1
|
Paul A, Visakh NU, Pathrose B, Mori N, Baeshen RS, Shawer R. Exploring the chemical characterization and insecticidal activities of Curcuma angustifolia roxb . leaf essential oils against three major stored product insects. Saudi J Biol Sci 2024; 31:103986. [PMID: 38623076 PMCID: PMC11017047 DOI: 10.1016/j.sjbs.2024.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Botanical pesticides are safe and widely used in pest management. Curcuma angustifolia belongs to the family Zingiberaceae and is a rhizomatous medicinal herb. Following rhizome harvesting, leaves are discarded as waste. However, they can be effectively utilized by extracting essential oils, which are potential biopesticides. The aim of the study is to evaluate the efficacy of the leaf essential oil of Curcuma angustifolia as a potential biopesticide against three stored grain pests, Lasioderma serricorne, Tribolium castaneum, and Callasobruchus chinensis, by their contact, fumigant, and repellent activities. The leaves yield 0.39 ± 0.02 % of oil by hydrodistillation. GC-MS/MS characterization identified curzerenone (18.37 %), geranyl-p-cymene (17.32 %), α-elemenone (13.59 %), eucalyptol (7.58 %) as the main constituents. When exposed to different concentrations of C. angustifolia oil, the test insect displayed noticeably high repellency rates. It also showed better contact toxicity at 24 h, LC50 = 0.22 mg/cm2 for cigarette beetle, LC50 = 0.64 mg/cm2 for red flour beetle, LC50 = 0.07 mg/cm2 for pulse beetle) and fumigation toxicities (LC50 = 10.8 mg/L air at 24 h, for cigarette, LC50 = 29.5 mg/L air for red flour beetle, LC50 = 7.9 mg/L air for pulse beetle). Additionally, a phytotoxicity study was done on paddy seeds, and the results showed no effect on seed germination or seedling growth. It was evident from this study that C. angustifolia oil from waste leaves can be utilized as a botanical pesticide to manage the adults of these storage pests.
Collapse
Affiliation(s)
- Angel Paul
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Naduvilthara U. Visakh
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Berin Pathrose
- Department of Agricultural Entomology, College of Agriculture, Kerala Agricultural University, Thrissur 680656, Kerala, India
| | - Nicola Mori
- Department of Biotechnology, University of Verona, 37114, Verona, Italy
| | - Rowida S. Baeshen
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - Rady Shawer
- Department of Plant Protection, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
2
|
Bihal R, Al-Khayri JM, Banu AN, Kudesia N, Ahmed FK, Sarkar R, Arora A, Abd-Elsalam KA. Entomopathogenic Fungi: An Eco-Friendly Synthesis of Sustainable Nanoparticles and Their Nanopesticide Properties. Microorganisms 2023; 11:1617. [PMID: 37375119 DOI: 10.3390/microorganisms11061617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The agricultural industry could undergo significant changes due to the revolutionary potential of nanotechnology. Nanotechnology has a broad range of possible applications and advantages, including insect pest management using treatments based on nanoparticle insecticides. Conventional techniques, such as integrated pest management, are inadequate, and using chemical pesticides has negative consequences. As a result, nanotechnology would provide ecologically beneficial and effective alternatives for insect pest control. Considering the remarkable traits they exhibit, silver nanoparticles (AgNPs) are recognized as potential prospects in agriculture. Due to their efficiency and great biocompatibility, the utilization of biologically synthesized nanosilver in insect pest control has significantly increased nowadays. Silver nanoparticles have been produced using a wide range of microbes and plants, which is considered an environmentally friendly method. However, among all, entomopathogenic fungi (EPF) have the most potential to be used in the biosynthesis of silver nanoparticles with a variety of properties. Therefore, in this review, different ways to get rid of agricultural pests have been discussed, with a focus on the importance and growing popularity of biosynthesized nanosilver, especially silver nanoparticles made from fungi that kill insects. Finally, the review highlights the need for further studies so that the efficiency of bio-nanosilver could be tested for field application and the exact mode of action of silver nanoparticles against pests can be elucidated, which will eventually be a boon to the agricultural industry for putting a check on pest populations.
Collapse
Affiliation(s)
- Ritu Bihal
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - A Najitha Banu
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Natasha Kudesia
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Farah K Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Rudradeb Sarkar
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Akshit Arora
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, India
| | - Kamel A Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
3
|
Lim H, Lee SY, Ho LY, Sit NW. Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. INSECTS 2023; 14:512. [PMID: 37367328 DOI: 10.3390/insects14060512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability to ecological conditions. In this study, we investigated the larvicidal activity and cytotoxicity effects of solvent extracts from three aromatic plants-Curcuma longa (turmeric), Ocimum americanum (hoary basil), and Petroselinum crispum (parsley)-against Aedes albopictus. Subsequently, we examined the phytochemical composition of the extracts through gas chromatography-mass spectrometry (GC-MS) analysis. Results revealed that the hexane extracts of O. americanum and P. crispum exhibited the greatest larvicidal activity with the lowest median lethal concentration (LC50) values (<30 µg/mL) at 24 h post-treatment, with the former found to be significantly less toxic towards African monkey kidney (Vero) cells. The GC-MS analysis of the said extract indicated the presence of different classes of metabolites, including phenylpropanoids, very long-chain alkanes, fatty acids and their derivatives, and terpenes, with the most abundant component being methyl eugenol (55.28%), most of which, have been documented for their larvicidal activities. These findings provide valuable insights into the potential use and development of bioinsecticides, particularly from O. americanum.
Collapse
Affiliation(s)
- Huimei Lim
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Sook Yee Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Lai Yee Ho
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Nam Weng Sit
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
4
|
Bohounton RB, Djihinto OY, Dedome OSL, Yovo RM, Djossou L, Koba K, Adomou A, Villeneuve P, Djogbénou LS, Tchobo FP. Euclasta condylotricha flowers essential oils: A new source of juvenile hormones and its larvicidal activity against Anopheles gambiae s.s. (Diptera: Culicidae). PLoS One 2023; 18:e0278834. [PMID: 36689494 PMCID: PMC9870135 DOI: 10.1371/journal.pone.0278834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/24/2022] [Indexed: 01/24/2023] Open
Abstract
The essential oil (EO) of plants of the Poaceae family has diverse chemical constituents with several biological properties. But, data on the chemical constituents and toxicity are still unavailable for some species belonging to this family, such as Euclasta condylotricha Steud (Eu. condylotricha). In this study, the chemical composition of the EOs of Eu. condylotricha flowers was evaluated by gas chromatography coupled with mass spectrometry (GC-MS). The EOs larvicidal property was assessed against third instar larvae of three Anopheles gambiae laboratory strains (Kisumu, Acerkis and Kiskdr) according to the WHO standard protocol. The percentage yields of the EOs obtained from hydro distillation of Eu. condylotricha flowers varied 0.070 to 0.097%. Gas Chromatography-Mass Spectrometry (GC-MS) applied to the EOs revealed fifty-five (55) chemical constituents, representing 94.95% to 97.78% of the total essential oils. Although different chemical profiles of the dominant terpenes were observed for each sample, EOs were generally dominated by sesquiterpenoids with juvenile hormones as the major compounds. The primary compounds were juvenile hormone C16 (JH III) (35.97-48.72%), Methyl farnesoate 10,11-diol (18.56-28.73%), tau-Cadinol (18.54%), and β-Eudesmene (12.75-13.46%). Eu. condylotricha EOs showed a strong larvicidal activity with LC50 values ranging from 35.21 to 52.34 ppm after 24 hours of exposition. This study showed that Eu. Condylotricha flowers essential oils are potent sources of juvenile hormones that could be a promising tool for developing an eco-friendly malaria vector control strategy.
