1
|
Magallanes S, Llorente F, Ruiz-López MJ, la Puente JMD, Ferraguti M, Gutiérrez-López R, Soriguer R, Aguilera-Sepúlveda P, Fernández-Delgado R, Jímenez-Clavero MÁ, Figuerola J. Warm winters are associated to more intense West Nile virus circulation in southern Spain. Emerg Microbes Infect 2024; 13:2348510. [PMID: 38686545 PMCID: PMC11073421 DOI: 10.1080/22221751.2024.2348510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
West Nile virus (WNV) is the most widely distributed mosquito-borne flavivirus in the world. This flavivirus can infect humans causing in some cases a fatal neurological disease and birds are the main reservoir hosts. WNV is endemic in Spain, and human cases have been reported since 2004. Although different studies analyse how climatic conditions can affect the dynamics of WNV infection, very few use long-term datasets. Between 2003 and 2020 a total of 2,724 serum samples from 1,707 common coots (Fulica atra) were analysed for the presence of WNV-specific antibodies. Mean (SD) annual seroprevalence was 24.67% (0.28) but showed high year-to-year variations ranging from 5.06% (0.17) to 68.89% (0.29). Significant positive correlations (p < 0.01) were observed between seroprevalence and maximum winter temperature and mean spring temperature. The unprecedented WNV outbreak in humans in the south of Spain in 2020 was preceded by a prolonged period of escalating WNV local circulation. Given current global and local climatic trends, WNV circulation is expected to increase in the next decades. This underscores the necessity of implementing One Health approaches to reduce the risk of future WNV outbreaks in humans. Our results suggest that higher winter and spring temperatures may be used as an early warning signal of more intense WNV circulation among wildlife in Spain, and consequently highlight the need of more intense vector control and surveillance in human inhabited areas.
Collapse
Affiliation(s)
- Sergio Magallanes
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - María José Ruiz-López
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Josué Martínez-de la Puente
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Parasitology, University of Granada, Granada, Spain
| | - Martina Ferraguti
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Rafael Gutiérrez-López
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER of Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Ramón Soriguer
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | | | - Miguel Ángel Jímenez-Clavero
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Valdeolmos, Spain
| | - Jordi Figuerola
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD), CSIC, Seville, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
2
|
Wan G, Allen J, Ge W, Rawlani S, Uelmen J, Mainzer LS, Smith RL. Two-step light gradient boosted model to identify human west nile virus infection risk factor in Chicago. PLoS One 2024; 19:e0296283. [PMID: 38181002 PMCID: PMC10769082 DOI: 10.1371/journal.pone.0296283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
West Nile virus (WNV), a flavivirus transmitted by mosquito bites, causes primarily mild symptoms but can also be fatal. Therefore, predicting and controlling the spread of West Nile virus is essential for public health in endemic areas. We hypothesized that socioeconomic factors may influence human risk from WNV. We analyzed a list of weather, land use, mosquito surveillance, and socioeconomic variables for predicting WNV cases in 1-km hexagonal grids across the Chicago metropolitan area. We used a two-stage lightGBM approach to perform the analysis and found that hexagons with incomes above and below the median are influenced by the same top characteristics. We found that weather factors and mosquito infection rates were the strongest common factors. Land use and socioeconomic variables had relatively small contributions in predicting WNV cases. The Light GBM handles unbalanced data sets well and provides meaningful predictions of the risk of epidemic disease outbreaks.
