1
|
Elgendy DI, Othman AA, Eid MM, El-Kowrany SI, Sallam FA, Mohamed DA, Zineldeen DH. The impact of β-glucan on the therapeutic outcome of experimental Trichinella spiralis infection. Parasitol Res 2023; 122:2807-2818. [PMID: 37737322 PMCID: PMC10667415 DOI: 10.1007/s00436-023-07964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/02/2023] [Indexed: 09/23/2023]
Abstract
Trichinellosis is a cosmopolitan zoonosis that is caused mainly by Trichinella spiralis infection. The human disease ranges from mild to severe and fatality may occur. The treatment of trichinellosis still presents a challenge for physicians. Anti-inflammatory drugs are usually added to antiparasitic agents to alleviate untoward immuno-inflammatory responses and possible tissue damage but they are not without adverse effects. Thus, there is a need for the discovery of safe and effective compounds with anti-inflammatory properties. This study aimed to evaluate the activity of β-glucan during enteral and muscular phases of experimental T. spiralis infection as well as its therapeutic potential as an adjuvant to albendazole in treating trichinellosis. For this aim, mice were infected with T. spiralis and divided into the following groups: early and late β-glucan treatment, albendazole treatment, and combined treatment groups. Infected mice were subjected to assessment of parasite burden, immunological markers, and histopathological changes in the small intestines and muscles. Immunohistochemical evaluation of NF-κB expression in small intestinal and muscle tissues was carried out in order to investigate the mechanism of action of β-glucan. Interestingly, β-glucan potentiated the efficacy of albendazole as noted by the significant reduction of counts of muscle larvae. The inflammatory responses in the small intestine and skeletal muscles were mitigated with some characteristic qualitative changes. β-glucan also increased the expression of NF-κB in tissues which may account for some of its effects. In conclusion, β-glucan showed a multifaceted beneficial impact on the therapeutic outcome of Trichinella infection and can be regarded as a promising adjuvant in the treatment of trichinellosis.
Collapse
Affiliation(s)
- Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmad A Othman
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Mohamed M Eid
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Samy I El-Kowrany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fersan A Sallam
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dareen A Mohamed
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Doaa H Zineldeen
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- College of Medicine, Sulaiman AlRajhi University, 51942, Albukairiyah, Saudi Arabia
| |
Collapse
|
2
|
Mengarda AC, Silva TC, Silva AS, Roquini DB, Fernandes JPS, de Moraes J. Toward anthelmintic drug candidates for toxocariasis: Challenges and recent developments. Eur J Med Chem 2023; 251:115268. [PMID: 36921525 DOI: 10.1016/j.ejmech.2023.115268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Infections caused by parasitic helminths rank among the most prevalent infections of humans and animals. Toxocariasis, caused by nematodes of the genus Toxocara, is one of the most widespread and economically important zoonotic parasitic infections that humans share with dogs and cats. Despite the completion of the Toxocara canis draft genome project, which has been an important step towards advancing the understanding of this parasite and the search for drug targets, the treatment of toxocariasis has been dependent on a limited set of drugs, necessitating the search for novel anthelmintic agents, specially against Toxocara larvae in tissues. Given that research, development, and innovation are crucial to finding appropriate solutions in the fight against helminthiasis, this paper reviews the progress made in the discovery of anthelmintic drug candidates for toxocariasis. The main compounds reported in the recent years regards on analogues of albendazole, reactive quinone derivatives and natural produts and its analogues. Nanoparticles and formulations were also reviewed. The in vitro and/or in vivo anthelmintic properties of such alternatives are herein discussed as well as the opportunities and challenges for treatment of human toxocariasis. The performed review clarify that the scarcity of validated molecular targets and limited chemical space explored are the main bottlenecks for advancing in the field of anti-Toxocara agents.