Collapse
Affiliation(s)
- Roméo Barnabé Bohounton
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
| | | | | | - Réné Mahudro Yovo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| | - Laurette Djossou
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
| | - Koffi Koba
- Unité de Recherche sur les Matériaux et les Agroressources, École Supérieure D’agronomie, Université de Lomé, Lomé, Togo
| | - Aristide Adomou
- Laboratoire de Botanique et Écologie Végétale (LaBEV), Faculté des Sciences et Techniques (FAST), University of Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Luc Salako Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC)/ University of Abomey Calavi, Abomey-Calavi, Benin
- Institut Régional de Santé Publique (IRSP), University of Abomey-Calavi, Ouidah, Benin
| | - Fidèle Paul Tchobo
- Laboratory of Study and Research of Applied Chemistry, Polytechnic School of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
5
|
Biocontrol efficacy of apigenin isolated from Anisomeles indica (L.) Kuntze against immature stages of Culex quinquefasciatus (Say, 1823) and its in silico studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Lima AR, Silva CM, da Silva LM, Machulek A, De Souza AP, de Oliveira KT, Souza LM, Inada NM, Bagnato VS, Oliveira SL, Caires ARL. Environmentally Safe Photodynamic Control of Aedes aegypti Using Sunlight-Activated Synthetic Curcumin: Photodegradation, Aquatic Ecotoxicity, and Field Trial. Molecules 2022; 27:5699. [PMID: 36080466 PMCID: PMC9457702 DOI: 10.3390/molecules27175699] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
This study reports curcumin as an efficient photolarvicide against Aedes aegypti larvae under natural light illumination. Larval mortality and pupal formation were monitored daily for 21 days under simulated field conditions. In a sucrose-containing formulation, a lethal time 50 (LT50) of 3 days was found using curcumin at 4.6 mg L-1. This formulation promoted no larval toxicity in the absence of illumination, and sucrose alone did not induce larval phototoxicity. The photodegradation byproducts (intermediates) of curcumin were determined and the photodegradation mechanisms proposed. Intermediates with m/z 194, 278, and 370 were found and characterized using LC-MS. The ecotoxicity of the byproducts on non-target organisms (Daphnia, fish, and green algae) indicates that the intermediates do not exhibit any destructive potential for aquatic organisms. The results of photodegradation and ecotoxicity suggest that curcumin is environmentally safe for non-target organisms and, therefore, can be considered for population control of Ae. aegypti.
Collapse
Grants
- 440585/2016-3, 309636/2017-5, 303633/2018-2, 407990/2018-6, 310585/2020-1, 308232/2021-6 Brazilian funding agencies CNPq
- 88881.311921/2018-01, 88887.311920/2018-00, 88887.311798/2018-00, 88881.311799/2018-01 Brazilian funding agencies CAPES
- 59/300.490/2016, 71/700.129/2018 Brazilian funding agencies FUNDECT
- 465360/2014-9 National Institute of Science and Technology of Basic Optics and Optics Applied to Life Science
- 440214/2021-1 National System of Photonics Laboratories - Sisfóton/MCTI
- CEPOF (2013/07276-1), 2019/27176-8 São Paulo Research State Foundation (FAPESP)
- Finance Code 001 Universidade Federal de Mato Grosso do Sul - UFMS/MEC - Brasil, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
Collapse
Affiliation(s)
- Alessandra R. Lima
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Cicera M. Silva
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Lucas M. da Silva
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Amilcar Machulek
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Antônio P. De Souza
- Institute of Biosciences, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Kleber T. de Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil
| | - Larissa M. Souza
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Natalia M. Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Vanderlei S. Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| | - Samuel L. Oliveira
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Anderson R. L. Caires
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
7
|
Stalin A, Daniel Reegan A, Rajiv Gandhi M, Saravanan RR, Balakrishna K, Hesham AEL, Ignacimuthu S, Zhang Y. Mosquitocidal efficacy of embelin and its derivatives against Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae) and computational analysis of acetylcholinesterase 1 (AChE1) inhibition. Comput Biol Med 2022; 146:105535. [PMID: 35487124 DOI: 10.1016/j.compbiomed.2022.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022]
Abstract
Embelin was isolated from the chloroform extract of Embelia ribes (Burm.f.) fruits; its derivative compounds 6-bromoembelin and vilangin were prepared, and they were evaluated for mosquitocidal activities against the third instar larvae and pupae of Aedes aegypti L. and Culex quinquefasciatus Say. (Diptera: Culicidae). The concentrations used were 0.5, 1.0, 1.5, and 2.0 ppm. Embelin recorded LC50 values of 5.79 and 5.54 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of embelin were 10.23 and 6.93 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. Of the two derivatives tested, vilangin showed the highest larvicidal activity with LC50 values of 1.38 and 1.28 ppm against the larvae of Ae. aegypti and Cx. quinquefasciatus, respectively. Similarly, the LC50 values of vilangin were 1.60 and 1.43 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The LC50 values of 6-bromoembelin were 3.30 and 2.83 ppm against the larvae and 4.40 and 4.30 ppm against the pupae of Ae. aegypti and Cx. quinquefasciatus, respectively. The histopathological results displayed significant damage on cuboidal cells of the midgut (CU) in vilangin treated larvae of Ae. aegypti and Cx. quinquefasciatus at a concentration of 2.0 ppm. Similarly, peritrophic membrane (PM) was completely impaired in vilangin-treated larvae of Cx. quinquefasciatus and midgut content (MC) was very low in vilangin-treated larvae of Cx. quinquefasciatus. In addition, molecular docking and molecular dynamics studies demonstrated the efficacy of vilangin on the inhibition of acetylcholinesterase (AChE1) in Ae. aegypti and Cx. quinquefasciatus. The present results suggest that vilangin could be used to develop a natural active product against mosquito larvae.