Collapse
Affiliation(s)
- Guangya Wan
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Statistics, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Joshua Allen
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Weihao Ge
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Shubham Rawlani
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Information School, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - John Uelmen
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Liudmila Sergeevna Mainzer
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Car R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Rebecca Lee Smith
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Pathobiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Car R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| |
Collapse
|
3
|
Giesen C, Herrador Z, Fernandez B, Figuerola J, Gangoso L, Vazquez A, Gómez-Barroso D. A systematic review of environmental factors related to WNV circulation in European and Mediterranean countries. One Health 2023. [DOI: 10.1016/j.onehlt.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
4
|
Marini G, Pugliese A, Wint W, Alexander NS, Rizzoli A, Rosà R. Modelling the West Nile virus force of infection in the European human population. One Health 2022; 15:100462. [DOI: 10.1016/j.onehlt.2022.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
|
5
|
Di Pol G, Crotta M, Taylor RA. Modelling the temperature suitability for the risk of West Nile Virus establishment in European Culex pipiens populations. Transbound Emerg Dis 2022; 69:e1787-e1799. [PMID: 35304820 PMCID: PMC9790397 DOI: 10.1111/tbed.14513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/31/2022]
Abstract
Increases in temperature and extreme weather events due to global warming can create an environment that is beneficial to mosquito populations, changing and possibly increasing the suitable geographical range for many vector-borne diseases. West Nile Virus (WNV) is a flavivirus, maintained in a mosquito-avian host cycle that is usually asymptomatic but can cause primarily flu-like symptoms in human and equid accidental hosts. In rare circumstances, serious disease and death are possible outcomes for both humans and horses. The main European vector of WNV is the Culex pipiens mosquito. This study examines the effect of environmental temperature on WNV establishment in Europe via Culex pipiens populations through use of a basic reproduction number ( R 0 ${R_0}$ ) model. A metric of thermal suitability derived from R 0 ${R_0}$ was developed by collating thermal responses of different Culex pipiens traits and combining them through use of a next-generation matrix. WNV establishment was determined to be possible between 14°C and 34.3°C, with the optimal temperature at 23.7°C. The suitability measure was plotted against monthly average temperatures in 2020 and the number of months with high suitability mapped across Europe. The average number of suitable months for each year from 2013 to 2019 was also calculated and validated with reported equine West Nile fever cases from 2013 to 2019. The widespread thermal suitability for WNV establishment highlights the importance of European surveillance for this disease and the need for increased research into mosquito and bird distribution.
Collapse
Affiliation(s)
- Gabriella Di Pol
- Veterinary Epidemiology, Economics and Public Health GroupDepartment of Pathobiology and Population SciencesRoyal Veterinary CollegeLondonUK
| | - Matteo Crotta
- Veterinary Epidemiology, Economics and Public Health GroupDepartment of Pathobiology and Population SciencesRoyal Veterinary CollegeLondonUK
| | - Rachel A. Taylor
- Department of Epidemiological SciencesAnimal and Plant Health AgencySurreyUK
| |
Collapse
|
6
|
Spatial Analysis of Mosquito-Borne Diseases in Europe: A Scoping Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14158975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito-borne infections are increasing in endemic areas and previously unaffected regions. In 2020, the notification rate for Dengue was 0.5 cases per 100,000 population, and for Chikungunya <0.1/100,000. In 2019, the rate for Malaria was 1.3/100,000, and for West Nile Virus, 0.1/100,000. Spatial analysis is increasingly used in surveillance and epidemiological investigation, but reviews about their use in this research topic are scarce. We identify and describe the methodological approaches used to investigate the distribution and ecological determinants of mosquito-borne infections in Europe. Relevant literature was extracted from PubMed, Scopus, and Web of Science from inception until October 2021 and analysed according to PRISMA-ScR protocol. We identified 110 studies. Most used geographical correlation analysis (n = 50), mainly applying generalised linear models, and the remaining used spatial cluster detection (n = 30) and disease mapping (n = 30), mainly conducted using frequentist approaches. The most studied infections were Dengue (n = 32), Malaria (n = 26), Chikungunya (n = 26), and West Nile Virus (n = 24), and the most studied ecological determinants were temperature (n = 39), precipitation (n = 24), water bodies (n = 14), and vegetation (n = 11). Results from this review may support public health programs for mosquito-borne disease prevention and may help guide future research, as we recommended various good practices for spatial epidemiological studies.