Collapse
Affiliation(s)
- Ana C Mengarda
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - Tais C Silva
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - Aline S Silva
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - Daniel B Roquini
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Universidade Federal de São Paulo, campus Diadema, Rua São Nicolau 210, 09913-030, Diadema, SP, Brazil.
| | - Josué de Moraes
- Research Center on Neglected Diseases, Guarulhos University, Praça Tereza Cristina 229, 07023-070, Guarulhos, SP, Brazil.
| |
Collapse
|
3
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
4
|
Rostami A, Ma G, Wang T, Koehler AV, Hofmann A, Chang BCH, Macpherson CN, Gasser RB. Human toxocariasis - A look at a neglected disease through an epidemiological 'prism'. INFECTION GENETICS AND EVOLUTION 2019; 74:104002. [PMID: 31412276 DOI: 10.1016/j.meegid.2019.104002] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 01/01/2023]
Abstract
Toxocariasis, a disease caused by infection with larvae of Toxocara canis, T. cati and/or congeners, represents clinical syndromes in humans including visceral and ocular larva migrans, neurotoxocariasis and covert/common toxocariasis. It is reported to be one of the most widespread public health and economically important zoonotic parasitic infections that humans share with dogs, wild canids, including foxes, and possibly other mammals. Humans become infected by accidental ingestion of embryonated Toxocara eggs, or larvae from tissues from domestic or wild paratenic hosts. Most infections are asymptomatic, and human disease may go unnoticed, as clinical investigation is often not pursued and/or diagnostic testing not conducted. Sometimes toxocariasis can be associated with complications, such as allergic and/or neurological disorders, possibly including cognitive or developmental delays in children. There is no anti-toxocariasis vaccine, and chemotherapy in humans varies, depending on symptoms and location of larvae, and may include the administration of albendazole or mebendazole, together with anti-inflammatory corticosteroids. Some recent studies indicate that toxocariasis is having an increased, adverse impact on human health in some, particularly underprivileged, tropical and subtropical communities around the world. Although tens of millions of people, especially children, are expected to be exposed to, or infected with Toxocara species, there is limited precise epidemiological data or information on the relationship between seropositivity and disease (toxocariasis) on a global scale. To gain an improved insight into this area, the present article reviews salient clinical aspects of human toxocariasis and the epidemiology of this disease, with particular reference to seroprevalence, and discusses future research and approaches/measures to understand and prevent/control this socioeconomically important, yet neglected zoonosis.
Collapse
Affiliation(s)
- Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Anson V Koehler
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Bill C H Chang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Calum N Macpherson
- School of Graduate Studies, St. George's University, Grenada; School of Veterinary Medicine, St. George's University, Grenada; Windward Islands Research and Education Foundation, Grenada
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Toxocariasis: a silent threat with a progressive public health impact. Infect Dis Poverty 2018; 7:59. [PMID: 29895324 PMCID: PMC5998503 DOI: 10.1186/s40249-018-0437-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/09/2018] [Indexed: 11/10/2022] Open
Abstract
Background Toxocariasis is a neglected parasitic zoonosis that afflicts millions of the pediatric and adolescent populations worldwide, especially in impoverished communities. This disease is caused by infection with the larvae of Toxocara canis and T. cati, the most ubiquitous intestinal nematode parasite in dogs and cats, respectively. In this article, recent advances in the epidemiology, clinical presentation, diagnosis and pharmacotherapies that have been used in the treatment of toxocariasis are reviewed. Main text Over the past two decades, we have come far in our understanding of the biology and epidemiology of toxocariasis. However, lack of laboratory infrastructure in some countries, lack of uniform case definitions and limited surveillance infrastructure are some of the challenges that hindered the estimation of global disease burden. Toxocariasis encompasses four clinical forms: visceral, ocular, covert and neural. Incorrect or misdiagnosis of any of these disabling conditions can result in severe health consequences and considerable medical care spending. Fortunately, multiple diagnostic modalities are available, which if effectively used together with the administration of appropriate pharmacologic therapies, can minimize any unnecessary patient morbidity. Conclusions Although progress has been made in the management of toxocariasis patients, there remains much work to be done. Implementation of new technologies and better understanding of the pathogenesis of toxocariasis can identify new diagnostic biomarkers, which may help in increasing diagnostic accuracy. Also, further clinical research breakthroughs are needed to develop better ways to effectively control and prevent this serious disease. Electronic supplementary material The online version of this article (10.1186/s40249-018-0437-0) contains supplementary material, which is available to authorized users.