Collapse
Affiliation(s)
- Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610 054, China.
| | - Appadurai Daniel Reegan
- National Centre for Disease Control, Bengaluru Branch, No:8, NTI Campus, Bellary Road, Bengaluru, 560 003, Karnataka, India; Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India.
| | - Munusamy Rajiv Gandhi
- National Biodiversity Authority, 5th Floor, CSIR Road, TICEL Bio Park, Taramani, Chennai, 600 113, India
| | - R R Saravanan
- Department of Physics, Meenakshi Chandrasekaran College of Arts and Science, Karambayam, Pattukkottai, Thanjavur, 614 626, India
| | - Kedike Balakrishna
- Entomology Research Institute, Loyola College, Affiliated to the University of Madras, Chennai, 600 034, Tamil Nadu, India
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India
| | - Ying Zhang
- Department of Anesthesiology, Hospital (T.C.M) Affiliated To Southwest Medical University, Luzhou, China.
| |
Collapse
|
8
|
Adhikari K, Khanikor B. Gradual reduction of susceptibility and enhanced detoxifying enzyme activities of laboratory-reared Aedes aegypti under exposure of temephos for 28 generations. Toxicol Rep 2021; 8:1883-1891. [PMID: 34900604 PMCID: PMC8639454 DOI: 10.1016/j.toxrep.2021.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/01/2021] [Accepted: 11/23/2021] [Indexed: 01/14/2023] Open
Abstract
Aedes aegypti mosquitoes were exposed to temephos for 28 generations. This exposure led to a 7.83-fold decrease in temephos toxicity. With increase in generational time, Ae. aegypti exhibited increased detoxification. Increased detoxification correlated with increase in detoxifying enzymes. Repeated exposure of Ae. aegypti to temephos could lead to pesticide resistance.
Temephos, an organophosphate insecticide, is widely accepted for the control of Aedes aegypti, vector of infectious diseases such as dengue, chikungunya, yellow fever, and zika. However, there are claims that repeated and indiscriminate use of temephos has resulted in resistance development in exposed mosquito populations. The present study attempts to evaluate the continuous performance of temephos on the Ae. aegypti population, in laboratory conditions, in terms of toxicity and the effect on marker enzymes associated with metabolic resistance. Results of the toxicity bioassay showed that after the initial exposure, toxicity increased till F4 generation by 1.65 fold, and continuous exposure resulted in a 7.83 fold reduction in toxicity at F28 generation. Percent mortality result showed a marked reduction in mortality with the passage of generations while using the same series of concentrations, viz. 2 ppm, which was 100 % lethal at the initial nine generations, could kill only 22.66 % at F28. Resistance to organophosphates is mainly governed by metabolic detoxifying enzyme families of esterases, glutathione-s-transferase, and cytochrome P450. Analysis of these metabolic detoxifying enzymes showed an inverse trend to toxicity (i.e. toxicity increased in early generations as enzyme activity dropped and then dropped as enzyme activity increased). At the initial exposure, enzyme activity decreased in 2–4 generations, however, repeated exposure led to a significant increase in all the metabolic detoxifying enzymes. From the toxicity level as well as marker enzyme bioassay results, it can be inferred that mosquitoes showed increased detoxification in generational time with an increase in enzymes associated with metabolic detoxification. In conclusion, repeated application of temephos led to resistance development in Ae. aegypti which may be associated with the increase in metabolic detoxifying enzyme activities.
Collapse
Key Words
- ANOVA, analysis of variance
- BSA, bovine serum albumin
- CDNB, 1-chloro-2,4-dinitrobenzene
- CPCSEA, committee for the purpose of control and supervision of experiments on animals
- DEET, NN-diethyl-meta-toluamide
- DEM, diethyl maleate
- DMSO, dimethyl sulfoxide
- Dengue vector
- GSH, reduced glutathione
- GST, glutathione-s-transferase
- IAEC, institutional animal ethical committee
- LC50, lethal concentration 50
- Larvicide
- MAPK, mitogen-activated protein kinases
- NADPH, nicotinamide adenine dinucleotide phosphate hydrogen
- OD, optical density
- OP, organophosphate
- Organophosphates
- PBO, piperonyl butoxide
- PPM, parts per million
- Pesticide resistance
- SE, standard error
- SPSS, statistical package for the social sciences
- TMBZ, 3, 3, 5, 5-tetramethyl benzidine
- TPP, triphenyl phosphate
- Temephos
- WHO, World Health Organization
- ºC, degree celsius
Collapse
|
9
|
Matiadis D, Liggri PGV, Kritsi E, Tzioumaki N, Zoumpoulakis P, Papachristos DP, Balatsos G, Sagnou M, Michaelakis A. Curcumin Derivatives as Potential Mosquito Larvicidal Agents against Two Mosquito Vectors, Culex pipiens and Aedes albopictus. Int J Mol Sci 2021; 22:8915. [PMID: 34445622 PMCID: PMC8396198 DOI: 10.3390/ijms22168915] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end.
Collapse
Affiliation(s)
- Dimitris Matiadis
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Panagiota G. V. Liggri
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece; (P.G.V.L.); (N.T.)
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece; (E.K.); (P.Z.)
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, 12243 Egaleo, Greece
| | - Dimitrios P. Papachristos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - George Balatsos
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| | - Marina Sagnou
- Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, 15310 Athens, Greece;
| | - Antonios Michaelakis
- Benaki Phytopathological Institute, Scientific Directorate of Entomology and Agricultural Zoology, 14561 Kifissia, Greece; (D.P.P.); (G.B.)
| |
Collapse
|
10
|
Jafir M, Ahmad JN, Arif MJ, Ali S, Ahmad SJN. Characterization of Ocimum basilicum synthesized silver nanoparticles and its relative toxicity to some insecticides against tobacco cutworm, Spodoptera litura Feb. (Lepidoptera; Noctuidae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112278. [PMID: 33965777 DOI: 10.1016/j.ecoenv.2021.112278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Tobacco cutworm, Spodoptera litura Feb. (Lepidoptera; Noctuidae) is a notorious cosmopolitan pest of numerous crops. Frequent evolution of insecticide resistance and polyphagous nature favors the survival of this voracious pest. Nanotechnology offers an alternative technique to overcome the limitations of existing pest management strategies. In the present study, the silver nanoparticles were synthesized from Ocimum basilicum leaf extract and UV-spectra at 464.17 nm confirmed their synthesis while crystalline nature of nanoparticles was evaluated by X-rays diffraction (XRD) pattern and scanning electron microscopy (SEM) revealed their octagonal to spherical shape. Insecticidal potential of O. basilicum synthesized silver nanoparticles (ObAgNPs) was evaluated in comparison with some synthetic insecticides owning different mode of actions, including Coragen®, Proclaim®, Tracer® and Talstar® against S. litura. Probit analysis of 2nd, 3rd, 4th and 5th instars of S. litura showed that lethal concentrations (LCs) of tested nanoparticles and pesticides were positively correlated with older instars. All values of LC50, LC90 and LC95 were statistically different from each other with maximum on the 4th instar and minimum on 2nd instar of S. litura. Tukey's HSD test revealed that ObAgNPs caused maximum mortality (21.67-96.67%) in 2nd instar larvae at the rate of 100-1500 mg/L followed by Coragen® (18.33-91.67%), Proclaim® (13.33-78.33%) and Talstar® (13.33-68.33%), while Tracer indicated the lowest larval mortality (11.67-66.67%) at the rate of 60-120 mg/L and a similar trend was assessed for all the successive instars of S. litura. Higher activity of carboxyl esterase and glutathione-s-transferases confirmed the development of insecticide resistance against the synthetic chemicals. Conclusively, ObAgNPs were found to be eco-friendly but the most effective biogenic compounds for the suppression of S. litura population as compared to the selected synthetic chemicals which may be hazardous for the environment as well as human health. This study will assist the pesticide industries to re-standardize the dose rates against Spodoptera litura.
