1
|
Pereira S, Cline DL, Chan M, Chai K, Yoon JS, O'Dwyer SM, Ellis CE, Glavas MM, Webber TD, Baker RK, Erener S, Covey SD, Kieffer TJ. Role of myeloid cell leptin signaling in the regulation of glucose metabolism. Sci Rep 2021; 11:18394. [PMID: 34526546 PMCID: PMC8443652 DOI: 10.1038/s41598-021-97549-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Although innate immunity is linked to metabolic health, the effect of leptin signaling in cells from the innate immune system on glucose homeostasis has not been thoroughly investigated. We generated two mouse models using Cre-lox methodology to determine the effect of myeloid cell-specific leptin receptor (Lepr) reconstitution and Lepr knockdown on in vivo glucose metabolism. Male mice with myeloid cell-specific Lepr reconstitution (Lyz2Cre+LeprloxTB/loxTB) had better glycemic control as they aged compared to male mice with whole-body transcriptional blockade of Lepr (Lyz2Cre−LeprloxTB/loxTB). In contrast, Lyz2Cre+LeprloxTB/loxTB females only had a trend for diminished hyperglycemia after a prolonged fast. During glucose tolerance tests, Lyz2Cre+LeprloxTB/loxTB males had a mildly improved plasma glucose profile compared to Cre− controls while Lyz2Cre+LeprloxTB/loxTB females had a similar glucose excursion to their Cre− controls. Myeloid cell-specific Lepr knockdown (Lyz2Cre+Leprflox/flox) did not significantly alter body weight, blood glucose, insulin sensitivity, or glucose tolerance in males or females. Expression of the cytokine interleukin 10 (anti-inflammatory) tended to be higher in adipose tissue of male Lyz2Cre+LeprloxTB/loxTB mice (p = 0.0774) while interleukin 6 (pro-inflammatory) was lower in male Lyz2Cre+Leprflox/flox mice (p < 0.05) vs. their respective controls. In conclusion, reconstitution of Lepr in cells of myeloid lineage has beneficial effects on glucose metabolism in male mice.
Collapse
Affiliation(s)
- Sandra Pereira
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Daemon L Cline
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Melissa Chan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kalin Chai
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ji Soo Yoon
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Cara E Ellis
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Travis D Webber
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Suheda Erener
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Scott D Covey
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. .,Department of Surgery, University of British Columbia, 2775 Laurel Street, Vancouver, BC, V5Z 1M9, Canada. .,School of Biomedical Engineering, University of British Columbia, 251-2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
2
|
Repurposing of existing therapeutics to combat drug-resistant malaria. Biomed Pharmacother 2021; 136:111275. [PMID: 33485067 DOI: 10.1016/j.biopha.2021.111275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 11/21/2022] Open
Abstract
In the era of drug repurposing, speedy discovery of new therapeutic options for the drug-resistant malaria is the best available tactic to reduce the financial load and time in the drug discovery process. Six anticancer drugs, three immunomodulators and four antibiotics were selected for the repositioning against experimental malaria owing to their mode of action and published literature. The efficacy of existing therapeutics was evaluated against chloroquine-resistant in vitro and in vivo strains of Plasmodium falciparum and P. yoelii, respectively. All the pre-existing FDA-approved drugs along with leptin were primarily screened against chloroquine-resistant (PfK1) and drug-sensitive (Pf3D7) strains of P. falciparum using SYBR green-based antiplasmodial assay. Cytotoxic profiling of these therapeutics was achieved on Vero and HepG2 cell lines, and human erythrocytes. Percent blood parasitemia and host survival was determined in chloroquine-resistant P. yoelii N67-infected Swiss mice using appropriate doses of these drugs/immunomodulators. Antimalarial screening together with cytotoxicity data revealed that anticancer drugs, idelalisib and 5-fluorouracil acquired superiority over their counterparts, regorafenib, and tamoxifen, respectively. ROS-inducer anticancer drugs, epirubicin and bleomycin were found toxic for the host. Immunomodulators (imiquimod, lenalidomide and leptin) were safest but less active in in vitro system, however, in P. yoelii-infected mice, they exhibited modest parasite suppression at their respective doses. Among antibiotics, moxifloxacin exhibited better antimalarial prospective than levofloxacin, roxithromycin and erythromycin. 5-Fluorouracil, imiquimod and moxifloxacin displayed 97.64, 81.18 and 91.77 % parasite inhibition in treated animals and attained superiority in their respective groups thus could be exploited further in combination with suitable antimalarials.
