on ABCC-like transport, which are both implicated in stress. Hemin modulated the ABCC-like efflux which suggests that this protein might be involved in cellular detoxification. Additionally, all strains evaluated exhibited ABCC-like activity, while no ABCB1-like activity was detected. Results suggest that ABCC-like efflux is not associated with natural resistance to benznidazole, since sensitive strains showed higher activity than the resistant ones. Although benznidazole is not a direct substrate, ABCC-like efflux increased after prolonged drug exposure and this indicates that the ABCC-like efflux mediated protection against cell stress depends on the glutathione biosynthesis pathway.
Collapse
|
11
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
12
|
Francisco AF, Jayawardhana S, Olmo F, Lewis MD, Wilkinson SR, Taylor MC, Kelly JM. Challenges in Chagas Disease Drug Development. Molecules 2020; 25:E2799. [PMID: 32560454 PMCID: PMC7355550 DOI: 10.3390/molecules25122799] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023] Open
Abstract
The protozoan parasite Trypanosoma cruzi causes Chagas disease, an important public health problem throughout Latin America. Current therapeutic options are characterised by limited efficacy, long treatment regimens and frequent toxic side-effects. Advances in this area have been compromised by gaps in our knowledge of disease pathogenesis, parasite biology and drug activity. Nevertheless, several factors have come together to create a more optimistic scenario. Drug-based research has become more systematic, with increased collaborations between the academic and commercial sectors, often within the framework of not-for-profit consortia. High-throughput screening of compound libraries is being widely applied, and new technical advances are helping to streamline the drug development pipeline. In addition, drug repurposing and optimisation of current treatment regimens, informed by laboratory research, are providing a basis for new clinical trials. Here, we will provide an overview of the current status of Chagas disease drug development, highlight those areas where progress can be expected, and describe how fundamental research is helping to underpin the process.
Collapse
Affiliation(s)
- Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - Shane R. Wilkinson
- School of Biological and Chemical Sciences, Queen Mary University of London Mile End Road, London E1 4NS, UK;
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK; (A.F.F.); (S.J.); (F.O.); (M.D.L.); (M.C.T.)
| |
Collapse
|
13
|
Patterson S, Fairlamb AH. Current and Future Prospects of Nitro-compounds as Drugs for Trypanosomiasis and Leishmaniasis. Curr Med Chem 2019; 26:4454-4475. [PMID: 29701144 DOI: 10.2174/0929867325666180426164352] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/01/2018] [Accepted: 04/13/2018] [Indexed: 01/13/2023]
Abstract
Interest in nitroheterocyclic drugs for the treatment of infectious diseases has undergone a resurgence in recent years. Here we review the current status of monocyclic and bicyclic nitroheterocyclic compounds as existing or potential new treatments for visceral leishmaniasis, Chagas' disease and human African trypanosomiasis. Both monocyclic (nifurtimox, benznidazole and fexinidazole) and bicyclic (pretomanid (PA-824) and delamanid (OPC-67683)) nitro-compounds are prodrugs, requiring enzymatic activation to exert their parasite toxicity. Current understanding of the nitroreductases involved in activation and possible mechanisms by which parasites develop resistance is discussed along with a description of the pharmacokinetic / pharmacodynamic behaviour and chemical structure-activity relationships of drugs and experimental compounds.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan H Fairlamb
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
14
|
Quebrada Palacio LP, González MN, Hernandez-Vasquez Y, Perrone AE, Parodi-Talice A, Bua J, Postan M. Phenotypic diversity and drug susceptibility of Trypanosoma cruzi TcV clinical isolates. PLoS One 2018; 13:e0203462. [PMID: 30183775 PMCID: PMC6124804 DOI: 10.1371/journal.pone.0203462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/21/2018] [Indexed: 12/24/2022] Open
Abstract
Trypanosoma cruzi is a genetically heterogeneous group of organisms that cause Chagas disease. It has been long suspected that the clinical outcome of the disease and response to therapeutic agents are, at least in part, related to the genetic characteristics of the parasite. Herein, we sought to validate the significance of the genotype of T. cruzi isolates recovered from patients with different clinical forms of Chagas disease living in Argentina on their biological behaviour and susceptibility to drugs. Genotype identification of the newly established isolates confirmed the reported predominance of TcV, with a minor frequency of TcI. Epimastigote sensitivity assays demonstrated marked dissimilar responses to benznidazole, nifurtimox, pentamidine and dihydroartemisinin in vitro. Two TcV isolates exhibiting divergent response to benznidazole in epimastigote assays were further tested for the expression of anti-oxidant proteins. Benznidazole-resistant BOL-FC10A epimastigotes had decreased expression of Old Yellow Enzyme and cytosolic superoxide dismutase, and overexpression of mitochondrial superoxide dismutase and tryparedoxin- 1, compared to benznidazole-susceptible AR-SE23C parasites. Drug sensitivity assays on intracellular amastigotes and trypomastigotes reproduced the higher susceptibility of AR-SE23C over BOL-FC10A parasites to benznidazole observed in epimastigotes assays. However, the susceptibility/resistance profile of amastigotes and trypomastigotes to nifurtimox, pentamidine and dihydroartemisinin varied markedly with respect to that of epimastigotes. C3H/He mice infected with AR-SE23C trypomastigotes had higher levels of parasitemia and mortality rate during the acute phase of infection compared to mice infected with BOL-FC10A trypomastigotes. Treatment of infected mice with benznidazole or nifurtimox was efficient to reduce patent parasitemia induced by either isolate. Nevertheless, qPCR performed at 70 dpi revealed parasite DNA in the blood of mice infected with AR-SE23C but not in BOL-FC10A infected mice. These results demonstrate high level of intra-type diversity which may represent an important obstacle for the testing of chemotherapeutic agents.
Collapse
Affiliation(s)
- Luz P. Quebrada Palacio
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Mariela N. González
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Yolanda Hernandez-Vasquez
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Alina E. Perrone
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Adriana Parodi-Talice
- Unidad de Biología Molecular, Institut Pasteur de Montevideo, Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jacqueline Bua
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
| | - Miriam Postan
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Investigación, Instituto Nacional de Parasitología “Dr. Mario Fatala Chabén”, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
15
|
Franco J, Scarone L, Comini MA. Drugs and Drug Resistance in African and American Trypanosomiasis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018. [DOI: 10.1016/bs.armc.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci Rep 2017; 7:14407. [PMID: 29089615 PMCID: PMC5663738 DOI: 10.1038/s41598-017-14986-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.