Collapse
Affiliation(s)
- Muhammad Jafir
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan.
| | - Jam Nazeer Ahmad
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | | | - Safdar Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
11
|
Boniface PK, Elizabeth FI. An Insight into the Discovery of Potent Antifilarial Leads Against Lymphatic Filariasis. Curr Drug Targets 2019; 21:657-680. [PMID: 31800381 DOI: 10.2174/1389450120666191204152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Lymphatic filariasis is a neglected tropical disease caused by infection with filarial worms that are transmitted through mosquito bites. Globally, 120 million people are infected, with nearly 40 million people disfigured and disabled by complications such as severe swelling of the legs (elephantiasis) or scrotum (hydrocele). Current treatments (ivermectin, diethylcarbamazine) have limited effects on adult parasites and produce side effects; therefore, there is an urgent to search for new antifilarial agents. Numerous studies on the antifilarial activity of pure molecules have been reported accross the recent literature. The present study describes the current standings of potent antifilarial compounds against lymphatic filariasis. METHODS A literature search was conducted for naturally occurring and synthetic antifilarial compounds by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, and Springer, among others) from their inception until September 2019. RESULTS Numerous compounds have been reported to exhibit antifilarial acitivity in adult and microfilariae forms of the parasites responsible for lymphatic filariasis. In silico studies of active antifilarial compounds (ligands) showed molecular interactions over the protein targets (trehalose-6-phosphate phosphatase, thymidylate synthase, among others) of lymphatic filariasis, and supported the in vitro results. CONCLUSION With reference to in vitro antifilarial studies, there is evidence that natural and synthetic products can serve as basic scaffolds for the development of antifilarial agents. The optimization of the most potent antifilarial compounds can be further performed, followed by their in vivo studies.
Collapse
Affiliation(s)
- Pone Kamdem Boniface
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ferreira Igne Elizabeth
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Effect of tiliamosine, a bis, benzylisoquinoline alkaloid isolated from Tiliacora acuminata (Lam.) Hook. f. & Thom on the immature stages of filarial mosquito Culex quinquefasciatus say (Diptera: Culicidae). Exp Parasitol 2019; 204:107719. [PMID: 31255572 DOI: 10.1016/j.exppara.2019.107719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/23/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
Abstract
The present study was aimed to check the mosquitocidal activity of tiliamosine isolated from Tiliacora acuminata (Lam.) Hook. f. & Thom against immature stages of Culex quinquefasciatus. Eggs and larvae of Cx. quinquefasciatus were exposed to different concentrations of tiliamosine - 0.5, 1.0, 1.5 and 2.0 ppm - prepared using DMSO. The compound tiliamosine showed good larvicidal activity with LC50 and LC90 values of 1.13 and 2.85 ppm respectively, against third-instar larvae of Cx. quinquefasciatus at 24 h. In control, the larvae exhibited normal movement. Tiliamosine exhibited 91% ovicidal activity at 2.0 ppm concentration after 120 h post-treatment. Lowest concentration of tiliamosine (0.5 ppm) showed 19% egg mortality. Histopathology study of the compound-treated larvae showed serious damage on the larval midgut cells. The treated larvae showed restless movement which was different from that of the control larvae. The larvae exhibited malformation in development. The compound tiliamosine was harmless to non-target organisms P. reticulata and Dragon fly nymph at tested concentrations. The compound was highly active and inhibited AChE in a concentration-dependent manner. Computational analysis of the tiliamosine had strong interaction with AChE1 of Cx. quinquefasciatus. This report clearly suggests that the isolated compound can be used as an insecticide to control mosquito population and thus prevent the spread of vector-borne diseases.
Collapse
|
13
|
Wang Z, Perumalsamy H, Wang X, Ahn YJ. Toxicity and possible mechanisms of action of honokiol from Magnolia denudata seeds against four mosquito species. Sci Rep 2019; 9:411. [PMID: 30674912 PMCID: PMC6344527 DOI: 10.1038/s41598-018-36558-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
This study was performed to determine the toxicity and possible mechanism of the larvicidal action of honokiol, extracted from Magnolia denudata seeds, and its 10 related compounds against third-instar larvae of insecticide-susceptible Culex pipiens pallens, Aedes aegypti, and Aedes albopictus and Anopheles sinensis resistant to deltamethrin and temephos. Honokiol (LC50, 6.13–7.37 mg/L) was highly effective against larvae of all of the four mosquito species, although the toxicity of the compound was lower than that of the synthetic larvicide temephos. Structure–activity relationship analyses indicated that electron donor and/or bulky groups at the ortho or para positions of the phenol were required for toxicity. Honokiol moderately inhibited acetylcholinesterase and caused a considerable increase in cyclic AMP levels, indicating that it might act on both acetylcholinesterase and octopaminergic receptors. Microscopy analysis clearly indicated that honokiol was mainly targeted to the midgut epithelium and anal gills, resulting in variably dramatic degenerative responses of the midgut through sequential epithelial disorganization. Honokiol did not affect the AeCS1 mRNA expression level in Ae. aegypti larvae, but did enhance expression of the genes encoding vacuolar-type H+-ATPase and aquaporin 4, indicating that it may disturb the Na+, Cl− and K+ co-transport systems. These results demonstrate that honokiol merits further study as a potential larvicide, with a specific target site, and as a lead molecule for the control of mosquito populations.
Collapse
Affiliation(s)
- Zhangqian Wang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, Hubei, China
| | - Haribalan Perumalsamy
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xue Wang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Young-Joon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Finding the bad actor: Challenges in identifying toxic constituents in botanical dietary supplements. Food Chem Toxicol 2018; 124:431-438. [PMID: 30582954 DOI: 10.1016/j.fct.2018.12.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
Botanical-derived dietary supplements have widespread use in the general population. The complex and variable nature of botanical ingredients and reports of adverse responses have led to concern for negative human health impacts following consumption of these products. Toxicity testing of the vast number of available products, formulations, and combinations is not feasible due to the time and resource intensive nature of comprehensive testing. Methods are needed to assess the safety of a large number of products via more efficient frameworks. Identification of toxicologically-active constituents is one approach being used, with many advantages toward product regulation. Bioassay-guided fractionation (BGF) is the leading approach used to identify biologically-active constituents. Most BGF studies with botanicals focus on identifying pharmacologically-active constituents for drug discovery or botanical efficacy research. Here, we explore BGF in a toxicological context, drawing from both efficacy and poisonous plant research. Limitations of BGF, including loss of mixture activity and bias toward abundant constituents, and recent advancements in the field (e.g., biochemometrics) are discussed from a toxicological perspective. Identification of active constituents will allow better monitoring of market products for known toxicologically-active constituents, as well as surveying human exposure, two important steps to ensuring the safety of botanical dietary supplements.