Collapse
|
7
|
Ganzenberg S, Sieg M, Ziegler U, Pfeffer M, Vahlenkamp TW, Hörügel U, Groschup MH, Lohmann KL. Seroprevalence and Risk Factors for Equine West Nile Virus Infections in Eastern Germany, 2020. Viruses 2022; 14:v14061191. [PMID: 35746662 PMCID: PMC9229339 DOI: 10.3390/v14061191] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
West Nile virus (WNV) infections were first detected in Germany in 2018, but information about WNV seroprevalence in horses is limited. The study’s overall goal was to gather information that would help veterinarians, horse owners, and veterinary-, and public health- authorities understand the spread of WNV in Germany and direct protective measures. For this purpose, WNV seroprevalence was determined in counties with and without previously registered WNV infections in horses, and risk factors for seropositivity were estimated. The cohort consisted of privately owned horses from nine counties in Eastern Germany. A total of 940 serum samples was tested by competitive panflavivirus ELISA (cELISA), and reactive samples were further tested by WNV IgM capture ELISA and confirmed by virus neutralization test (VNT). Information about potential risk factors was recorded by questionnaire and analyzed by logistic regression. A total of 106 serum samples showed antibodies against flaviviruses by cELISA, of which six tested positive for WNV IgM. The VNT verified a WNV infection for 54 samples (50.9%), while 35 sera neutralized tick-borne encephalitis virus (33.0%), and eight sera neutralized Usutu virus (7.5%). Hence, seroprevalence for WNV infection was 5.8% on average and was significantly higher in counties with previously registered infections (p = 0.005). The risk factor analysis showed breed type (pony), housing in counties with previously registered infections, housing type (24 h turn-out), and presence of outdoor shelter as the main significant risk factors for seropositivity. In conclusion, we estimated the extent of WNV infection in the resident horse population in Eastern Germany and showed that seroprevalence was higher in counties with previously registered equine WNV infections.
Collapse
Affiliation(s)
- Stefanie Ganzenberg
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Michael Sieg
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Ute Ziegler
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany; (M.S.); (T.W.V.)
| | - Uwe Hörügel
- Animal Diseases Fund Saxony, Pferdegesundheitsdienst, 01099 Dresden, Germany;
| | - Martin H. Groschup
- Friedrich-Loeffler Institut (FLI), Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, 17493 Greifswald-Insel Riems, Germany; (U.Z.); (M.H.G.)
| | - Katharina L. Lohmann
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-341-97-38224
| |
Collapse
|
8
|
Aguilera-Sepúlveda P, Gómez-Martín B, Agüero M, Jiménez-Clavero MÁ, Fernández-Pinero J. A new cluster of West Nile virus lineage 1 isolated from a northern goshawk in Spain. Transbound Emerg Dis 2021; 69:3121-3127. [PMID: 34812592 DOI: 10.1111/tbed.14399] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/21/2022]
Abstract
West Nile Virus (WNV; family Flaviviridae, genus flavivirus) is a zoonotic arbovirus worldwide spread. Its genetic diversity has allowed the definition of at least seven lineages, being lineages 1 and 2 the most widely distributed. Western Mediterranean region has been affected by WNV since decades. In Spain, WNV is actively circulating, provoking annual outbreaks in birds, horses and lately in humans. Lineage 1 is responsible for outbreaks that occurred in central and southern regions, while lineage 2 has been recently described in wild birds in north-eastern part of the country. During 2017 season, a disease outbreak in captive raptors was reported in southern Spain and WNV was isolated from a dead northern goshawk. Full genome sequencing was followed by phylogenetic analyses and analyses of the amino acidic substitutions. This strain, named Spain/2017/NG-b, highly differs from those which have been circulating both in Spain and in the neighbouring Mediterranean countries, constituting a new distinct group, tentatively classified in a newly defined cluster 7 within the WNV clade 1a, supporting a new, independent introduction of the virus in the Western Mediterranean region from an unknown origin. Besides, circumstantial evidence indicates that this emerging WNV strain could be behind the subsequent outbreak occurred nearby in horses. Overall, the reinforcement of surveillance programs, especially in wild birds, is essential to early detect the circulation of WNV and other related flaviviruses that could cause outbreaks in wild or domestic birds, equine and human populations.