Collapse
|
17
|
García-Huertas P, Mejía-Jaramillo AM, Machado CR, Guimarães AC, Triana-Chávez O. Prostaglandin F2α synthase in Trypanosoma cruzi plays critical roles in oxidative stress and susceptibility to benznidazole. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170773. [PMID: 28989779 PMCID: PMC5627119 DOI: 10.1098/rsos.170773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/10/2017] [Indexed: 05/17/2023]
Abstract
Nifurtimox (Nfx) and benznidazole (Bz) are the current drugs used for the treatment of Chagas disease. The mechanisms of action and resistance to these drugs in this parasite are poorly known. Prostaglandin F2α synthase or old yellow enzyme (OYE), an NAD(P)H flavin oxidoreductase, has been involved in the activation pathway of other trypanocidal drugs such as Nfx; however, its role in the mechanism of action of Bz is uncertain. In this paper, we performed some experiments of functional genomics in the parasite Trypanosoma cruzi with the aim to test the role of this gene in the resistance to Bz. For this, we overexpressed this gene in sensitive parasites and evaluated the resistance level to the drug and other chemical compounds such as hydrogen peroxide, methyl methanesulfonate and gamma radiation. Interestingly, parasites overexpressing OYE showed alteration of enzymes associated with oxidative stress protection such as superoxide dismutase A and trypanothione reductase. Furthermore, transfected parasites were more sensitive to drugs, genetic damage and oxidative stress. Additionally, transfected parasites were less infective than wild-type parasites and they showed higher alteration in mitochondrial membrane potential and cell cycle after treatment with Bz. These results supply essential information to help further the understanding of the mechanism of action of Bz in T. cruzi.
Collapse
Affiliation(s)
- Paola García-Huertas
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
| | - Ana María Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
| | - Carlos Renato Machado
- Departamento de Bioquímica e Inmunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Cláudia Guimarães
- Departamento de Bioquímica e Inmunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Instituto de Biología, Universidad de Antioquia, Calle 70 52-21, Medellín, Colombia
- Author for correspondence: Omar Triana-Chávez e-mail:
| |
Collapse
|
18
|
Pech-Canul ÁDLC, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res 2017; 2017:3751403. [PMID: 28656101 PMCID: PMC5474541 DOI: 10.1155/2017/3751403] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma cruzi is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. T. cruzi expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle. Hence, T. cruzi displays several modifications when they move from one host to another. Due to the complexity of this parasite's cell surface, this review presents some membrane proteins organized as large families, as they are the most abundant and/or relevant throughout the T. cruzi membrane.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
| | - Victor Monteón
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| | - Rosa-Lidia Solís-Oviedo
- Centre for Biomolecular Sciences, The University of Nottingham, University Park, University Blvd, Nottingham NG7 2RD, UK
- Investigaciones Biomédicas, Universidad Autónoma de Campeche, Av. Patricio Trueba s/n, Col. Lindavista, 24039 Campeche, CAM, Mexico
| |
Collapse
|
19
|
dos Santos PF, Moreira DS, Baba EH, Volpe CM, Ruiz JC, Romanha AJ, Murta SM. Molecular characterization of lipoamide dehydrogenase gene in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Exp Parasitol 2016; 170:1-9. [DOI: 10.1016/j.exppara.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 07/18/2016] [Accepted: 08/22/2016] [Indexed: 01/15/2023]
|
20
|
Machado-Silva A, Cerqueira PG, Grazielle-Silva V, Gadelha FR, Peloso EDF, Teixeira SMR, Machado CR. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:8-22. [DOI: 10.1016/j.mrrev.2015.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
|
21
|
Grazielle-Silva V, Zeb TF, Bolderson J, Campos PC, Miranda JB, Alves CL, Machado CR, McCulloch R, Teixeira SMR. Distinct Phenotypes Caused by Mutation of MSH2 in Trypanosome Insect and Mammalian Life Cycle Forms Are Associated with Parasite Adaptation to Oxidative Stress. PLoS Negl Trop Dis 2015; 9:e0003870. [PMID: 26083967 PMCID: PMC4470938 DOI: 10.1371/journal.pntd.0003870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/02/2015] [Indexed: 11/19/2022] Open
Abstract
Background DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR) pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes. Methodology/Principal Findings To investigate the involvement of MMR in the oxidative stress response, null mutants of MSH2 were generated in Trypanosoma brucei procyclic forms and in Trypanosoma cruzi epimastigote forms. Unexpectedly, the MSH2 null mutants showed increased resistance to H2O2 exposure when compared with wild type cells, a phenotype distinct from the previously observed increased sensitivity of T. brucei bloodstream forms MSH2 mutants. Complementation studies indicated that the increased oxidative resistance of procyclic T. brucei was due to adaptation to MSH2 loss. In both parasites, loss of MSH2 was shown to result in increased tolerance to alkylation by MNNG and increased accumulation of 8-oxo-guanine in the nuclear and mitochondrial genomes, indicating impaired MMR. In T. cruzi, loss of MSH2 also increases the parasite capacity to survive within host macrophages. Conclusions/Significance Taken together, these results indicate MSH2 displays conserved, dual roles in MMR and in the response to oxidative stress. Loss of the latter function results in life cycle dependent differences in phenotypic outcomes in T. brucei MSH2 mutants, most likely because of the greater burden of oxidative stress in the insect stage of the parasite. Trypanosoma brucei and Trypanosoma cruzi are protozoa parasites that cause sleeping sickness and Chagas disease, respectively, two neglected tropical diseases endemic in sub-Saharan Africa and Latin America. The high genetic diversity found in the T. cruzi population and the highly diverse repertoire of surface glycoprotein genes found in T. brucei are crucial factors that ensure a successful infection in their hosts. Besides responding to host immune responses, these parasites must deal with various sources of oxidative stress that can cause DNA damage. Thus, by determining the right balance between genomic stability and genetic variation, DNA repair pathways have a big impact in the ability of these parasites to maintain infection. This study is focused on the role of a DNA mismatch repair (MMR) protein named MSH2 in protecting these parasites’ DNA against oxidative assault. Using knock-out mutants, we showed that, besides acting in the MMR pathway as a key protein that recognizes and repairs base mismatches, insertions or deletions that can occur after DNA replication, MSH2 has an additional role in the oxidative stress response. Importantly, this extra role of MSH2 seems to be independent of other MMR components and dependent on the parasite developmental stage.