Collapse
|
15
|
Ganesan P, Stalin A, Gabriel Paulraj M, Balakrishna K, Ignacimuthu S, Abdullah Al-Dhabi N. Biocontrol and non-target effect of fractions and compound isolated from Streptomyces rimosus on the immature stages of filarial vector Culex quinquefasciatus Say (Diptera: Culicidae) and the compound interaction with Acetylcholinesterase (AChE1). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:120-128. [PMID: 29879572 DOI: 10.1016/j.ecoenv.2018.05.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The present study was aimed to check the mosquitocidal activity of intracellular methanol extract fractions and the compound di (2-ethylhexyl) phthalate isolated from Streptomyces rimosus. The isolated compound was also analyzed for its interaction with Acetylcholinesterase (AChE1). The larvae and eggs of Culex quinquefasciatus were exposed to four different concentrations such as 2.5, 5.0, 7.5 and 10 ppm for fractions and 0.5, 1.0, 1.5 and 2.0 ppm for compound. After 24 and 120 h post treatment, the larval mortality and ovicidal activity were recorded. Fractions collected from the intracellular methanol extract were tested for larvicidal activity; among them Fraction 4 was found to be the active fraction. Fraction 4 showed 74% larvicidal activity with LC50 and LC90 values of 6.9 and 17.2 ppm, respectively, in 24 h against the larvae of Cx. quinquefasciatus. Fraction 4 showed 95% ovicidal activity at 10 ppm concentration after 120 h post treatment. The eluted compound di(2-ethylhexyl) phthalate was highly toxic and exhibited promising activity against the eggs of Cx. quinquefasciatus. The compound presented 94% ovicidal activity at 2.0 ppm concentration after 120 h post treatment. The larvae of Cx. quinquefasciatus were exposed to di(2-ethylhexyl) phthalate which showed good activity in a concentration-dependent manner. The compound showed 76% larvicidal activity against the larvae of Cx. quinquefasciatus with LC50 and LC90 values of 1.22 and 3.28 ppm, respectively, at 2 ppm concentration in 24 h. Fraction 4 and the compound were subjected to toxicity study against non-target organism and were found to be nontoxic. The present studies revealed that the treated larvae showed serious damage in the midgut cells. Growth disruption and larval deformities were observed in compound-treated larvae. The compound was highly active and inhibited AChE in a concentration-dependent manner. Computational analysis of the compound had strong interaction with AChE1 of Cx. quinquefasciatus. These results clearly showed that Fraction 4 and the compound isolated from S. rimosus can be used to control the life stages of Cx. quinquefasciatus; it will be a good alternative to synthetic insecticides.
Collapse
Affiliation(s)
- Pathalam Ganesan
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Antony Stalin
- Division of Bioinformatics, Entomology Research Institute, Loyola College, Chennai 600034, India; Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| | - Micheal Gabriel Paulraj
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Kedike Balakrishna
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India
| | - Savarimuthu Ignacimuthu
- Division of Vector Control, Entomology Research Institute, Loyola College, Chennai 600034, India; International Scientific Partnership Program, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Raja TRW, Ganesan P, Gandhi MR, Duraipandiyan V, Paulraj MG, Balakrishna K, Al-Dhabi NA, Ignacimuthu S. Effect of compound Musizin isolated from Rhamnus wightii Wight and Arn on the immature stages of filarial vector mosquito Culex quinquefasciatus Say (Diptera: Culicidae) and its non-target studies. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Widyowati R, Agil M. Chemical Constituents and Bioactivities of Several Indonesian Plants Typically Used in Jamu. Chem Pharm Bull (Tokyo) 2018; 66:506-518. [PMID: 29710047 DOI: 10.1248/cpb.c17-00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This article reviews the chemical constituents and bioactivities of several Indonesian plants typically used in Jamu prescriptions in Indonesia. Jamu is Indonesia traditional medicine: it consists of either a single ingredient or a mixture of several medicinal plants. One plant family always used in Jamu is Zingiberaceae (ginger), such as Curcuma domestica/C. longa, C. xanthorrhizae, C. heyneana, C. zedoaria, C. aeruginosa, Zingiber aromaticum, Alpinia galanga. We also report other commonly used plant families such as Justicia gendarussa and Cassia siamea, whose activities have been extensively explored by our department.
Collapse
|
18
|
Rajkumari S, Sanatombi K. Nutritional value, phytochemical composition, and biological activities of edible Curcuma species: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1387556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - K. Sanatombi
- Department of Biotechnology, Manipur University, Imphal, India
| |
Collapse
|
19
|
Sun W, Wang S, Zhao W, Wu C, Guo S, Gao H, Tao H, Lu J, Wang Y, Chen X. Chemical constituents and biological research on plants in the genus Curcuma. Crit Rev Food Sci Nutr 2017; 57:1451-1523. [PMID: 27229295 DOI: 10.1080/10408398.2016.1176554] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcuma, a valuable genus in the family Zingiberaceae, includes approximately 110 species. These plants are native to Southeast Asia and are extensively cultivated in India, China, Sri Lanka, Indonesia, Peru, Australia, and the West Indies. The plants have long been used in folk medicine to treat stomach ailments, stimulate digestion, and protect the digestive organs, including the intestines, stomach, and liver. In recent years, substantial progress has been achieved in investigations regarding the chemical and pharmacological properties, as well as in clinical trials of certain Curcuma species. This review comprehensively summarizes the current knowledge on the chemistry and briefly discusses the biological activities of Curcuma species. A total of 720 compounds, including 102 diphenylalkanoids, 19 phenylpropene derivatives, 529 terpenoids, 15 flavonoids, 7 steroids, 3 alkaloids, and 44 compounds of other types isolated or identified from 32 species, have been phytochemically investigated. The biological activities of plant extracts and pure compounds are classified into 15 groups in detail, with emphasis on anti-inflammatory and antitumor activities.
Collapse
Affiliation(s)
- Wen Sun
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Sheng Wang
- b State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Wenwen Zhao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Chuanhong Wu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Shuhui Guo
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongwei Gao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Hongxun Tao
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Jinjian Lu
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Yitao Wang
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| | - Xiuping Chen
- a State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Macao , China
| |
Collapse
|
20
|
Gandhi MR, Reegan AD, Ganesan P, Sivasankaran K, Paulraj MG, Balakrishna K, Ignacimuthu S, Al-Dhabi NA. Larvicidal and Pupicidal Activities of Alizarin Isolated from Roots of Rubia cordifolia Against Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae). NEOTROPICAL ENTOMOLOGY 2016; 45:441-448. [PMID: 27004695 DOI: 10.1007/s13744-016-0386-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The mosquitocidal activities of different fractions and a compound alizarin from the methanol extract of Rubia cordifolia roots were evaluated on larvae and pupae of Culex quinquefasciatus Say and Aedes aegypti (L.) (Diptera: Culicidae). Larvae and pupae were exposed to concentrations of 2.5, 5.0, 7.5 and 10 ppm for fractions and 0.5, 1.0, 1.5 and 2.0 ppm for compound. After 24 h, the mortality was assessed and the LC50 and LC90 values were estimated for larvae and pupae. Among the 23 fractions screened, fraction 2 from the methanol extract of R. cordifolia showed good mosquitocidal activity against C. quinquefasciatus and A. aegypti. LC50 and LC90 values of fraction 2 were 3.53 and 7.26 ppm for C. quinquefasciatus and 3.86 and 8.28 ppm for A. aegypti larvae, and 3.76 and 7.50 ppm for C. quinquefasciatus and 3.92 and 8.05 ppm for A. aegypti pupae, respectively. Further, the isolated compound alizarin presented good larvicidal and pupicidal activities. LC50 and LC90 values of alizarin for larvae were 0.81 and 3.86 ppm against C. quinquefasciatus and 1.31 and 6.04 ppm for A. aegypti larvae, respectively. Similarly, the LC50 and LC90 values of alizarin for pupae were 1.97 and 4.79 ppm for C. quinquefasciatus and 2.05 and 5.59 ppm for A. aegypti pupae, respectively. The structure of the isolated compound was identified on the basis of spectroscopic analysis and compared with reported spectral data. The results indicated that alizarin could be used as a potential larvicide and pupicide.