Collapse
Affiliation(s)
- Pilar Aguilera-Sepúlveda
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| | | | | | - Miguel Ángel Jiménez-Clavero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain.,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Madrid, Spain
| | - Jovita Fernández-Pinero
- Departamento de enfermedades infecciosas y salud global, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Valdeolmos, Madrid, Spain
| |
Collapse
|
9
|
Cuervo PF, Artigas P, Mas-Coma S, Bargues MD. West Nile virus in Spain: Forecasting the geographical distribution of risky areas with an ecological niche modelling approach. Transbound Emerg Dis 2021; 69:e1113-e1129. [PMID: 34812589 DOI: 10.1111/tbed.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
West Nile virus (WNV), a well-known emerging vector-borne arbovirus with a zoonotic life cycle, represents a threat to both public and animal health. Transmitted by ornithophilic mosquitoes, its transmission is difficult to predict and even more difficult to prevent. The massive and unprecedented number of human cases and equid outbreaks in Spain during 2020 interpellates for new approaches. For the first time, we present an integrate analysis from a niche perspective to provide an insight to the situation of West Nile disease (WND) in Spain. Our modelling approach benefits from the combined use of global occurrence records of outbreaks of WND in equids and of its two alleged main vectors in Spain, Culex pipiens and Cx. perexiguus. Maps of the climatic suitability for the presence of the two vectors species and for the circulation of WNV are provided. The main outcome of our study is a map delineating the areas under certain climatic risk of transmission. Our analyses indicate that the climatic risk of transmission of WND is medium in areas nearby the south Atlantic coastal area of the Cadiz Gulf and the Mediterranean coast, and high in southwestern Spain. The higher risk of transmission in the basins of the rivers Guadiana and Guadalquivir cannot be attributed exclusively to the local abundance of Cx. pipiens, but could be ascribed to the presence and abundance of Cx. perexiguus. Furthermore, this integrated analysis suggests that the WNV presents an ecological niche of its own, not fully overlapping the ones of its hosts or vector, and thus requiring particular environmental conditions to succeed in its infection cycle.
Collapse
Affiliation(s)
- Pablo Fernando Cuervo
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain.,Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET - Litoral), Universidad Nacional del Litoral (UNL)/Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Esperanza, Santa Fe, Argentina
| | - Patricio Artigas
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Santiago Mas-Coma
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Dolores Bargues
- Facultad de Farmacia, Departamento de Parasitología, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Spatiotemporal Analysis of West Nile Virus Epidemic in South Banat District, Serbia, 2017-2019. Animals (Basel) 2021; 11:ani11102951. [PMID: 34679972 PMCID: PMC8533022 DOI: 10.3390/ani11102951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
West Nile virus (WNV) is an arthropod-born pathogen, which is transmitted from wild birds through mosquitoes to humans and animals. At the end of the 20th century, the first West Nile fever (WNF) outbreaks among humans in urban environments in Eastern Europe and the United States were reported. The disease continued to spread to other parts of the continents. In Serbia, the largest number of WNV-infected people was recorded in 2018. This research used spatial statistics to identify clusters of WNV infection in humans and animals in South Banat County, Serbia. The occurrence of WNV infection and risk factors were analyzed using a negative binomial regression model. Our research indicated that climatic factors were the main determinant of WNV distribution and were predictors of endemicity. Precipitation and water levels of rivers had an important influence on mosquito abundance and affected the habitats of wild birds, which are important for maintaining the virus in nature. We found that the maximum temperature of the warmest part of the year and the annual temperature range; and hydrographic variables, e.g., the presence of rivers and water streams were the best environmental predictors of WNF outbreaks in South Banat County.
Collapse
|
11
|
Geospatial Analysis and Mapping Strategies for Fine-Grained and Detailed COVID-19 Data with GIS. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2021. [DOI: 10.3390/ijgi10090602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unprecedented COVID-19 pandemic is showing dramatic impact across the world. Public health authorities attempt to fight against the virus while maintaining economic activity. In the face of the uncertainty derived from the virus, all the countries have adopted non-pharmaceutical interventions for limiting the mobility and maintaining social distancing. In order to support these interventions, some health authorities and governments have opted for sharing very fine-grained data related with the impact of the virus in their territories. Geographical science is playing a major role in terms of understanding how the virus spreads across regions. Location of cases allows identifying the spatial patterns traced by the virus. Understanding these patterns makes controlling the virus spread feasible, minimizes its impact in vulnerable regions, anticipates potential outbreaks, or elaborates predictive risk maps. The application of geospatial analysis to fine-grained data must be urgently adopted for optimal decision making in real and near-real time. However, some aspects related to process and map sensitive health data in emergency cases have not yet been sufficiently explored. Among them include concerns about how these datasets with sensitive information must be shown depending on aspects related to data aggregation, scaling, privacy issues, or the need to know in advance the particularities of the study area. In this paper, we introduce our experience in mapping fine-grained data related to the incidence of the COVID-19 during the first wave in the region of Galicia (NW Spain), and after that we discuss the mentioned aspects.