Collapse
Affiliation(s)
- Viviane Grazielle-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Tehseen Fatima Zeb
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jason Bolderson
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Priscila C. Campos
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Julia B. Miranda
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ceres L. Alves
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Richard McCulloch
- The Wellcome Trust Center for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, Scotland, United Kingdom
- * E-mail: (RM); (SMRT)
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (RM); (SMRT)
| |
Collapse
|
22
|
Piras C, Soggiu A, Greco V, Martino PA, Del Chierico F, Putignani L, Urbani A, Nally JE, Bonizzi L, Roncada P. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog. J Proteomics 2015; 127:365-76. [PMID: 26066767 DOI: 10.1016/j.jprot.2015.05.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/25/2023]
Abstract
Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. This study has been performed in order to unravel the mechanism of induced enrofloxacin resistance in canine E. coli isolates that represent a good tool to study this pathology. The isolated E. coli has been induced with enrofloxacin and studied through 2D DIGE and shotgun MS. Discovered differentially expressed proteins are principally involved in antibiotic resistance and linked to oxidative stress response, to DNA protection and to membrane permeability. Moreover, since enrofloxacin is an inhibitor of DNA gyrase, the overexpression of DNA starvation/stationary phase protection protein (Dsp) could be a central point to discover the mechanism of this clone to counteract the effects of enrofloxacin. In parallel, the dramatic decrease of the synthesis of the outer membrane protein W, which represents one of the main gates for enrofloxacin entrance, could explain additional mechanism of E. coli defense against this antibiotic. All 2D DIGE and MS data have been deposited into the ProteomeXchange Consortium with identifier PXD002000 and DOI http://dx.doi.org/10.6019/PXD002000. This article is part of a Special Issue entitled: HUPO 2014.
Collapse
Affiliation(s)
- Cristian Piras
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Alessio Soggiu
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Viviana Greco
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Piera Anna Martino
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | | | - Lorenza Putignani
- Parasitology and Metagenomics Units, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Urbani
- Fondazione Santa Lucia - IRCCS, Rome, Italy; Dipartimento di Medicina Sperimentale e Chirurgia, Università degli Studi di Roma "Tor Vergata", Italy
| | - Jarlath E Nally
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, United States
| | - Luigi Bonizzi
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy
| | - Paola Roncada
- Dipartimento di Scienze Veterinarie e Sanità Pubblica, Università degli studi di Milano, Milan, Italy; Istituto Sperimentale Italiano L. Spallanzani, Milano, Italy.
| |
Collapse
|
23
|
Functional analysis of iron superoxide dismutase-A in wild-type and antimony-resistant Leishmania braziliensis and Leishmania infantum lines. Parasitol Int 2015; 64:125-9. [DOI: 10.1016/j.parint.2014.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/30/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
|
24
|
Molecular characterization of Cyclophilin (TcCyP19) in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Exp Parasitol 2014; 148:73-80. [PMID: 25450774 DOI: 10.1016/j.exppara.2014.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 11/23/2022]
Abstract
Cyclophilin (CyP), a peptidyl-prolyl cis/trans isomerase, is a key molecule with diverse biological functions that include roles in molecular chaperoning, stress response, immune modulation, and signal transduction. In this respect, CyP could serve as a potential drug target in disease-causing parasites. Previous studies employing proteomics techniques have shown that the TcCyP19 isoform was more abundant in a benznidazole (BZ)-resistant Trypanosoma cruzi population than in its susceptible counterpart. In this study, TcCyP19 has been characterized in BZ-susceptible and BZ-resistant T. cruzi populations. Phylogenetic analysis revealed a clear dichotomy between Cyphophilin A (CyPA) sequences from trypanosomatids and mammals. Sequencing analysis revealed that the amino acid sequences of TcCyP19 were identical among the T. cruzi samples analyzed. Southern blot analysis showed that TcCyP19 is a single-copy gene, located in chromosomal bands varying in size from 0.68 to 2.2 Mb, depending on the strain of T. cruzi. Northern blot and qPCR indicated that the levels of TcCyP19 mRNA were twofold higher in drug-resistant T. cruzi populations than in their drug-susceptible counterparts. Similarly, as determined by two-dimensional gel electrophoresis immunoblot, the expression of TcCyP19 protein was increased to the same degree in BZ-resistant T. cruzi populations. No differences in TcCyP19 mRNA and protein expression levels were observed between the susceptible and the naturally resistant T. cruzi strains analyzed. Taken together, these data indicate that cyclophilin TcCyP19 expression is up-regulated at both transcriptional and translational levels in T. cruzi populations that were in vitro-induced and in vivo-selected for resistance to BZ.
Collapse
|
25
|
Andrade JM, Murta SMF. Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines. Parasit Vectors 2014; 7:406. [PMID: 25174795 PMCID: PMC4261743 DOI: 10.1186/1756-3305-7-406] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/16/2014] [Indexed: 12/12/2022] Open
Abstract
Background Tryparedoxin peroxidase (TXNPx) participates in defence against oxidative stress as an antioxidant by metabolizing hydrogen peroxide into water molecules. Reports suggest that drug-resistant parasites may increase the levels of TXNPx and other enzymes, thereby protecting them against oxidative stress. Methods In this study, the gene encoding cytosolic TXNPx (cTXNPx) was characterized in lines of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum that are susceptible and resistant to potassium antimony tartrate (Sb(III)). We investigated the levels of mRNA and genomic organization of the cTXNPx gene. In addition, we transfected the Leishmania lines with the cTXNPx gene and analysed the susceptibility of transfected parasites to Sb(III) and to hydrogen peroxide (H2O2). Results Northern blot and real-time reverse transcriptase polymerase chain reaction analyses revealed that the level of TXNPx mRNA was approximately 2.5-fold higher in the Sb(III)-resistant L. braziliensis line than in the parental line. In contrast, no significant difference in cTXNPx mRNA levels between the L. infantum lines was observed. Southern blot analyses revealed that the cTXNPx gene is not amplified in the genome of the Sb(III)-resistant Leishmania lines analysed. Functional analysis of cTXNPx was performed to determine whether overexpression of the enzyme in L. braziliensis and L. infantum lines would change their susceptibility to Sb(III). Western blotting analysis showed that the level of cTXNPx was 2 to 4-fold higher in transfected clones compared to non-transfected cells. Antimony susceptibility test (EC50 assay) revealed that L. braziliensis lines overexpressing cTXNPx had a 2-fold increase in resistance to Sb(III) when compared to the untransfected parental line. In addition, these clones are more tolerant to exogenous H2O2 than the untransfected parental line. In contrast, no difference in Sb(III) susceptibility and a moderate index of resistance to H2O2 was observed in L. infantum clones overexpressing cTXNPx. Conclusion Our functional analysis revealed that cTXNPx is involved in the antimony-resistance phenotype in L. braziliensis. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-406) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Silvane M F Murta
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte 30190-002, MG, Brazil.