Collapse
Affiliation(s)
- M R Gandhi
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India
| | - A D Reegan
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India
| | - P Ganesan
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India
| | - K Sivasankaran
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India
| | - M G Paulraj
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India
| | - K Balakrishna
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India
| | - S Ignacimuthu
- Division of Vector Control, Entomology Research Institute, Loyola College, Nungambakkam, Chennai, 600 034, Tamil Nadu, India.
- Visiting Professor Programme, Deanship of Research, King Saud Univ, Riyadh, Saudi Arabia.
| | - N A Al-Dhabi
- Dept of Botany and Microbiology, Addiriyah chair for Environmental Studies, College of Science, King Saud Univ, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Mojarab-Mahboubkar M, Jalali Sendi J. Chemical composition, insecticidal and physiological effect of methanol extract of sweet wormwood (Artemisia annuaL.) onHelicoverpa armigera(Hübner) (Lepidoptera: Noctuidae). TOXIN REV 2016. [DOI: 10.1080/15569543.2016.1203336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Reegan AD, Gandhi MR, Sivaraman G, Cecilia KF, Ravindhran R, Balakrishna K, Paulraj MG, Ignacimuthu S. Bioefficacy of ecbolin A and ecbolin B isolated from Ecbolium viride (Forsk.) Alston on dengue vector Aedes aegypti L. (Diptera: Culicidae). Parasite Epidemiol Control 2016; 1:78-84. [PMID: 29988190 PMCID: PMC5991860 DOI: 10.1016/j.parepi.2016.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/03/2022] Open
Abstract
Ecbolin A and ecbolin B were isolated from ethyl acetate extract of Ecbolium viride (Forsk.) Alston root and evaluated for larvicidal and growth disturbance activities against Aedes aegypti L. (Diptera: Culicidae). For larvicidal activity, the third instar larvae of A. aegypti were exposed to different concentrations viz., 1.0, 2.5, 5.0 and 10 ppm for each compound. Among the two compounds screened, ecbolin B recorded highest larvicidal activity with LC50 and LC90 values of 0.70 and 1.42 ppm, respectively. In control, the larval behaviour was normal. The active compound ecbolin B was tested for growth disruption activity at sub lethal concentrations viz., 0.5, 1.0 ppm and observed for malformation like larval gut elongation, larval longevity, intermediates, malformed adults, failed adult emergence and compared with methoprene. The results showed significant level of larva-pupa intermediates, pupa-adult intermediates, malformed adult emergence and less adult formation against A. aegypti. The histopathological results revealed a severe damage on the midgut epithelial columnar cells (CC) and cuboidal cells (CU) in ecbolin B treated larvae of A. aegypti. Similarly peritrophic membrane (pM) was also observed to be damaged in the treated larvae. The present results suggest that, ecbolin B could be used as a larvicidal agent against dengue vector A. aegypti.
Collapse
Affiliation(s)
- Appadurai Daniel Reegan
- Division of vector control, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
- National Vector Borne Disease Control Programme, ROH&FW, Govt. of India, Besant Nagar, Chennai 600 090, Tamil Nadu, India
| | - Munusamy Rajiv Gandhi
- Division of vector control, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Govindan Sivaraman
- Division of vector control, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | | | - Ramalingam Ravindhran
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600 034, India
| | - Kedike Balakrishna
- Division of vector control, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Michael Gabriel Paulraj
- Division of vector control, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Savarimuthu Ignacimuthu
- Division of vector control, Entomology Research Institute, Loyola College, Chennai 600 034, Tamil Nadu, India
- Visiting Professor Programme, Deanship of Research, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Reegan AD, Ceasar SA, Paulraj MG, Ignacimuthu S, Al-Dhabi NA. Current status of genome editing in vector mosquitoes: A review. Biosci Trends 2016; 10:424-432. [DOI: 10.5582/bst.2016.01180] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Appadurai Daniel Reegan
- Division of Vector Control, Entomology Research Institute, Loyola College
- Department of Zoology, Madras Christian College
| | | | | | - Savarimuthu Ignacimuthu
- Division of Vector Control, Entomology Research Institute, Loyola College
- Division of Molecular Biology, Entomology Research Institute, Loyola College
- International Scientific Partnership Program, Deanship of Research, King Saud University
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah chair for Environmental Studies, College of Science, King Saud University
| |
Collapse
|
24
|
Toxicity of aristolochic acids isolated from Aristolochia indica Linn (Aristolochiaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Exp Parasitol 2015; 153:8-16. [DOI: 10.1016/j.exppara.2015.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/18/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022]
|
25
|
Zoubiri S, Baaliouamer A. Potentiality of plants as source of insecticide principles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2014. [DOI: 10.1016/j.jscs.2011.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
26
|
Reegan AD, Gandhi MR, Paulraj MG, Balakrishna K, Ignacimuthu S. Effect of niloticin, a protolimonoid isolated from Limonia acidissima L. (Rutaceae) on the immature stages of dengue vector Aedes aegypti L. (Diptera: Culicidae). Acta Trop 2014; 139:67-76. [PMID: 25019220 DOI: 10.1016/j.actatropica.2014.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
Abstract
The aim of the present study was to evaluate the mosquitocidal activity of fractions and a compound niloticin from the hexane extract of Limonia acidissima L. leaves on eggs, larvae and pupae of Aedes aegypti L. (Diptera: Culicidae). In these bioassays, the eggs, larvae and pupae were exposed to concentrations of 2.5, 5.0, 7.5 and 10.0ppm for fractions and 0.5, 1.0, 1.5 and 2.0ppm for compound. After 24h, the mortality was assessed and the LC50 and LC90 values were calculated for larvae and pupae. Per cent ovicidal activity was calculated for eggs after 120h post treatment. Among the sixteen fractions screened, fraction 8 from the hexane extract of L. acidissima generated good mosquitocidal activity against Ae. aegypti. The LC50 and LC90 values of fraction 8 were 4.11, 8.04ppm against Ae. aegypti larvae and 4.19, 8.10ppm against Ae. aegypti pupae, respectively. Further, the isolated compound, niloticin recorded strong larvicidal and pupicidal activities. The 2ppm concentration of niloticin showed 100% larvicidal and pupicidal activities in 24h. The LC50 and LC90 values of niloticin on Ae. aegypti larvae were 0.44, 1.17ppm and on pupae were 0.62, 1.45ppm, respectively. Niloticin presented 83.2% ovicidal activity at 2ppm concentration after 120h post treatment and niloticin exhibited significant growth disruption and morphological deformities at sub lethal concentrations against Ae. aegypti. The structure of the isolated compound was identified on the basis of single XRD and spectral data ((1)H NMR and (13)C NMR) and compared with literature spectral data. The results indicate that niloticin could be used as a potential natural mosquitocide.
