1
|
Rogier E, Herman C, Huber CS, Hamre KES, Pierre B, Mace KE, Présumé J, Mondélus G, Romilus I, Elismé T, Eisele TP, Druetz T, Existe A, Boncy J, Lemoine JF, Udhayakumar V, Chang MA. Nationwide Monitoring for Plasmodium falciparum Drug-Resistance Alleles to Chloroquine, Sulfadoxine, and Pyrimethamine, Haiti, 2016-2017. Emerg Infect Dis 2021; 26:902-909. [PMID: 32310062 PMCID: PMC7181918 DOI: 10.3201/eid2605.190556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Haiti is striving for zero local malaria transmission by the year 2025. Chloroquine remains the first-line treatment, and sulfadoxine/pyrimethamine (SP) has been used for mass drug-administration pilot programs. In March 2016, nationwide molecular surveillance was initiated to assess molecular resistance signatures for chloroquine and SP. For 778 samples collected through December 2017, we used Sanger sequencing to investigate putative resistance markers to chloroquine (Pfcrt codons 72, 74, 75, and 76), sulfadoxine (Pfdhps codons 436, 437, 540, 581, 613), and pyrimethamine (Pfdhfr codons 50, 51, 59, 108, 164). No parasites harbored Pfcrt point mutations. Prevalence of the Pfdhfr S108N single mutation was 47%, and we found the triple mutant Pfdhfr haplotype (108N, 51I, and 59R) in a single isolate. We observed no Pfdhps variants except in 1 isolate (A437G mutation). These data confirm the lack of highly resistant chloroquine and SP alleles in Haiti and support the continued use of chloroquine and SP.
Collapse
|
2
|
Charles M, Das S, Daniels R, Kirkman L, Delva GG, Destine R, Escalante A, Villegas L, Daniels NM, Shigyo K, Volkman SK, Pape JW, Golightly LM. Plasmodium falciparum K76T pfcrt Gene Mutations and Parasite Population Structure, Haiti, 2006-2009. Emerg Infect Dis 2016; 22:786-93. [PMID: 27089479 PMCID: PMC4861504 DOI: 10.3201/eid2205.150359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Low genetic diversity and low levels of chloroquine resistance among parasites suggest exogenous origin of reported cases. Hispaniola is the only Caribbean island to which Plasmodium falciparum malaria remains endemic. Resistance to the antimalarial drug chloroquine has rarely been reported in Haiti, which is located on Hispaniola, but the K76T pfcrt (P. falciparum chloroquine resistance transporter) gene mutation that confers chloroquine resistance has been detected intermittently. We analyzed 901 patient samples collected during 2006–2009 and found 2 samples showed possible mixed parasite infections of genetically chloroquine-resistant and -sensitive parasites. Direct sequencing of the pfcrt resistance locus and single-nucleotide polymorphism barcoding did not definitively identify a resistant population, suggesting that sustained propagation of chloroquine-resistant parasites was not occurring in Haiti during the study period. Comparison of parasites from Haiti with those from Colombia, Panama, and Venezuela reveals a geographically distinct population with highly related parasites. Our findings indicate low genetic diversity in the parasite population and low levels of chloroquine resistance in Haiti, raising the possibility that reported cases may be of exogenous origin.
Collapse
|
3
|
Morton LC, Huber C, Okoth SA, Griffing S, Lucchi N, Ljolje D, Boncy J, Oscar R, Townes D, McMorrow M, Chang MA, Udhayakumar V, Barnwell JW. Plasmodium falciparum Drug-Resistant Haplotypes and Population Structure in Postearthquake Haiti, 2010. Am J Trop Med Hyg 2016; 95:811-816. [PMID: 27430541 DOI: 10.4269/ajtmh.16-0214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/01/2016] [Indexed: 01/13/2023] Open
Abstract
Chloroquine (CQ) remains the first-line treatment of malaria in Haiti. Given the challenges of conducting in vivo drug efficacy trials in low-endemic settings like Haiti, molecular surveillance for drug resistance markers is a reasonable approach for detecting resistant parasites. In this study, 349 blood spots were collected from suspected malaria cases in areas in and around Port-au-Prince from March to July 2010. Among them, 121 samples that were Plasmodium falciparum positive by polymerase chain reaction were genotyped for drug-resistant pfcrt, pfdhfr, pfdhps, and pfmdr1 alleles. Among the 108 samples that were successfully sequenced for CQ resistant markers in pfcrt, 107 were wild type (CVMNK), whereas one sample carried a CQ-resistant allele (CVIET). Neutral microsatellite genotyping revealed that the CQ-resistant isolate was distinct from all other samples in this study. Furthermore, the remaining parasite specimens appeared to be genetically distinct from other reported Central and South American populations.