| |
Collapse
|
26
|
Piacenza L, Peluffo G, Alvarez MN, Martínez A, Radi R. Trypanosoma cruzi antioxidant enzymes as virulence factors in Chagas disease. Antioxid Redox Signal 2013; 19:723-34. [PMID: 22458250 PMCID: PMC3739954 DOI: 10.1089/ars.2012.4618] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Chagas disease (CD) affects several million people in Latin America and is spreading beyond its classical boundaries due to the migration of infected host and insect vectors, HIV co-infection, and blood transfusion. The current therapy is not adequate for treatment of the chronic phase of CD, and new drugs are warranted. RECENT ADVANCES Trypanosoma cruzi is equipped with a specialized and complex network of antioxidant enzymes that are located at different subcellular compartments which defend the parasite against host oxidative assaults. Recently, strong evidence has emerged which indicates that enzyme components of the T. cruzi antioxidant network (cytosolic and mitochondrial peroxiredoxins and trypanothione synthetase) in naturally occurring strains act as a virulence factor for CD. This precept is recapitulated with the observed increased resistance of T. cruzi peroxirredoxins overexpressers to in vivo or in vitro nitroxidative stress conditions. In addition, the modulation of mitochondrial superoxide radical levels by iron superoxide dismutase (FeSODA) influences parasite programmed cell death, underscoring the role of this enzyme in parasite survival. CRITICAL ISSUES The unraveling of the biological significance of FeSODs in T. cruzi programmed cell death in the context of chronic infection in CD is still under examination. FUTURE DIRECTIONS The role of the antioxidant enzymes in the pathogenesis of CD, including parasite virulence and persistence, and their feasibility as pharmacological targets justifies further investigation.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
27
|
Aguiar PHN, Furtado C, Repolês BM, Ribeiro GA, Mendes IC, Peloso EF, Gadelha FR, Macedo AM, Franco GR, Pena SDJ, Teixeira SMR, Vieira LQ, Guarneri AA, Andrade LO, Machado CR. Oxidative stress and DNA lesions: the role of 8-oxoguanine lesions in Trypanosoma cruzi cell viability. PLoS Negl Trop Dis 2013; 7:e2279. [PMID: 23785540 PMCID: PMC3681716 DOI: 10.1371/journal.pntd.0002279] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 04/29/2013] [Indexed: 01/09/2023] Open
Abstract
The main consequence of oxidative stress is the formation of DNA lesions, which can result in genomic instability and lead to cell death. Guanine is the base that is most susceptible to oxidation, due to its low redox potential, and 8-oxoguanine (8-oxoG) is the most common lesion. These characteristics make 8-oxoG a good cellular biomarker to indicate the extent of oxidative stress. If not repaired, 8-oxoG can pair with adenine and cause a G:C to T:A transversion. When 8-oxoG is inserted during DNA replication, it could generate double-strand breaks, which makes this lesion particularly deleterious. Trypanosoma cruzi needs to address various oxidative stress situations, such as the mammalian intracellular environment and the triatomine insect gut where it replicates. We focused on the MutT enzyme, which is responsible for removing 8-oxoG from the nucleotide pool. To investigate the importance of 8-oxoG during parasite infection of mammalian cells, we characterized the MutT gene in T. cruzi (TcMTH) and generated T. cruzi parasites heterologously expressing Escherichia coli MutT or overexpressing the TcMTH enzyme. In the epimastigote form, the recombinant and wild-type parasites displayed similar growth in normal conditions, but the MutT-expressing cells were more resistant to hydrogen peroxide treatment. The recombinant parasite also displayed significantly increased growth after 48 hours of infection in fibroblasts and macrophages when compared to wild-type cells, as well as increased parasitemia in Swiss mice. In addition, we demonstrated, using western blotting experiments, that MutT heterologous expression can influence the parasite antioxidant enzyme protein levels. These results indicate the importance of the 8-oxoG repair system for cell viability.