Collapse
|
12
|
Torres-Signes A, Dip J. A Bayesian Functional Methodology for Dengue Risk Mapping in Latin America and the Caribbean. Acta Trop 2021; 215:105788. [PMID: 33338465 DOI: 10.1016/j.actatropica.2020.105788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Dengue fever has become one of the most outstanding infectious diseases in the world. Besides, the incidence and prevalence of dengue are increasing in the endemic areas of the tropical and subtropical regions. Space and time disease mapping models are common instruments to explain the patterns of disease counts, where hierarchical Bayesian models constitute a suitable framework for their formulation. These random events reflect interactions between nearby geographic locations, as well as correlations between close temporary instants. Functional data analysis techniques can better describe the evolution of disease mapping. In this paper, the risk of dengue in Mexico, Central and South America is studied from a Functional approach through a Bayesian estimation model focused on Hilbert-valued autoregressive processes combined with the Kalman filtering algorithm. Thus, the temporal functional evolution of spatial geographic patterns of incidence risk in disease mapping during 1998-2018 is approximated. Applying this methodology, the excess of smoothing that occurs with traditional models is avoided and the heterogeneity is conserved across the years. It improves the number of false positives created by noise and the number of false negatives as well. The results obtained with the application of this model are compared with those of previous models, corroborating the preceding statements and obtaining better results in the relative risk estimates, providing greater robustness and stability of disease risk estimates.
Collapse
|
13
|
Bravo-Barriga D, Aguilera-Sepúlveda P, Guerrero-Carvajal F, Llorente F, Reina D, Pérez-Martín JE, Jiménez-Clavero MÁ, Frontera E. West Nile and Usutu virus infections in wild birds admitted to rehabilitation centres in Extremadura, western Spain, 2017-2019. Vet Microbiol 2021; 255:109020. [PMID: 33677369 DOI: 10.1016/j.vetmic.2021.109020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) is an emerging flavivirus transmitted generally by mosquitoes of Culex genus. It is maintained in an enzootic life cycle where birds act as reservoir hosts. Humans and horses are also susceptible to infection, and occasionally, they suffer from neurological complications. However, they do not transmit the virus to other vectors, behaving as dead-end hosts. Sporadic WNV outbreaks observed in horses and wild birds from Extremadura (western Spain) during 2016 and 2017 seasons prompted to carry out this survey in wild birds, focused on specimens coming from two wildlife rehabilitation centres. Between October 2017 and December 2019, samples from 391 wild birds, belonging to 56 different species were collected and analysed in search of evidence of WNV infection. The analysis of serum samples for WNV-specific antibodies by ELISA, whose specificity was subsequently confirmed by virus-neutralisation test (VNT) showed positive results in 18.23 % birds belonging to 18 different species. Pelecaniformes (33.33 %), Accipitriformes (25.77 %) and Strigiformes (22.92 %) orders had the higher seroprevalences. Remarkably, WNV-specific antibodies were found in a black stork for the first time in Europe. Analysis by real time RT-PCR in symptomatic birds confirmed the presence of WNV lineage 1 RNA in griffon vulture and little owls. Specificity analysis of ELISA positive and doubtful sera was performed by differential VNT titration against WNV and two other cross-reacting avian flaviviruses found in Spain: Usutu virus (USUV) and Bagaza virus (BAGV). Only four samples showed USUV-specific antibodies (1.04 %) corresponding to three species: Eurasian eagle-owl, griffon vulture and great bustard (first detection in Europe) whereas no samples were found reactive to BAGV. Differential VNT yielded undetermined flavivirus result in 16 samples (4.17 %). This is the first study carried out on wild birds from Extremadura (western Spain). It highlights the widespread circulation of WNV in the region and its co-circulation with USUV.
Collapse
Affiliation(s)
- Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | | | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.
| | - David Reina
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - J Enrique Pérez-Martín
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain; Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain.