Collapse
|
3
|
Systematic Review of Host-Mediated Activity of Miltefosine in Leishmaniasis through Immunomodulation. Antimicrob Agents Chemother 2019; 63:AAC.02507-18. [PMID: 31036692 PMCID: PMC6591591 DOI: 10.1128/aac.02507-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/22/2019] [Indexed: 12/12/2022] Open
Abstract
Host immune responses are pivotal for the successful treatment of the leishmaniases, a spectrum of infections caused by Leishmania parasites. Previous studies speculated that augmenting cytokines associated with a type 1 T-helper cell (Th1) response is necessary to combat severe forms of leishmaniasis, and it has been hypothesized that the antileishmanial drug miltefosine is capable of immunomodulation and induction of Th1 cytokines. Host immune responses are pivotal for the successful treatment of the leishmaniases, a spectrum of infections caused by Leishmania parasites. Previous studies speculated that augmenting cytokines associated with a type 1 T-helper cell (Th1) response is necessary to combat severe forms of leishmaniasis, and it has been hypothesized that the antileishmanial drug miltefosine is capable of immunomodulation and induction of Th1 cytokines. A better understanding of the immunomodulatory effects of miltefosine is central to providing a rationale regarding synergistic mechanisms of activity to combine miltefosine optimally with other conventional and future antileishmanials that are currently under development. Therefore, a systematic literature search was performed to evaluate to what extent and how miltefosine influences the host Th1 response. Miltefosine’s effects observed in both a preclinical and a clinical context associated with immunomodulation in the treatment of leishmaniasis are evaluated in this review. A total of 27 studies were included in the analysis. Based on the current evidence, miltefosine is not only capable of inducing direct parasite killing but also of modulating the host immunity. Our findings suggest that miltefosine-induced activation of Th1 cytokines, particularly represented by increased gamma interferon (IFN-γ) and interleukin 12 (IL-12), is essential to prevail over the Leishmania-driven Th2 response. Differences in miltefosine-induced host-mediated effects between in vitro, ex vivo, animal model, and human studies are further discussed. All things considered, an effective treatment with miltefosine is acquired by enhanced functional Th1 cytokine responses and may further be enhanced in combination with immunostimulatory agents.
Collapse
|
4
|
Cortese L, Terrazzano G, Pelagalli A. Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. Int J Mol Sci 2019; 20:E2392. [PMID: 31091785 PMCID: PMC6566566 DOI: 10.3390/ijms20102392] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Growing scientific evidence has unveiled increased incidences of obesity in domestic animals and its influence on a plethora of associated disorders. Leptin, an adipokine regulating body fat mass, represents a key molecule in obesity, able to modulate immune responses and foster chronic inflammatory response in peripheral tissues. High levels of cytokines and inflammatory markers suggest an association between inflammatory state and obesity in dogs, highlighting the parallelism with humans. Canine obesity is a relevant disease always accompanied with several health conditions such as inflammation, immune-dysregulation, insulin resistance, pancreatitis, orthopaedic disorders, cardiovascular disease, and neoplasia. However, leptin involvement in many disease processes in veterinary medicine is poorly understood. Moreover, hyperleptinemia as well as leptin resistance occur with cardiac dysfunction as a consequence of altered cardiac mitochondrial metabolism in obese dogs. Similarly, leptin dysregulation seems to be involved in the pancreatitis pathophysiology. This review aims to examine literature concerning leptin and immunological status in obese dogs, in particular for the aspects related to obesity-associated diseases.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
5
|
Lower levels of leptin are associated with severity parameters in visceral leishmaniasis patients. PLoS One 2019; 14:e0214413. [PMID: 30913261 PMCID: PMC6435192 DOI: 10.1371/journal.pone.0214413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Visceral leishmaniasis (VL) is the most severe clinical form of leishmaniasis, and if untreated may be fatal. It affects important organs of the immune system and is characterized by a specific immunosuppression, along with intense cellular activation and cytokine storm. Moreover, VL is now recognized as a systemic inflammatory response syndrome (SIRS), in which multiple cytokines and other pro-inflammatory molecules are released. The action of these inflammatory mediators may be considered risk factors for poor prognosis and death. Leptin, a hormone derived from adipose tissue, has been described with several immunoregulatory functions in vitro and in vivo Leishmania infection models, particularly for enhancing the macrophage microbicidal mechanisms. Considering that evaluation of immunologic parameters that may be associated with this clinical scenario may help to decrease VL lethality, we evaluated whether leptin is associated with VL pathogenesis. Thirty-one patients were recruited in the active phase of VL, of which 22 were followed up until one month after therapy (1mpt). Except for creatinine levels, all clinical parameters were altered in active VL patients, especially leucocyte counts and albumin and hemoglobin levels. Also, elevated levels of lipopolysaccharide (LPS), immunoglobulins (Ig)G1 and G3 anti-Leishmania and interleukins (IL)-6 and -10 were higher than in healthy individuals. In contrast, active VL patients presented diminished serum leptin levels and positive correlation with leukocytes counts and hemoglobin and albumin levels. After 1mpt, VL patients showed a significant increase in leptin levels, reaching values similar to healthy volunteers. As expected, only LPS levels remained elevated after 1mpt. These findings suggest that leptin levels are affected in Leishmania infection and the correlation with important parameters associated with the prognosis of VL points to the involvement of this molecule in VL immunopathogenesis. Additional studies are needed to evaluate the possibility of leptin as a prognostic marker of VL.