Collapse
Affiliation(s)
| | - Curtis Huber
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sheila Akinyi Okoth
- Centers for Disease Control and Prevention, Atlanta, Georgia. Atlanta Research and Education Foundation, Decatur, Georgia
| | - Sean Griffing
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naomi Lucchi
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Dragan Ljolje
- Centers for Disease Control and Prevention, Atlanta, Georgia. Atlanta Research and Education Foundation, Decatur, Georgia
| | - Jacques Boncy
- National Public Health Laboratory, Port-au-Prince, Haiti
| | | | - David Townes
- Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | - John W Barnwell
- Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
4
|
Cullen KA, Mace KE, Arguin PM. Malaria Surveillance - United States, 2013. MORBIDITY AND MORTALITY WEEKLY REPORT. SURVEILLANCE SUMMARIES (WASHINGTON, D.C. : 2002) 2016; 65:1-22. [PMID: 26938139 DOI: 10.15585/mmwr.ss6502a1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
PROBLEM/CONDITION Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is also occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. PERIOD COVERED This report summarizes cases in persons with onset of illness in 2013 and summarizes trends during previous years. DESCRIPTION OF SYSTEM Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are mandated to be reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducted antimalarial drug resistance marker testing on blood samples submitted to CDC by health care providers or local/state health departments. Data from these reporting systems serve as the basis for this report. RESULTS CDC received 1,727 reported cases of malaria, including two congenital cases, with an onset of symptoms in 2013 among persons in the United States. The total number of cases represents a 2% increase from the 1,687 cases reported for 2012. Plasmodium falciparum, P. vivax, P. malariae, and P. ovale were identified in 61%, 14%, 3%, and 4% of cases, respectively. Forty (2%) patients were infected by two species. The infecting species was unreported or undetermined in 17% of cases. Polymerase chain reaction testing determined or corrected the species for 85 of the 137 (62%) samples evaluated for drug resistance marker testing. Of the 904 patients who reported purpose of travel, 635 (70%) were visiting friends or relatives (VFR). Among the 961 cases in U.S. civilians for whom information on chemoprophylaxis use and travel region was known, 42 (4%) patients reported that they had initiated and adhered to a chemoprophylaxis drug regimen recommended by CDC for the regions to which they had traveled. Thirty-six cases were reported in pregnant women, none of whom had adhered to chemoprophylaxis. Among all reported cases, approximately 270 (16%) were classified as severe illnesses in 2013. Of these, 10 persons with malaria died in 2013, the highest number since 2001. In 2013, a total of 137 blood samples submitted to CDC were tested for molecular markers associated with antimalarial drug resistance. Of the 100 P. falciparum-positive samples, 95 were tested for pyrimethamine resistance: 88 (93%) had genetic polymorphisms associated with pyrimethamine drug resistance, 74 (76%) with sulfadoxine resistance, 53 (53%) with chloroquine resistance, one (1%) with atovaquone resistance, none with mefloquine drug resistance, and none with artemisinin resistance. INTERPRETATION The overall trend of malaria cases has been increasing since 1973; the number of cases reported in 2013 is the third highest annual total since then. Despite progress in reducing the global burden of malaria, the disease remains endemic in many regions, and the use of appropriate prevention measures by travelers is still inadequate. PUBLIC HEALTH ACTIONS Completion of data elements on the malaria case report form increased slightly in 2013 compared with 2012, but still remains unacceptably low. This incomplete reporting compromises efforts to examine trends in malaria cases and prevent infections. VFRs continue to be a difficult population to reach with effective malaria prevention strategies. Evidence-based prevention strategies that effectively target VFRs need to be developed and implemented to have a substantial impact on the numbers of imported malaria cases in the United States. Fewer patients reported taking chemoprophylaxis in 2013 (32%) compared with 2012 (34%), and adherence was poor among those who did take chemoprophylaxis. Proper use of malaria chemoprophylaxis will prevent the majority of malaria illness and reduce the risk for severe disease (http://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Recent molecular laboratory advances have enabled CDC to identify and conduct molecular surveillance of antimalarial drug resistance markers (http://www.cdc.gov/malaria/features/ars.html). These advances will allow CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. For this to be successful, specimens should be submitted for all cases diagnosed in the United States. Clinicians should consult the CDC Guidelines for Treatment of Malaria and contact the CDC's Malaria Hotline for case management advice, when needed. Malaria treatment recommendations can be obtained online (http://www.cdc.gov/malaria/diagnosis_treatment) or by calling the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713).