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain.
| |
Collapse
|
14
|
Brugueras S, Fernández-Martínez B, Martínez-de la Puente J, Figuerola J, Porro TM, Rius C, Larrauri A, Gómez-Barroso D. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. ENVIRONMENTAL RESEARCH 2020; 191:110038. [PMID: 32810503 DOI: 10.1016/j.envres.2020.110038] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Mosquito borne diseases are a group of infections that affect humans. Emerging or reemerging diseases are those that (re)occur in regions, groups or hosts that were previously free from these diseases: dengue virus; chikungunya virus; Zika virus; West Nile fever and malaria. In Europe, these infections are mostly imported; however, due to the presence of competent mosquitoes and the number of trips both to and from endemic areas, these pathogens are potentially emergent or re-emergent. Present and future climatic conditions, as well as meteorological, environmental and demographic aspects are risk factors for the distribution of different vectors and/or diseases. This review aimed to identify and analyze the existing literature on the transmission of mosquito borne diseases and those factors potentially affecting their transmission risk of them in six southern European countries with similar environmental conditions: Croatia, France, Greece, Italy, Portugal and Spain. In addition, we would identify those factors potentially affecting the (re)introduction or spread of mosquito vectors. This task has been undertaken with a focus on the environmental and climatic factors, including the effects of climate change. We undertook a systematic review of the vectors, diseases and their associations with climactic and environmental factors in European countries of the Mediterranean region. We followed the PRISMA guidelines and used explicit and systematic methods to identify, select and critically evaluate the studies which were relevant to the topic. We identified 1302 articles in the first search of the databases. Of those, 160 were selected for full-text review. The final data set included 61 articles published between 2000 and 2017.39.3% of the papers were related with dengue, chikungunya and Zika virus or their vectors. Temperature, precipitation and population density were key factors among others. 32.8% studied West Nile virus and its vectors, being temperature, precipitation and NDVI the most frequently used variables. Malaria have been studied in 23% of the articles, with temperature, precipitation and presence of water indexes as the most used variables. The number of publications focused on mosquito borne diseases is increasing in recent years, reflecting the increased interest in that diseases in southern European countries. Climatic and environmental variables are key factors on mosquitoes' distribution and to show the risk of emergence and/or spread of emergent diseases and to study the spatial changes in that distributions.
Collapse
Affiliation(s)
- Silvia Brugueras
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Fernández-Martínez
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio, 26, E-41092, Sevilla, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Calle Américo Vespucio, 26, E-41092, Sevilla, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Tomas Montalvo Porro
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Cristina Rius
- Agencia de Salud Pública de Barcelona, Pl. Lesseps, 1, 08023, Barcelona, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Amparo Larrauri
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain
| | - Diana Gómez-Barroso
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, 28029, Madrid, Spain; CIBER de Epidemiología y Salud Pública, Calle Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
15
|
Guerrero-Carvajal F, Bravo-Barriga D, Martín-Cuervo M, Aguilera-Sepúlveda P, Ferraguti M, Jiménez-Clavero MÁ, Llorente F, Alonso JM, Frontera E. Serological evidence of co-circulation of West Nile and Usutu viruses in equids from western Spain. Transbound Emerg Dis 2020; 68:1432-1444. [PMID: 32853452 DOI: 10.1111/tbed.13810] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
West Nile virus (WNV) is a mosquito-borne emerging virus in Europe with capacity to cause neurological complications such as encephalitis or meningoencephalitis in humans, birds or equids. In Spain, WNV is actively circulating in mosquitoes, birds and horses in different regions, but never has been deeply studied in Extremadura. Therefore, the aim of this study was to evaluate the seroprevalence of WNV in equids of those areas and to analyse the risk factors associated with exposure to the virus. A total of 199 out of 725 equids presented antibodies against WNV by competition ELISA (27.45%), while 22 were doubtful (3.03%). Anti-WNV IgM antibodies were detected in 16 equids (2.21%), and 3 animals were doubtful (0.41%). All ELISA-reactive positive/doubtful sera (N = 226) were further tested by micro-virus neutralization test (VNT), and a total of 143 horses were confirmed as positive for WNV, obtaining a seroprevalence of 19.72% in equids of western Spain. In addition, specific antibodies against USUV were confirmed in 11 equids. In 24 equids, a specific flavivirus species (detected by ELISA test) could not be determined. The generalized linear mixed-effects models showed that the significant risk factors associated with individual WNV infection in equids were the age (adults) and hair coat colour (light), whereas in USUV infections, it was the breed (pure). Data demonstrated that WNV and USUV are circulating in regions of western Spain. Given the high WNV seroprevalence found in equids from the studied areas, it is important to improve the surveillance programmes of public health to detect undiagnosed human cases and to establish a vaccination programme in equid herds in these regions.