Collapse
|
27
|
Agnihotri VK, Thakur S, Pathania V, Chand G. A New Dihomosesquiterpene, Termioic Acid A, from Curcuma aromatica. Chem Nat Compd 2014. [DOI: 10.1007/s10600-014-1048-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Cecilia KF, Ravindhran R, Gandhi MR, Reegan AD, Balakrishna K, Ignacimuthu S. Larvicidal and pupicidal activities of ecbolin A and ecbolin B isolated from Ecbolium viride (Forssk.) Alston against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 2014; 113:3477-84. [DOI: 10.1007/s00436-014-4018-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
|
29
|
Prathibha KP, Raghavendra BS, Vijayan VA. Larvicidal, ovicidal, and oviposition-deterrent activities of four plant extracts against three mosquito species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6736-6743. [PMID: 24562451 DOI: 10.1007/s11356-014-2591-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
In mosquito control programs, insecticides of botanical origin have the potential to eliminate eggs, larvae, and adults. So, the larvicidal, ovicidal, and oviposition-deterrent activities of petroleum ether and ethyl acetate extracts of the leaves of Eugenia jambolana, Solidago canadensis, Euodia ridleyi, and Spilanthes mauritiana were assayed against the three vector mosquito species, namely Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus. The larval bioassay was conducted following the World Health Organization method. The maximum larval mortality was found with ethyl acetate extract of S. mauritiana against the larvae of A. stephensi, A. aegypti, and C. quinquefasciatus with LC50 values of 11.51, 28.1, 14.10 ppm, respectively. The mean percent hatchability of the ovicidal activity was observed at 48-h post-treatment. The percent hatchability was found to be inversely proportional to the concentration of the extract and directly proportional to the number of eggs. The flower head extract of S. mauritiana gave 100% mortality followed by E. ridleyi, S. canadensis, and E. jambolana against the eggs of the three mosquito vectors. For oviposition-deterrent effect, out of the five concentrations tested (20, 40, 60, 80, and 100 ppm), the concentration of 100 ppm showed a significant egg laying-deterrent capacity. The oviposition activity index value of E. jambolana, E. ridleyi, S. canadensis, and S. mauritiana against A. aegypti, A. stephensi, C. quinquefasciatus at 100 ppm were -0.71, -0.71, -0.90, -0.93, -0.85, -0.91, -1, -1, -0.71, -0.85, -1, and -1, respectively. These results suggest that the leaf/flower extracts of certain local plants have the potential to be developed as possible eco-friendly means for the control of mosquitoes.
Collapse
Affiliation(s)
- K P Prathibha
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore, Karnataka, 570006, India,
| | | | | |
Collapse
|
30
|
Afzal A, Oriqat G, Akram Khan M, Jose J, Afzal M. Chemistry and Biochemistry of Terpenoids fromCurcumaand Related Species. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/22311866.2013.782757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Sagnou M, Mitsopoulou K, Koliopoulos G, Pelecanou M, Couladouros E, Michaelakis A. Evaluation of naturally occurring curcuminoids and related compounds against mosquito larvae. Acta Trop 2012; 123:190-5. [PMID: 22634203 DOI: 10.1016/j.actatropica.2012.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/23/2012] [Accepted: 05/13/2012] [Indexed: 11/27/2022]
Abstract
The three curcuminoid components commonly isolated from Curcuma longa, curcumin (1), demethoxycurcumin (2), and bis-demethoxycurcumin (3) were separated and isolated from a commercially available turmeric extract product in high purity and sufficient amounts. Three more derivatives of curcumin, the di-O-demethylcurcumin (4), di-O-methylcurcumin (5) and the di-O-acetylcurcumin (6) were also synthesized and characterized. All six compounds were evaluated for their larvicidal effect against the mosquito Culex pipiens. Curcumin (1) exhibited highly potent larvicidal activity with LC(50) value of 19.07mgL(-1). Moreover, di-O-demethylcurcumin (4), was found to be equally active with LC(50) value of 12.42mgL(-1). Based on the LC(90) values of the two compounds, di-O-demethylcurcumin (4) was the most active of all, resulting in an LC(90) value of 29.40mgL(-1), almost half of the LC(90) value 61.63mgL(-1) found for compound 1. The rest of the compounds were inactive at concentrations even as high as 150mgL(-1) indicating a dependence of the larvicidal activity upon the substitution patent and the presence of aromatic hydroxyl and methoxy moieties. These results show for the first time the potential of this valuable natural product regarding its use as vector control agent.
Collapse
|
32
|
Bioactive Natural Products as Potential Candidates to Control Aedes aegypti, the Vector of Dengue. STUDIES IN NATURAL PRODUCTS CHEMISTRY VOLUME 37 2012. [DOI: 10.1016/b978-0-444-59514-0.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Kannathasan K, Senthilkumar A, Venkatesalu V. Mosquito larvicidal activity of methyl-p-hydroxybenzoate isolated from the leaves of Vitex trifolia Linn. Acta Trop 2011; 120:115-8. [PMID: 21763671 DOI: 10.1016/j.actatropica.2011.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 06/27/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022]
Abstract
The vector-borne diseases caused by mosquitoes are one of the major health problems in many countries especially in tropical and sub-tropical countries. The resistance of mosquitoes to synthetic chemicals and environmental toxicity created by the chemicals raised the demand for finding of alternate natural molecules that control mosquito. In the present study, a crystalline compound methyl-p-hydroxybenzoate was isolated from the methanol extract of Vitex trifolia leaves and it was identified by (1)H and (13)C NMR and single crystal X-ray diffractometer. The larvicidal potential of the isolated compound was evaluated against early 4th instar larvae of Culex quinquefasciatus and Aedes aegypti. The compound exhibited 100% larval mortality of both the mosquitoes at 20 ppm with LC(50) values of 5.77 and 4.74 ppm against C. quinquefasciatus and A. aegypti, respectively. The methyl-p-hydroxybenzoate, which is reported for the first time to our best of knowledge from V. trifolia can be better explored for the control of mosquito population.