Collapse
|
6
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
7
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
8
|
Leptin regulates Granzyme-A, PD-1 and CTLA-4 expression in T cell to control visceral leishmaniasis in BALB/c Mice. Sci Rep 2017; 7:14664. [PMID: 29116252 PMCID: PMC5676676 DOI: 10.1038/s41598-017-15288-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 01/01/2023] Open
Abstract
Visceral leishmaniasis (VL) is responsible for several deaths in malnourished children accompanied by diminished circulating leptin and impaired cell-mediated immunity. Typically, leptin deficiency is associated with the Th2 polarization that markedly coincides with the pathogenesis of VL. The aim of the present study was to unravel the prophylactic role of leptin in malnutrition-coupled VL mice. Interestingly, we observed that L. donovani infection itself reduces the serum leptin levels in malnutrition. Exogenous leptin restored severe body weight loss and parasite load in the spleen and liver of malnourished infected mice compared to controls. Leptin increases functional CD8+ T-cell population, Granzyme-A expression down-regulates anergic T-cell markers such as PD-1 and CTLA-4. It was also noticed that, leptin suppresses GM-CSF mRNA expression in parasite favored monocytes and reduced arginase activity in bone marrow derived macrophage indicate macrophages dependent T-cell activation and proliferation. Leptin-induced IFN-γ, IL-2, and TNF-α cytokines in the culture supernatant of splenocytes upon soluble leishmanial antigen (SLA) stimulation and significantly up-regulates serum IgG2a titers, which help to generate Th1 immune response in VL. Furthermore, leptin induced a granulomatous response and restored L. donovani induced tissue degeneration in the liver. Altogether, our findings suggest the exogenous leptin can restore T cell mediated immunity in malnourished VL mice.
Collapse
|
9
|
Shivahare R, Ali W, Singh US, Natu SM, Khattri S, Puri SK, Gupta S. Immunoprotective effect of lentinan in combination with miltefosine on Leishmania-infected J-774A.1 macrophages. Parasite Immunol 2016; 38:618-27. [PMID: 27387601 DOI: 10.1111/pim.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/04/2016] [Indexed: 11/29/2022]
Abstract
Rejuvenation of deteriorated host immune functions is imperative for successful annihilation of Leishmania parasites. The use of immunomodulatory agents may have several advantages as they conquer immunosuppression and, when given in combination, improve current therapeutic regimens. We herein investigated the immunostimulatory potency of a β-glucan, lentinan either alone or in combination with short dose of standard drug, miltefosine on Leishmania-infected J-774A.1 macrophages. Our study shows that infected macrophages when stimulated with 2.5 μg/mL and above concentrations of lentinan secreted significant amount of host-protective molecules. The in vitro interaction between lentinan and miltefosine showed some synergy (mean sum of fractional inhibitory concentration [mean ∑FIC] 0.87) at IC50 level. Lentinan (2.5 μg/mL) plus low-dose miltefosine (2 μM) displayed heightened level of pro-inflammatory cytokines, IL-12 (13.6-fold) and TNF-α (6.8-fold) along with nitric oxide (7.2-fold higher) when compared with infected control. In combination group, we also observed remarkably (P<.001) suppressed levels of anti-inflammatory cytokines, IL-10 and TGF-β, than that of untreated macrophages. Additionally, in comparison with infected group, we observed significant induction in phagocytic activity of macrophages in combination with treated group. Collectively, these findings emphasize the immunostimulatory effect of lentinan alone and in combination with low dose of miltefosine against Leishmania donovani.