Collapse
Affiliation(s)
- Pedro H. N. Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Carolina Furtado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M. Repolês
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Grazielle A. Ribeiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela C. Mendes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo F. Peloso
- Departamento de Bioquímica, Instituto de Biologia - UNICAMP, Campinas, Sa˜o Paulo, Brazil
| | - Fernanda R. Gadelha
- Departamento de Bioquímica, Instituto de Biologia - UNICAMP, Campinas, Sa˜o Paulo, Brazil
| | - Andrea M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Glória R. Franco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio D. J. Pena
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Leda Q. Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciana O. Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos R. Machado
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas - UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
28
|
Gadelha F, Gonçalves C, Mattos E, Alves M, Piñeyro M, Robello C, Peloso E. Release of the cytosolic tryparedoxin peroxidase into the incubation medium and a different profile of cytosolic and mitochondrial peroxiredoxin expression in H2O2-treated Trypanosoma cruzi tissue culture-derived trypomastigotes. Exp Parasitol 2013; 133:287-93. [DOI: 10.1016/j.exppara.2012.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 12/04/2012] [Accepted: 12/13/2012] [Indexed: 01/06/2023]
|
29
|
dos Santos PF, Ruiz JC, Soares RPP, Moreira DS, Rezende AM, Folador EL, Oliveira G, Romanha AJ, Murta SMF. Molecular characterization of the hexose transporter gene in benznidazole resistant and susceptible populations of Trypanosoma cruzi. Parasit Vectors 2012; 5:161. [PMID: 22871258 PMCID: PMC3431256 DOI: 10.1186/1756-3305-5-161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hexose transporters (HT) are membrane proteins involved in the uptake of energy-supplying glucose and other hexoses into the cell. Previous studies employing the Differential Display technique have shown that the transcription level of the HT gene from T. cruzi (TcrHT) is higher in an in vitro-induced benznidazole (BZ)-resistant population of the parasite (17 LER) than in its susceptible counterpart (17 WTS). METHODS In the present study, TcrHT has been characterized in populations and strains of T. cruzi that are resistant or susceptible to BZ. We investigated the copy number and chromosomal location of the gene, the levels of TcrHT mRNA and of TcrHT activity, and the phylogenetic relationship between TcrHT and HTs from other organisms. RESULTS In silico analyses revealed that 15 sequences of the TcrHT gene are present in the T. cruzi genome, considering both CL Brener haplotypes. Southern blot analyses confirmed that the gene is present as a multicopy tandem array and indicated a nucleotide sequence polymorphism associated to T. cruzi group I or II. Karyotype analyses revealed that TcrHT is located in two chromosomal bands varying in size from 1.85 to 2.6 Mb depending on the strain of T. cruzi. The sequence of amino acids in the HT from T. cruzi is closely related to the HT sequences of Leishmania species according to phylogenetic analysis. Northern blot and quantitative real-time reverse transcriptase polymerase chain reaction analyses revealed that TcrHT transcripts are 2.6-fold higher in the resistant 17 LER population than in the susceptible 17 WTS. Interestingly, the hexose transporter activity was 40% lower in the 17 LER population than in all other T. cruzi samples analyzed. This phenotype was detected only in the in vitro-induced BZ resistant population, but not in the in vivo-selected or naturally BZ resistant T. cruzi samples. Sequencing analysis revealed that the amino acid sequences of the TcrHT from 17WTS and 17LER populations are identical. This result suggests that the difference in glucose transport between 17WTS and 17LER populations is not due to point mutations, but probably due to lower protein expression level. CONCLUSION The BZ resistant population 17 LER presents a decrease in glucose uptake in response to drug pressure.
Collapse
Affiliation(s)
- Paula F dos Santos
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Jerônimo C Ruiz
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Rodrigo P P Soares
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Douglas S Moreira
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Antônio M Rezende
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Edson L Folador
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
- Centro de Excelência em Bioinformática, FIOCRUZ, Rua Araguari 741, Belo Horizonte, 30190-110, MG, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-910, MG, Brazil
| | - Alvaro J Romanha
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| | - Silvane MF Murta
- Centro de Pesquisas René Rachou/FIOCRUZ, Avenida Augusto de Lima 1715, Belo Horizonte, 30190-002, MG, Brazil
| |
Collapse
|
30
|
Alviano DS, Barreto ALS, Dias FDA, Rodrigues IDA, Rosa MDSDS, Alviano CS, Soares RMDA. Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Front Microbiol 2012; 3:283. [PMID: 22888328 PMCID: PMC3412339 DOI: 10.3389/fmicb.2012.00283] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 07/18/2012] [Indexed: 11/24/2022] Open
Abstract
Leishmaniasis and trypanosomiasis are two neglected and potentially lethal diseases that affect mostly the poor and marginal populations of developing countries around the world and consequently have an important impact on public health. Clinical manifestations such as cutaneous, mucocutaneous, and visceral disorders are the most frequent forms of leishmaniasis, a group of diseases caused by several Leishmania spp. American trypanosomiasis, or Chagas disease, is caused by Trypanosoma cruzi, a parasite that causes progressive damage to different organs, particularly the heart, esophagus, and lower intestine. African trypanosomiasis, or sleeping sickness, is caused by Trypanosoma brucei and is characterized by first presenting as an acute form that affects blood clotting and then becoming a chronic meningoencephalitis. The limited number, low efficacy, and side effects of conventional anti-leishmania and anti-trypanosomal drugs and the resistance developed by parasites are the major factors responsible for the growth in mortality rates. Recent research focused on plants has shown an ingenious way to obtain a solid and potentially rich source of drug candidates against various infectious diseases. Bioactive phytocompounds present in the crude extracts and essential oils of medicinal plants are components of an important strategy linked to the discovery of new medicines. These compounds have proven to be a good source of therapeutic agents for the treatment of leishmaniasis and trypanosomiasis. This work highlights some chemotherapeutic agents while emphasizing the importance of plants as a source of new and powerful drugs against these widespread diseases.
Collapse
Affiliation(s)
- Daniela Sales Alviano
- Laboratório de Estruturas de Superfície de Microrganismos, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Léa Silva Barreto
- Laboratório de Biologia de Protistas, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe de Almeida Dias
- Laboratório de Estruturas de Superfície de Microrganismos, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| | - Igor de Almeida Rodrigues
- Laboratório de Quimioterapia Experimental para Leishmaniose, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Química Programa de Pós Graduação em Ciência de Alimentos, Centro de Ciências Matemáticas e da Natureza, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| | - Maria do Socorro dos Santos Rosa
- Laboratório de Quimioterapia Experimental para Leishmaniose, Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| | - Celuta Sales Alviano
- Laboratório de Estruturas de Superfície de Microrganismos, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| | - Rosangela Maria de Araújo Soares
- Laboratório de Biologia de Protistas, Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Functional expression and characterization of an iron-containing superoxide dismutase of Acanthamoeba castellanii. Parasitol Res 2012; 111:1673-82. [PMID: 22752747 DOI: 10.1007/s00436-012-3006-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/08/2012] [Indexed: 10/28/2022]
Abstract
Acanthamoeba spp. are free-living amoebae, but opportunistic infections of some strains of the organisms cause severe diseases such as acanthamoebic keratitis, pneumonitis, and granulomatous amoebic encephalitis in human. In this study, we identified a gene encoding iron superoxide dismutase of Acanthamoeba castellanii (AcFe-SOD) and characterized biochemical and functional properties of the recombinant enzyme. Multiple sequence alignment of the deduced amino acid sequence of AcFe-SOD with those of previously reported iron-containing SODs (Fe-SODs) from other protozoan parasites showed that AcFe-SOD shared common metal-binding residues and motifs that are conserved in Fe-SODs. The genomic length of the AcFe-SOD gene was 926 bp consisting of five exons interrupted by four introns. The recombinant AcFe-SOD showed similar biochemical characteristics with its native enzyme and shared typical biochemical properties with other characterized Fe-SODs, including molecular structure, broad pH optimum, and sensitivity to hydrogen peroxide. Immunolocalization analysis revealed that the enzyme localized in the cytosol of the trophozoites. Activity and expression level of the enzyme were significantly increased under oxidative stressed conditions. These results collectively suggest that AcFe-SOD may play essential roles in the survival of the parasite not only by protecting itself from endogenous oxidative stress but also by detoxifying oxidative killing of the parasite by host immune effector cells.