Collapse
Affiliation(s)
- K Kannathasan
- Department of Botany, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | | | | |
Collapse
|
34
|
Ahmad S, Ali M, Ansari SH, Ahmed F. Phytoconstituents from the rhizomes of Curcuma aromatica Salisb. JOURNAL OF SAUDI CHEMICAL SOCIETY 2011. [DOI: 10.1016/j.jscs.2010.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Biolarvicidal compound gymnemagenol isolated from leaf extract of miracle fruit plant, Gymnema sylvestre (Retz) Schult against malaria and filariasis vectors. Parasitol Res 2011; 109:1373-86. [PMID: 21537987 DOI: 10.1007/s00436-011-2384-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Owing to the fact that the application of synthetic larvicide has envenomed the surroundings as well as non-target organisms, natural products of plant origin with insecticidal properties have been tried as an indigenous method for the control of a variety of insect pests and vectors in the recent past. Insecticides of plant origin have been extensively used on agricultural pests and, to a very limited extent, against insect vectors of public health importance, which deserve careful and thorough screening. The use of plant extracts for insect control has several appealing features as these are generally more biodegradable, less hazardous and a rich storehouse of chemicals of diverse biological activities. Moreover, herbal sources give a lead for discovering new insecticides. Therefore, biologically active plant materials have attracted considerable interest in mosquito control study in recent times. The crude leaf extracts of Gymnema sylvestre (Retz) Schult (Asclepiadaceae) and purified gymnemagenol compound were studied against the early fourth-instar larvae of Anopheles subpictus Grassi and Culex quinquefasciatus Say (Diptera: Culicidae). In the present study, bioassay-guided fractionation of petroleum ether leaf extract of G. sylvestre led to the separation and identification of gymnemagenol as a potential new antiparasitic compound. Phytochemical analysis of G. sylvestre leaves revealed the presence of active constituents such as carbohydrates, saponins, phytosterols, phenols, flavonoids and tannins. However, cardiac glycosides and phlobatannins are absent in the plant extracts. Quantitative analysis results suggested that saponin (5%) was present in a high concentration followed by tannins (1.0%). The 50 g powder was loaded on silica gel column and eluted with chloroform-methanol-water as eluents. From that, 16 mg pure saponin compound was isolated and analysed by thin layer chromatography using chloroform and methanol as the solvent systems. The structure of the purified triterpenoid fraction was established from infrared (IR), ultraviolet (UV), (1)H nuclear magnetic resonance (NMR), (13)C NMR and mass spectral data. The carbon skeleton of the compound was obtained by (13)C NMR spectroscopy. The chemical shift assignments obtained for gymnemagenol from (1)H NMR correspond to the molecular formula C(30)H(50)O(4). The compound was identified as 3β, 16β, 28, 29-tetrahydroxyolean-12-ene (gymnemagenol sapogenin). Parasite larvae were exposed to varying concentrations of purified compound gymnemagenol for 24 h. The results suggested that the larval mortality effects of the compound were 28%, 69%, 100% and 31%, 63%, 100% at 6, 12 and 24 h against A. subpictus and C. quinquefasciatus, respectively. In the present study, the per cent mortality were 100, 86, 67, 36, 21 and 100, 78, 59, 38 and 19 observed in the concentrations of 1,000, 500, 250, 125 and 62.75 ppm against the fourth-instar larvae of A. subpitcus and C. quinquefasciatus, respectively. The purified compound gymnemagenol was tested in concentrations of 80, 40, 20, 10 and 5 ppm, and the per cent mortality were 100, 72, 53, 30 and 15 against A. subpitcus and 100, 89, 61, 42 and 30 against C. quinquefasciatus, respectively. The larvicidal crude leaf extract of G. sylvestre showed the highest mortality in the concentration of 1,000 ppm against the larvae of A. subpictus (LC(50) = 166.28 ppm, r (2) = 0.807) and against the larvae of C. quinquefasciatus (LC(50) = 186.55 ppm, r (2) = 0.884), respectively. The maximum efficacy was observed in gymnemagenol compound with LC(50) and r (2) values against the larvae of A. subpictus (22.99 ppm, 0.922) and against C. quinquefasciatus (15.92 ppm, 0.854), respectively. The control (distilled water) showed nil mortality in the concurrent assay.
Collapse
|
36
|
Swathi S, Murugananthan G, Ghosh SK. Oviposition deterrent activity from the ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves against Aedes aegypti and Culex quinquefaciatus. Pharmacogn Mag 2010; 6:320-2. [PMID: 21120036 PMCID: PMC2992147 DOI: 10.4103/0973-1296.71796] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/19/2010] [Accepted: 10/20/2010] [Indexed: 11/24/2022] Open
Abstract
Mosquitoes are responsible for spread of many diseases than any other group of arthropods. Diseases such as malaria, filariasis, dengue hemorrhagic fever (DHF), and chikunguinya are real threat to mankind. In the present study, ethanolic extracts of leaves of Pongamia pinnata, Coleus forskohlii, and Datura stramonium were evaluated for oviposition deterrent activity against Aedes aegypti and Culex quinquefasciatus. The oviposition deterrent tests of ethanolic extract of Pongamia pinnata, Coleus forskohlii, and Datura stramonium leaves reduced egg laying by 97.62%, 77.3%, 100% against Aedes aegypti and 59.10%, 39.22%, 82% against Culex quinquefasciatus at higher concentration (0.1%).
Collapse
Affiliation(s)
- S Swathi
- Department of Pharmacognosy, PES College of Pharmacy, 50 Feet Road, Hanumanth Nagar, Bangalore - 560 050, India
| | | | | |
Collapse
|
37
|
Basak S, Sarma GC, Rangan L. Ethnomedical uses of Zingiberaceous plants of Northeast India. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:286-96. [PMID: 20727402 DOI: 10.1016/j.jep.2010.08.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 05/09/2023]
Abstract
AIM OF THE STUDY Family Zingiberaceae consists of large number of medicinal plants and is well known for its use in ethnomedicine. The objective of this study is to systematically analyse and document the traditional knowledge regarding the use of Zingiberaceous plants for the treatment of various human ailments from NE India, adding information to the valuation of biodiversity and, to forward suggestions for its sustainable use, conservation and for future pharmacological studies. MATERIALS AND METHODS A survey on the utilization of medicinal plants belonging to Zingibereceae of North-eastern states was carried out by interviewing herbalists followed by collecting plant specimens and identifying the specimen. Ethnobotanical information on traditional plants was catalogued through structured questionnaires in consultations with traditional healers. RESULTS A total of 34 species were documented belonging to 9 genera of Zingiberaceae for about 25 types of ailments, 67.6% of which were used in curing multiple disorders. Arunachal Pradesh hosts maximum number of Zingiberaceous plant (88%). Rhizomes were found to be the primary plant material as a source for medication and poultices as the predominant mode of preparation. Gastrointestinal conditions (58%) and chest and lungs (41%) related ailments were the main categories for which these plants are used. CONCLUSIONS The study establishes Zingiberaceae as a medicinal family since 41% of all the available Zingiberaceous plant species in NE were found to possess medicinal value. Some new use of herbs also appeared in this study for the first time.
Collapse
|
38
|
Mandal S. Exploration of larvicidal and adult emergence inhibition activities of Ricinus communis seed extract against three potential mosquito vectors in Kolkata, India. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60147-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|