Collapse
|
6
|
Ma G, Holland CV, Wang T, Hofmann A, Fan CK, Maizels RM, Hotez PJ, Gasser RB. Human toxocariasis. THE LANCET. INFECTIOUS DISEASES 2018; 18:e14-e24. [PMID: 28781085 DOI: 10.1016/s1473-3099(17)30331-6] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/21/2017] [Accepted: 05/11/2017] [Indexed: 12/25/2022]
Abstract
Parasitic nematodes of the genus Toxocara are socioeconomically important zoonotic pathogens. These parasites are usually directly transmitted to the human host via the faecal-oral route and can cause toxocariasis and associated complications, including allergic and neurological disorders. Although tens of millions of people are estimated to be exposed to or infected with Toxocara spp, global epidemiological information on the relationship between seropositivity and toxocariasis is limited. Recent findings suggest that the effect of toxocariasis on human health is increasing in some countries. Here we review the salient background on Toxocara and biology, summarise key aspects of the pathogenesis, diagnosis, and treatment of toxocariasis, describe what is known about its geographic distribution and prevalence, and make some recommendations for future research towards the prevention and control of this important disease.
Collapse
Affiliation(s)
- Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Celia V Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin, Ireland
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia
| | - Andreas Hofmann
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine & Research Center of International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Rick M Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Lescano SAZ, Santos SVD, Assis JML, Chieffi PP. EFFICACY OF NITAZOXANIDE AGAINST Toxocara canis: LARVAL RECOVERY AND HUMORAL IMMUNE RESPONSE IN EXPERIMENTALLY INFECTED MICE. Rev Inst Med Trop Sao Paulo 2016; 57:337-41. [PMID: 26422159 PMCID: PMC4616920 DOI: 10.1590/s0036-46652015000400011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The efficacy of nitazoxanide (NTZ) against toxocariasis was investigated in an experimental murine model and results were compared to those obtained using mebendazole. Sixty male BALB/c mice, aged six to eight weeks-old, were divided into groups of 10 each; fifty were orally infected with 300 larvaed eggs of T. canisand grouped as follows, G I: infected untreated mice; G II: infected mice treated with MBZ (15 mg/kg/day) 10 days postinfection (dpi); G III: infected mice treated with NTZ (20 mg/kg/day) 10 dpi; G IV: infected mice treated with MBZ 60 dpi; G V: infected mice treated with NTZ 60 dpi; GVI: control group comprising uninfected mice. Mice were bled via retro-orbital plexus on four occasions between 30 and 120 dpi. Sera were processed using the ELISA technique to detect IgG anti- Toxocaraantibodies. At 120 dpi, mice were sacrificed for larval recovery in the CNS, liver, lungs, kidneys, eyes and carcass. Results showed similar levels of anti- ToxocaraIgG antibodies among mice infected but not submitted to treatment and groups treated with MBZ or NTZ, 10 and 60 dpi. Larval recovery showed similar values in groups treated with NTZ and MBZ 10 dpi. MBZ showed better efficacy 60 dpi, with a 72.6% reduction in the parasite load compared with NTZ, which showed only 46.5% reduction. We conclude that administration of these anthelmintics did not modify the humoral response in experimental infection by T. canis. No parasitological cure was observed with either drug; however, a greater reduction in parasite load was achieved following treatment with MBZ.
Collapse
|
8
|
|