Collapse
|
32
|
Sensibilidad al benzonidazol de cepas de Trypanosoma cruzi sugiere la circulación de cepas naturalmente resistentes en Colombia. BIOMEDICA 2012. [DOI: 10.7705/biomedica.v32i2.458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Nogueira FB, Rodrigues JFA, Correa MMS, Ruiz JC, Romanha AJ, Murta SMF. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz 2012; 107:494-502. [DOI: 10.1590/s0074-02762012000400009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Accepted: 12/14/2011] [Indexed: 11/22/2022] Open
|
34
|
Peloso EF, Gonçalves CC, Silva TM, Ribeiro LHG, Piñeyro MD, Robello C, Gadelha FR. Tryparedoxin peroxidases and superoxide dismutases expression as well as ROS release are related to Trypanosoma cruzi epimastigotes growth phases. Arch Biochem Biophys 2012; 520:117-22. [DOI: 10.1016/j.abb.2012.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/15/2023]
|
35
|
Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 2011; 56:115-23. [PMID: 22037852 DOI: 10.1128/aac.05135-11] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Benznidazole, a 2-nitroimidazole, is the front-line treatment used against American trypanosomiasis, a parasitic infection caused by Trypanosoma cruzi. Despite nearly 40 years of use, the trypanocidal activity of this prodrug is not fully understood. It has been proposed that benznidazole activation leads to the formation of reductive metabolites that can cause a series of deleterious effects, including DNA damage and thiol depletion. Here, we show that the key step in benznidazole activation involves an NADH-dependent trypanosomal type I nitroreductase. This catalyzes an oxygen-insensitive reaction with the interaction of enzyme, reductant, and prodrug occurring through a ping-pong mechanism. Liquid chromatography/mass spectrometry (LC/MS) analysis of the resultant metabolites identified 4,5-dihydro-4,5-dihydroxyimidazole as the major product of a reductive pathway proceeding through hydroxylamine and hydroxy intermediates. The breakdown of this product released the reactive dialdehyde glyoxal, which, in the presence of guanosine, generated guanosine-glyoxal adducts. These experiments indicate that the reduction of benznidazole by type I nitroreductase activity leads to the formation of highly reactive metabolites and that the expression of this enzyme is key to the trypanocidal properties displayed by the prodrug.
Collapse
|
36
|
Mejía-Jaramillo AM, Fernández GJ, Palacio L, Triana-Chávez O. Gene expression study using real-time PCR identifies an NTR gene as a major marker of resistance to benzonidazole in Trypanosoma cruzi. Parasit Vectors 2011; 4:169. [PMID: 21892937 PMCID: PMC3185274 DOI: 10.1186/1756-3305-4-169] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/05/2011] [Indexed: 01/10/2023] Open
Abstract
Background Chagas disease is a neglected illness, with limited treatments, caused by the parasite Trypanosoma cruzi. Two drugs are prescribed to treat the disease, nifurtimox and benznidazole, which have been previously reported to have limited efficacy and the appearance of resistance by T. cruzi. Acquisition of drug-resistant phenotypes is a complex physiological process based on single or multiple changes of the genes involved, probably in its mechanisms of action. Results The differential genes expression of a sensitive Trypanosoma cruzi strain and its induced in vitro benznidazole-resistant phenotypes was studied. The stepwise increasing concentration of BZ in the parental strain generated five different resistant populations assessed by the IC50 ranging from 10.49 to 93.7 μM. The resistant populations maintained their phenotype when the BZ was depleted from the culture for many passages. Additionally, the benznidazole-resistant phenotypes presented a cross-resistance to nifurtimox but not to G418 sulfate. On the other hand, four of the five phenotypes resistant to different concentrations of drugs had different expression levels for the 12 genes evaluated by real-time PCR. However, in the most resistant phenotype (TcR5x), the levels of mRNA from these 12 genes and seven more were similar to the parental strain but not for NTR and OYE genes, which were down-regulated and over-expressed, respectively. The number of copies for these two genes was evaluated for the parental strain and the TcR5x phenotype, revealing that the NTR gene had lost a copy in this last phenotype. No changes were found in the enzyme activity of CPR and SOD in the most resistant population. Finally, there was no variability of genetic profiles among all the parasite populations evaluated by performing low-stringency single-specific primer PCR (LSSP-PCR) and random amplified polymorphic DNA RAPD techniques, indicating that no clonal selection or drastic genetic changes had occurred for the exposure to BZ. Conclusion Here, we propose NTR as the major marker of the appearance of resistance to BZ.
Collapse
Affiliation(s)
- Ana M Mejía-Jaramillo
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI-SIU, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | | | | | | |
Collapse
|
37
|
Role of Trypanosoma cruzi peroxiredoxins in mitochondrial bioenergetics. J Bioenerg Biomembr 2011; 43:419-24. [DOI: 10.1007/s10863-011-9365-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
38
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
39
|
Antioxidant therapy attenuates oxidative insult caused by benzonidazole in chronic Chagas' heart disease. Int J Cardiol 2009; 145:27-33. [PMID: 19625091 DOI: 10.1016/j.ijcard.2009.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/21/2022]
Abstract
Chronic chagasic cardiac patients are exposed to oxidative stress that apparently contributes to disease progression. Benznidazole (BZN) is the main drug used for the treatment of chagasic patients and its action involves the generation of reactive species. 41 patients with Chagas' heart disease were selected and biomarkers of oxidative stress were measured before and after 2 months of BZN treatment (5 mg/kg/day) and the subsequent antioxidant supplementation with vitamin E (800 UI/day) and C (500 mg/day) during 6 months. Patients were classified according to the modified Los Andes clinical hemodynamic classification in groups IA, IB, II and III, and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the contents of reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), protein carbonyl (PC), vitamin E and C and nitric oxide (NO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were measured in their blood. Excepting in group III, after BZN treatment SOD, CAT, GPx and GST activities as well as PC levels were enhanced while vitamin E levels were decreased in these groups. After antioxidant supplementation the activities of SOD, GPx and GR were decreased whereas PC, TBARS, NO, and GSH levels were decreased. In conclusion, BZN treatment promoted an oxidative insult in such patients while the antioxidant supplementation was able to attenuate this effect by increasing vitamin E levels, decreasing PC and TBARS levels, inhibiting SOD, GPx and GR activities as well as inflammatory markers, mainly in stages with less cardiac involvement.