Collapse
Affiliation(s)
- R Shivahare
- Department of Pathology, King George's Medical University, Lucknow, India.
| | - W Ali
- Department of Pathology, King George's Medical University, Lucknow, India.
| | - U S Singh
- Department of Pathology, King George's Medical University, Lucknow, India
| | - S M Natu
- Department of Pathology, King George's Medical University, Lucknow, India
| | - S Khattri
- Department of Pharmacology and Therapeutics, King George's Medical University, Lucknow, India
| | - S K Puri
- Division of Parasitology, CSIR- Central Drug Research Institute, Lucknow, India
| | - S Gupta
- Division of Parasitology, CSIR- Central Drug Research Institute, Lucknow, India
| |
Collapse
|
10
|
Maurya R, Bhattacharya P, Ismail N, Dagur PK, Joshi AB, Razdan K, McCoy JP, Ascher J, Dey R, Nakhasi HL. Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice. Am J Trop Med Hyg 2016; 95:109-119. [PMID: 27114296 PMCID: PMC4944674 DOI: 10.4269/ajtmh.15-0804] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/07/2016] [Indexed: 02/05/2023] Open
Abstract
Visceral leishmaniasis (VL) is caused by the protozoan parasite Leishmania donovani. There are no vaccines and available drugs against leishmaniasis are toxic. Immunomodulators that specifically boost the anti-microbial activities of the immune cells could alleviate several of these limitations. Therefore, finding novel immunomodulators for VL therapy is a pressing need. This study is aimed to evaluate the immunomodulatory role of leptin, an adipocyte-derived hormone capable of regulating the immune response, in L. donovani-infected mice. We observed that recombinant leptin treatment reduced splenic parasite burden compared with non-treated infected normal mice. Decrease in parasite burden correlated with an induction of innate immune response in antigen-presenting cells that showed an increase in nitric oxide, enhanced pro-inflammatory cytokine (interferon gamma [IFNγ], interleukin12 [IL]12, and IL1β) response in the splenocytes, indicating host-protecting Th1 response mediated by leptin. Moreover, in infected normal mice, leptin treatment induced IFNγ production from both CD4+ and CD8+ T cells, compared with non-treated infected mice. Alternatively, leptin-deficient (Ob/Ob) mice had higher splenic and liver parasite burden compared with the infected normal mice. However, leptin treatment failed to reduce the splenic parasite burden and improve a host-protective cytokine response in these mice. In addition, in contrast to dendritic cells (DCs) from a normal mouse, Ob/Ob mouse–derived DCs showed a defect in the induction of innate immune response on Leishmania infection that could not be reversed by leptin treatment. Therefore, our findings reveal that leptin has a differential immunomodulatory effect in controlling VL in normal and Ob/Ob mice.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India.,Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Nevien Ismail
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Pradeep K Dagur
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amritanshu B Joshi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kundan Razdan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - J Philip McCoy
- Flow Cytometry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Jill Ascher
- Division of Veterinary Services, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Hira L Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
11
|
Dayakar A, Chandrasekaran S, Veronica J, Maurya R. Leptin induces the phagocytosis and protective immune response in Leishmania donovani infected THP-1 cell line and human PBMCs. Exp Parasitol 2015; 160:54-9. [PMID: 26688099 DOI: 10.1016/j.exppara.2015.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/05/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Visceral leishmaniasis (VL) is an infectious disease responsible for several deaths in malnourished children due to impaired cell-mediated immunity, which is accompanied by low circulating leptin levels. The cytokine function of leptin is implicated for several immune regulation activities such as hematopoiesis, angiogenesis, innate and adaptive immunity. Its deficiency associated with polarization of Th2 response, which coincides with VL pathogenesis. To determine the cytokine role of leptin in case of experimental VL, we tested the leptin associated Th1/Th2 type cytokine profile at mRNA level from Leishmania donovani infected human monocytic leukemia cell line (THP-1) and peripheral blood mononuclear cells (PBMCs). We also tested the effect of leptin on macrophages activation (viz. studying the phosphorylation of signaling moieties), phagocytic activity and intracellular reactive oxygen species (ROS) production during infection. We observed that leptin induced Th1 specific response by upregulation of IL-1α, IL-1β, IL-8 and TNF-α in THP-1 and IFN-γ, IL-12 and IL-2 in PBMCs. We also observed the downregulation of Th2 type cytokine i.e. IL-10 in THP-1 and unaltered expression of cytokines i.e. TGF-β, IL-10 and IL-4 in PBMCs. In addition, leptin stimulates the macrophages by inducing phosphorylation of Erk1/2 and Akt which are usually dephosphorylated in L. donovani infection. In concordance, leptin also induces the macrophage phagocytic activity by enhancing the intracellular ROS generation which helps in phagolysosome formation and oxidative killing of the parasite. In compilation, leptin is able to maintain the defensive environment against L. donovani infection through the classical macrophage activity.
Collapse
Affiliation(s)
- Alti Dayakar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, India
| | - Sambamurthy Chandrasekaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, India
| | - Jalaja Veronica
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, India
| | - Radheshyam Maurya
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500 046, India.
| |
Collapse
|