Collapse
|
5
|
Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers. PLoS One 2015; 10:e0140416. [PMID: 26462203 PMCID: PMC4604141 DOI: 10.1371/journal.pone.0140416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/26/2015] [Indexed: 11/19/2022] Open
Abstract
Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci). For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%), moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61), low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis), and moderate linkage disequilibrium (ISA = 0.05, P<0.0001). In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti’s P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data.
Collapse
|
6
|
Boncy PJ, Adrien P, Lemoine JF, Existe A, Henry PJ, Raccurt C, Brasseur P, Fenelon N, Dame JB, Okech BA, Kaljee L, Baxa D, Prieur E, El Badry MA, Tagliamonte MS, Mulligan CJ, Carter TE, Beau de Rochars VM, Lutz C, Parke DM, Zervos MJ. Malaria elimination in Haiti by the year 2020: an achievable goal? Malar J 2015; 14:237. [PMID: 26043728 PMCID: PMC4464116 DOI: 10.1186/s12936-015-0753-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/27/2015] [Indexed: 12/25/2022] Open
Abstract
Haiti and the Dominican Republic, which share the island of Hispaniola, are the last locations in the Caribbean where malaria still persists. Malaria is an important public health concern in Haiti with 17,094 reported cases in 2014. Further, on January 12, 2010, a record earthquake devastated densely populated areas in Haiti including many healthcare and laboratory facilities. Weakened infrastructure provided fertile reservoirs for uncontrolled transmission of infectious pathogens. This situation results in unique challenges for malaria epidemiology and elimination efforts. To help Haiti achieve its malaria elimination goals by year 2020, the Laboratoire National de Santé Publique and Henry Ford Health System, in close collaboration with the Direction d’Épidémiologie, de Laboratoire et de Recherches and the Programme National de Contrôle de la Malaria, hosted a scientific meeting on “Elimination Strategies for Malaria in Haiti” on January 29-30, 2015 at the National Laboratory in Port-au-Prince, Haiti. The meeting brought together laboratory personnel, researchers, clinicians, academics, public health professionals, and other stakeholders to discuss main stakes and perspectives on malaria elimination. Several themes and recommendations emerged during discussions at this meeting. First, more information and research on malaria transmission in Haiti are needed including information from active surveillance of cases and vectors. Second, many healthcare personnel need additional training and critical resources on how to properly identify malaria cases so as to improve accurate and timely case reporting. Third, it is necessary to continue studies genotyping strains of Plasmodium falciparum in different sites with active transmission to evaluate for drug resistance and impacts on health. Fourth, elimination strategies outlined in this report will continue to incorporate use of primaquine in addition to chloroquine and active surveillance of cases. Elimination of malaria in Haiti will require collaborative multidisciplinary approaches, sound strategic planning, and strong ownership of strategies by the Haiti Ministère de la Santé Publique et de la Population.
Collapse
Affiliation(s)
- Paul Jacques Boncy
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti.
| | - Paul Adrien
- Direction d'Épidémiologie, de Laboratoire et de Recherches, Port-au-Prince, Haiti.
| | | | - Alexandre Existe
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti.
| | - Patricia Jean Henry
- Point focal OHMaSS/Programme National de Contrôle de la Malaria, Port-au-Prince, Haiti.
| | - Christian Raccurt
- Laboratoire National de Santé Publique, Rue Chardonnier #2 and Delmas 33, Port-au-Prince, Haiti.
| | | | - Natael Fenelon
- Direction d'Épidémiologie, de Laboratoire et de Recherches, Port-au-Prince, Haiti.
| | - John B Dame
- University of Florida, Gainesville, FL, 32611, USA.
| | | | - Linda Kaljee
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA. .,Wayne State University, Detroit, MI, 48201, USA.
| | - Dwayne Baxa
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA. .,Oakland University William Beaumont School of Medicine, Rocheste, MI, 48309, USA.
| | - Eric Prieur
- Laboratoire Vac4All, Hôpital Cochin, 75014, Paris, France.
| | | | | | | | | | | | - Chelsea Lutz
- University of Florida, Gainesville, FL, 32611, USA.
| | - Dana M Parke
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
| | - Marcus J Zervos
- Henry Ford Health System, 2799 W. Grand Blvd, Detroit, MI, 48202, USA. .,Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
7
|
Kuesap J, Chaijaroenkul W, Ketprathum K, Tattiyapong P, Na-Bangchang K. Evolution of genetic polymorphisms of Plasmodium falciparum merozoite surface protein (PfMSP) in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2014; 52:105-9. [PMID: 24623892 PMCID: PMC3948986 DOI: 10.3347/kjp.2014.52.1.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/30/2013] [Accepted: 11/12/2013] [Indexed: 11/23/2022]
Abstract
Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.