Collapse
|
40
|
Campos FM, Liarte DB, Mortara RA, Romanha AJ, Murta SM. Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and -resistant populations of Trypanosoma cruzi. Acta Trop 2009; 111:56-63. [PMID: 19426664 DOI: 10.1016/j.actatropica.2009.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 01/29/2009] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
Abstract
Alcohol dehydrogenases (ADH) are a class of oxidoreductases that catalyse the reversible oxidation of ethanol to acetaldehyde. In the human parasite Trypanosoma cruzi the TcADH gene was identified through microarray analysis as having reduced transcription in an in vitro induced benznidazole (BZ)-resistant population. In the present study, we have extended these results by characterizing the TcADH gene from 11 strains of T. cruzi that were either susceptible or naturally resistant to benznidazole and nifurtimox or had in vivo selected or in vitro induced resistance to BZ. Sequence comparisons showed that TcADH was more similar to prokaryotic ADHs than to orthologs identified Leishmania spp. Immunolocalisation using confocal microscopy revealed that TcADH is present in the kinetoplast region and along the parasite body, consistent with the mitochondrial localization predicted by sequence analysis. Northern blots showed a 1.9kb transcript with similar signal intensity in all T. cruzi samples analysed, except for the in vitro selected resistant population, where transcript levels were 2-fold lower. These findings were confirmed by quantitative real-time PCR. In Western blot analysis, anti-TcADH polyclonal antisera recognised a 42kDa protein in all T. cruzi strains tested. The level of expression of this polypeptide was approximately 2-fold lower in the in vitro induced benznidazole-resistant strain, than in the susceptible parental strain. The chromosomal location of the TcADH gene was variable, but was not associated with the zymodeme or with the drug resistance phenotype. The data presented here show that the TcADH enzyme has a decreased level of expression in the in vitro induced BZ-resistant T. cruzi population, a situation that has not been observed in the in vivo selected BZ-resistant and naturally resistant strains.
Collapse
|
41
|
Piacenza L, Zago MP, Peluffo G, Alvarez MN, Basombrio MA, Radi R. Enzymes of the antioxidant network as novel determiners of Trypanosoma cruzi virulence. Int J Parasitol 2009; 39:1455-64. [PMID: 19505468 DOI: 10.1016/j.ijpara.2009.05.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 10/20/2022]
Abstract
Virulence of Trypanosoma cruzi depends on a variety of genetic and biochemical factors. It has been proposed that components of the parasites' antioxidant system may play a key part in this process by pre-adapting the pathogen to the oxidative environment encountered during host cell invasion. Using several isolates (10 strains) belonging to the two major phylogenetic lineages (T. cruzi-I and T. cruzi-II), we investigated whether there was an association between virulence (ranging from highly aggressive to attenuated isolates at the parasitemia and histopathological level) and the antioxidant enzyme content. Antibodies raised against trypanothione synthetase (TcTS), ascorbate peroxidase (TcAPX), mitochondrial and cytosolic tryparedoxin peroxidases (TcMPX and TcCPX) and trypanothione reductase (TcTR) were used to evaluate the antioxidant enzyme levels in epimastigote and metacyclic trypomastigote forms in the T. cruzi strains. Levels of TcCPX, TcMPX and TcTS were shown to increase during differentiation from the non-infective epimastigote to the infective metacyclic trypomastigote stage in all parasite strains examined. Peroxiredoxins were found to be present at higher levels in the metacyclic infective forms of the virulent isolates compared with the attenuated strains. Additionally, an increased resistance of epimastigotes from virulent T. cruzi populations to hydrogen peroxide and peroxynitrite challenge was observed. In mouse infection models, a direct correlation was found between protein levels of TcCPX, TcMPX and TcTS, and the parasitemia elicited by the different isolates studied (Pearson's coefficient: 0.617, 0.771, 0.499; respectively, P<0.01). No correlation with parasitemia was found for TcAPX and TcTR proteins in any of the strains analyzed. Our data support that enzymes of the parasite antioxidant armamentarium at the onset of infection represent new virulence factors involved in the establishment of disease.
Collapse
Affiliation(s)
- L Piacenza
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
42
|
Vaidyanathan R, Kodukula K. Using a systems biology approach to dissect parasite-host interactions. Drug Dev Res 2009. [DOI: 10.1002/ddr.20307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Molecular characterization of cytosolic and mitochondrial tryparedoxin peroxidase in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Parasitol Res 2008; 104:835-44. [PMID: 19018566 DOI: 10.1007/s00436-008-1264-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Accepted: 11/03/2008] [Indexed: 10/21/2022]
Abstract
Antioxidant defense in Trypanosomatids has been indicated as a potential target for chemotherapy. Tryparedoxin peroxidase (TXNPx) participates in this defense by metabolizing hydrogen peroxide to water molecules. In this work, genes encoding both cytosolic (cTcTXNPx) and mitochondrial (mTcTXNPx) TXNPx were characterized in 15 benznidazole-susceptible and resistant Trypanosoma cruzi strains. Northern blot and real-time RT-PCR analyses revealed that the levels of cTcTXNPx and mTcTXNPx mRNA were two-fold higher in the in-vitro-induced resistant 17 LER T. cruzi population than its drug-susceptible counterpart 17 WTS. The mRNA levels for both genes were similar among the other T. cruzi samples studied. No amplification of these genes was observed in the parasite genome. In silico analyses indicated that cTcTXNPx and mTcTXNPx genes present eight and two copies, respectively, dispersed in the parasite genome. By western blot analysis, anti-cTcTXNPx and anti-mTcTXNPx polyclonal antibodies recognized a 23- and 25-kDa peptide, respectively, in all T. cruzi samples analyzed. The expression levels of these native proteins were similar for all samples except 17 LER, which displayed two-fold greater expression. In addition, the oxidized mTcTXNPx protein (50 kDa) demonstrated 5.5-fold greater expression in the 17 LER population than 17 WTS. Our findings demonstrate increased expression of the cytosolic and mitochondrial TcTXNPx in the T. cruzi population with in-vitro-induced resistance to benznidazole.
