1
|
Deng Y, Sheng Y, Zhang G, Sun Y, Wang L, Ji P, Zhu J, Wang G, Liu B, Zhou EM, Cai X, Tu Y, Hiscox JA, Stewart JP, Mu Y, Zhao Q. A novel strategy for an anti-idiotype vaccine: nanobody mimicking neutralization epitope of porcine circovirus type 2. J Virol 2024; 98:e0165023. [PMID: 38271227 PMCID: PMC10878242 DOI: 10.1128/jvi.01650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Vaccination is the most effective method to protect humans and animals from diseases. Anti-idiotype vaccines are safer due to their absence of pathogens. However, the commercial production of traditional anti-idiotype vaccines using monoclonal and polyclonal antibodies (mAb and pAb) is complex and has a high failure rate. The present study designed a novel, simple, low-cost strategy for developing anti-idiotype vaccines with nanobody technology. We used porcine circovirus type 2 (PCV2) as a viral model, which can result in serious economic loss in the pig industry. The neutralizing mAb-1E7 (Ab1) against PCV2 capsid protein (PCV2-Cap) was immunized in the camel. And 12 nanobodies against mAb-1E7 were screened. Among them, Nb61 (Ab2) targeted the idiotype epitope of mAb-1E7 and blocked mAb-1E7's binding to PCV2-Cap. Additionally, a high-dose Nb61 vaccination can also protect mice and pigs from PCV2 infection. Epitope mapping showed that mAb-1E7 recognized the 75NINDFL80 of PCV2-Cap and 101NYNDFLG107 of Nb61. Subsequently, the mAb-3G4 (Ab3) against Nb61 was produced and can neutralize PCV2 infection in the PK-15 cells. Structure analysis showed that the amino acids of mAb-1E7 and mAb-3G4 respective binding to PCV2-Cap and Nb61 were also similar on the amino acids sequences and spatial conformation. Collectively, our study first provided a strategy for producing nanobody-based anti-idiotype vaccines and identified that anti-idiotype nanobodies could mimic the antigen on amino acids and structures. Importantly, as more and more neutralization mAbs against different pathogens are prepared, anti-idiotype nanobody vaccines can be easily produced against the disease with our strategy, especially for dangerous pathogens.IMPORTANCEAnti-idiotype vaccines utilize idiotype-anti-idiotype network theory, eliminating the need for external antigens as vaccine candidates. Especially for dangerous pathogens, they were safer because they did not contact the live pathogenic microorganisms. However, developing anti-idiotype vaccines with traditional monoclonal and polyclonal antibodies is complex and has a high failure rate. We present a novel, universal, simple, low-cost strategy for producing anti-idiotype vaccines with nanobody technology. Using a neutralization antibody against PCV2-Cap, a nanobody (Ab2) was successfully produced and could mimic the neutralizing epitope of PCV2-Cap. The nanobody can induce protective immune responses against PCV2 infection in mice and pigs. It highlighted that the anti-idiotype vaccine using nanobody has a very good application in the future, especially for dangerous pathogens.
Collapse
Affiliation(s)
- Yingying Deng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yamin Sheng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Guixi Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Lei Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Jiahong Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Gang Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Baoyuan Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - En-Min Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
| | - Xuehui Cai
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yabin Tu
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Julian A. Hiscox
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - James P. Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yang Mu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shannxi, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province and Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
| |
Collapse
|
3
|
Odales J, Guzman Valle J, Martínez-Cortés F, Manoutcharian K. Immunogenic properties of immunoglobulin superfamily members within complex biological networks. Cell Immunol 2020; 358:104235. [PMID: 33137645 PMCID: PMC7548077 DOI: 10.1016/j.cellimm.2020.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 12/01/2022]
Abstract
Antibody-based therapies induce CDR-specific T and B cell responses. Idiotype-anti-idiotype network alters immune system memory compartment. Antigenized antibodies are efficient vaccine immunogen.
Antibodies, T cell receptors and major histocompatibility complex molecules are members of the immunoglobulin superfamily and have pivotal roles in the immune system. The fine interrelation between them regulates several immune functions. Here, we describe lesser-known functions ascribed to these molecules in generating and maintaining immune response. Particularly, we outline the contribution of antibody- and T cell receptor-derived complementarity-determining region neoantigens, antigenized antibodies, as well as major histocompatibility complex class I molecules-derived epitopes to the induction of protective/therapeutic immune responses against pathogens and cancer. We discuss findings of our own and other studies describing protective mechanisms, based on immunogenic properties of immunoglobulin superfamily members, and evaluate the perspectives of application of this class of immunogens in molecular vaccines design.
Collapse
Affiliation(s)
- Josué Odales
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Jesus Guzman Valle
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Fernando Martínez-Cortés
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico
| | - Karen Manoutcharian
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), AP 70228, Ciudad Universitaria, México, DF 04510, Mexico.
| |
Collapse
|
4
|
Xu L, Xue B, Zhou L, Qiu Z, Zhang X, Xu N, Tang Q, Zhu J, Guan X, Feng Z. NP30 stimulates Th17 differentiation through DC in Schistosomiasis Japonicum. Parasite Immunol 2019; 40:e12528. [PMID: 29577333 PMCID: PMC5947655 DOI: 10.1111/pim.12528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/16/2018] [Indexed: 01/05/2023]
Abstract
The murine monoclonal anti‐idiotypic antibody, NP30, is a potential vaccine candidate against Schistosoma japonicum. Previous studies have revealed that NP30 has an immunoregulatory effect, but the underlying mechanism for this effect remains unknown. This study shows that NP30 induces dendritic cell (DC) maturation and increases the production of pro‐inflammatory cytokines. The expression of CD86 and MHC II was upregulated in DCs following stimulation with NP30 in vitro. Moreover, NP30 induced Th17 polarization by increasing the production of IL‐6 and TGF‐β. In vivo, Th17 differentiation was induced by the production of key pro‐inflammatory cytokines, including IL‐6and TGF‐β, from DCs of NP30‐immunized mice. These results indicate that NP30 promotes Th17 polarization through DC activation, preventing serious schistosomiasis.
Collapse
Affiliation(s)
- L Xu
- Department of Pathology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - B Xue
- Department of Pathology, Nanjing Medical University, Nanjing, China
| | - L Zhou
- Department of Pathology, Northwestern University, Evanston, IL, USA
| | - Z Qiu
- The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - X Zhang
- The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - N Xu
- Department of Pathology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Q Tang
- The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - J Zhu
- Department of Pathology, Nanjing Medical University, Nanjing, China.,Huadong Medical Institute of Biotechniques, Nanjing, China
| | - X Guan
- The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Z Feng
- Department of Pathology, Nanjing Medical University, Nanjing, China.,The Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|