Collapse
Affiliation(s)
- Jiraporn Kuesap
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Wanna Chaijaroenkul
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Kanchanok Ketprathum
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Puntanat Tattiyapong
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| |
Collapse
|
8
|
Abdul-Ghani R, Farag HF, Allam AF. Sulfadoxine-pyrimethamine resistance in Plasmodium falciparum: a zoomed image at the molecular level within a geographic context. Acta Trop 2013; 125:163-90. [PMID: 23131424 DOI: 10.1016/j.actatropica.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 10/27/2022]
Abstract
Antimalarial chemotherapy is one of the main pillars in the prevention and control of malaria. Following widespread resistance of Plasmodium falciparum to chloroquine, sulfadoxine-pyrimethamine came to the scene as an alternative to the cheap and well-tolerated chloroquine. However, widespread resistance to sulfadoxine-pyrimethamine has been documented. In vivo efficacy tests are the gold standard for assessing drug resistance and treatment failure. However, they have many disadvantages, such as influence of host immunity and drug pharmacokinetics. In vitro tests of antimalarial drug efficacy also have many technical difficulties. Molecular markers of resistance have emerged as epidemiologic tools to investigate antimalarial drug resistance even before becoming clinically evident. Mutations in P. falciparum dihydrofolate reductase and dihydrofolate synthase have been extensively studied as molecular markers for resistance to pyrimethamine and sulfadoxine, respectively. This review highlights the resistance of P. falciparum at the molecular level presenting both supporting and opposing studies on the utility of molecular markers.
Collapse
|
9
|
Carter TE, Warner M, Mulligan CJ, Existe A, Victor YS, Memnon G, Boncy J, Oscar R, Fukuda MM, Okech BA. Evaluation of dihydrofolate reductase and dihydropteroate synthetase genotypes that confer resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum in Haiti. Malar J 2012; 11:275. [PMID: 22889367 PMCID: PMC3444377 DOI: 10.1186/1475-2875-11-275] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/01/2012] [Indexed: 01/04/2023] Open
Abstract
Background Malaria caused by Plasmodium falciparum infects roughly 30,000 individuals in Haiti each year. Haiti has used chloroquine (CQ) as a first-line treatment for malaria for many years and as a result there are concerns that malaria parasites may develop resistance to CQ over time. Therefore it is important to prepare for alternative malaria treatment options should CQ resistance develop. In many other malaria-endemic regions, antifolates, particularly pyrimethamine (PYR) and sulphadoxine (SDX) treatment combination (SP), have been used as an alternative when CQ resistance has developed. This study evaluated mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes that confer PYR and SDX resistance, respectively, in P. falciparum to provide baseline data in Haiti. This study is the first comprehensive study to examine PYR and SDX resistance genotypes in P. falciparum in Haiti. Methods DNA was extracted from dried blood spots and genotyped for PYR and SDX resistance mutations in P. falciparum using PCR and DNA sequencing methods. Sixty-one samples were genotyped for PYR resistance in codons 51, 59, 108 and 164 of the dhfr gene and 58 samples were genotyped for SDX resistance codons 436, 437, 540 of the dhps gene in P. falciparum. Results Thirty-three percent (20/61) of the samples carried a mutation at codon 108 (S108N) of the dhfr gene. No mutations in dhfr at codons 51, 59, 164 were observed in any of the samples. In addition, no mutations were observed in dhps at the three codons (436, 437, 540) examined. No significant difference was observed between samples collected in urban vs rural sites (Welch’s T-test p-value = 0.53 and permutations p-value = 0.59). Conclusion This study has shown the presence of the S108N mutation in P. falciparum that confers low-level PYR resistance in Haiti. However, the absence of SDX resistance mutations suggests that SP resistance may not be present in Haiti. These results have important implications for ongoing discussions on alternative malaria treatment options in Haiti.
Collapse
Affiliation(s)
- Tamar E Carter
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, P,O, Box 100009, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|