Collapse
|
44
|
Murta SMF, Nogueira FB, Dos Santos PF, Campos FMF, Volpe C, Liarte DB, Nirdé P, Probst CM, Krieger MA, Goldenberg S, Romanha AJ. Differential gene expression in Trypanosoma cruzi populations susceptible and resistant to benznidazole. Acta Trop 2008; 107:59-65. [PMID: 18501872 DOI: 10.1016/j.actatropica.2008.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Revised: 03/19/2008] [Accepted: 04/10/2008] [Indexed: 11/30/2022]
Abstract
Differential gene expression in three pairs of Trypanosoma cruzi populations or clones susceptible or resistant to benznidazole (BZ) was investigated by differential display (DD) and representation of differential expression (RDE). GenBank searches of 14 genes selected by DD showed that four sequences corresponded to different hypothetical proteins and the others were very similar to T. cruzi genes encoding mucin (TcMUC), dihydrolipoamide dehydrogenase (TcLipDH), the hexose transporter (TcHT), or a ribosomal protein. Sequence analysis was performed on 34 clones obtained by RDE; approximately half of these clones encoded 14 different hypothetical proteins and the other half encoded proteins involved with stress response, antioxidant defence, metabolism, transporter proteins, surface proteins, ribosomal proteins and others. The mRNA levels of eight T. cruzi genes obtained by RDE and DD were analysed by northern blotting to confirm the differential expression of these sequences. For six of the eight genes, TcLipDH, TcHT, TcFeSOD-A (iron superoxide dismutase-A), TcHSP70, TcHSP100 (heat shock protein) and Tc52 (thiol-transferase), mRNA levels in the drug-resistant T. cruzi population were at least twice those in the susceptible population. Further analysis of TcHSP70 showed that although the levels of TcHSP70 mRNA were four-fold higher in T. cruzi BZ-resistant population, no corresponding increase was observed in the levels of TcHSP70 protein expression. The results suggest that TcHSP70 is not directly associated with the T. cruzi drug resistance phenotype.
Collapse
Affiliation(s)
- Silvane M F Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou, FIOCRUZ, Av. Augusto de Lima 1715, Caixa Postal 1743, CEP 30190-002, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Identification and characterization of a mitochondrial iron-superoxide dismutase of Cryptosporidium parvum. Parasitol Res 2008; 103:787-95. [PMID: 18551319 DOI: 10.1007/s00436-008-1041-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
Cryptosporidium parvum is an intracellular protozoan parasite that causes cryptosporidiosis in mammals. In this study, we identified a gene encoding mitochondrial iron-superoxide dismutase of C. parvum (Cp-mtSOD) and characterized biochemical properties of the recombinant protein. Multiple sequence alignment of the deduced amino acid sequence of Cp-mtSOD with those of previously reported iron-containing SODs (Fe-SODs) from other protozoan parasites showed that Cp-mtSOD shares common metal-binding residues and motifs that were conserved in Fe-SODs. However, the N-terminal 26-amino acid residues of Cp-mtSOD did not show sequence identities to any other Fe-SOD sequences. Further analysis of the N-terminal presequence of Cp-mtSOD suggested that it shares common physiochemical characteristics found in mitochondria targeting sequences and predicted localization of Cp-mtSOD in the mitochondria. The recombinant Cp-mtSOD showed typical biochemical properties with other characterized Fe-SODs, including molecular structure, broad pH optimum, and sensitivity to hydrogen peroxide.
Collapse
|
46
|
Andrade HM, Murta SMF, Chapeaurouge A, Perales J, Nirdé P, Romanha AJ. Proteomic Analysis of Trypanosoma cruzi Resistance to Benznidazole. J Proteome Res 2008; 7:2357-67. [DOI: 10.1021/pr700659m] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hélida M. Andrade
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Silvane M. F. Murta
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Alex Chapeaurouge
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Jonas Perales
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Phillipe Nirdé
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| | - Alvaro J. Romanha
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisa René Rachou/FIOCRUZ, Brazil, Universidade Federal do Paiuí, Lab Imunogenética e Biologia Molecular, Teresina, Piauí, Brazil, Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica, Instituto Oswaldo Cruz/FIOCRUZ, Brazil, and INSERM U540, 60 rue de Navacelles, 34090 Montpellier, France
| |
Collapse
|
47
|
Rego JV, Murta SMF, Nirdé P, Nogueira FB, de Andrade HM, Romanha AJ. Trypanosoma cruzi: Characterisation of the gene encoding tyrosine aminotransferase in benznidazole-resistant and susceptible populations. Exp Parasitol 2008; 118:111-7. [PMID: 17678649 DOI: 10.1016/j.exppara.2007.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 05/28/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Various biochemical differences exist between mammalian tyrosine aminotransferase (TAT) and its analogue in Trypanosoma cruzi (TcTAT), the causative agent of Chagas disease. Moreover, TcTAT is over-expressed in strains of the parasite that are resistant to benznidazole (BZ), a drug currently used in chemotherapy. TAT has thus been indicated as a potential target for the development of new chemotherapeutic agents. In the present study, the TcTAT gene has been characterised in 14 BZ-resistant and susceptible strains and clones of T. cruzi. A unique transcript of 2.0kb and similar levels of TcTAT mRNA were observed in all parasite populations. TcTAT gene is organized in a tandem multicopy array and is located on 8 chromosomal bands that vary from 785-2500kb. No amplification of TcTAT was observed in the parasite genome. A 42kDa protein expressed by TcTAT was present in all T. cruzi samples. The results suggest that TcTAT is not directly associated with the T. cruzi drug resistance phenotype. However, it may act as a general secondary compensatory mechanism or stress response factor rather than as a key component of the specific primary resistance mechanism in T. cruzi.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cloning, Molecular
- DNA, Protozoan/analysis
- Drug Resistance/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Expression Regulation, Enzymologic/genetics
- Nitroimidazoles/pharmacology
- RNA, Messenger/metabolism
- RNA, Protozoan/analysis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Trypanocidal Agents/pharmacology
- Trypanosoma cruzi/drug effects
- Trypanosoma cruzi/enzymology
- Trypanosoma cruzi/genetics
- Tyrosine Transaminase/genetics
- Tyrosine Transaminase/immunology
Collapse
Affiliation(s)
- Juciane V Rego
- Laboratório de Parasitologia Celular e Molecular, Centro de Pesquisas René Rachou, FIOCRUZ, Av. Augusto de Lima 1715, 30190-002, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|