Collapse
Affiliation(s)
| | - Daniel Bravo-Barriga
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - María Martín-Cuervo
- Animal Medicine Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Pilar Aguilera-Sepúlveda
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Martina Ferraguti
- Anatomy, Cellular Biology and Zoology Department, Science Faculty, University of Extremadura (UEx), Badajoz, Spain
| | - Miguel Ángel Jiménez-Clavero
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Francisco Llorente
- Animal Health Research Centre, National Institute for Agricultural and Food Research and Technology (INIA-CISA), Valdeolmos, Madrid, Spain
| | - Juan Manuel Alonso
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| | - Eva Frontera
- Animal Health Department, Veterinary Faculty, University of Extremadura (UEx), Cáceres, Spain
| |
Collapse
|
16
|
Caballero-Gómez J, Cano-Terriza D, Lecollinet S, Carbonell MD, Martínez-Valverde R, Martínez-Nevado E, García-Párraga D, Lowenski S, García-Bocanegra I. Evidence of exposure to zoonotic flaviviruses in zoo mammals in Spain and their potential role as sentinel species. Vet Microbiol 2020; 247:108763. [PMID: 32768215 DOI: 10.1016/j.vetmic.2020.108763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 10/24/2022]
Abstract
A serosurvey was carried out to assess emerging flavivirus exposure in zoo mammals in Spain and to determine the dynamics of seropositivity in species that were longitudinally sampled during the study period. Sera from 570 zoo animals belonging to 120 mammal species were collected at ten zoos (A-J) in Spain between 2002 and 2019. Twenty-one of these animals, belonging to ten different species, were sampled longitudinally at four of the zoos during the study period. Antigenically-related flavivirus antibodies were detected in 19 (3.3 %; 95 %CI: 2.0-5.2) of the 570 animals analyzed using bELISA. Seropositivity was observed in ten (8.3 %) of the 120 species tested. Five (23.8 %) of the 21 animals sampled more than once presented seropositivity in all samplings whereas seroconversion was only observed in one white rhinoceros (Ceratotherium simum). Flavivirus antibodies were found at six of the ten sampled zoos and in consecutive years between 2008 and 2018. Virus neutralization tests confirmed West Nile virus (WNV), Usutu virus (USUV) and tick-borne encephalitis virus (TBEV) infection in ten (1.8 %; 95 %CI: 0.7-2.8), five (0.9 %; 95 %CI: 0.1-1.6) and one (0.2 %; 95 %CI: 0.0-0.5) animal, respectively. Antibodies against Meaban virus (0 %; 95 %CI: 0.0-0.7 %) were not found in the tested sera. The results demonstrate WNV, USUV and TBEV exposure in zoo mammals, which may be of public health and conservation concern. Seropositivity to WNV and USUV was detected in regions where these viruses have not been reported previously. Anti-WNV antibodies found in zoo animals sampled in 2009 point to WNV circulation at least one year before the first outbreaks were reported in horses and humans in Spain. Our results indicate that zoo mammals could be useful sentinel species for monitoring emerging flavivirus activity in urban areas.
Collapse
Affiliation(s)
- J Caballero-Gómez
- Department of Animal Health, University of Cordoba, 14014, Cordoba, Spain; Infectious Diseases Unit, Clinical Virology and Zoonoses Research Group, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, 14006, Cordoba, Spain
| | - D Cano-Terriza
- Department of Animal Health, University of Cordoba, 14014, Cordoba, Spain.
| | - S Lecollinet
- ANSES Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRAE, ANSES, ENVA, 94700, Maisons-Alfort, France
| | | | - R Martínez-Valverde
- Veterinary and Conservation Department, Bioparc Fuengirola, 29640, Malaga, Spain
| | | | - D García-Párraga
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, 46005, Valencia, Spain
| | - S Lowenski
- ANSES Laboratoire de Santé Animale de Maisons-Alfort, UMR 1161 Virologie, INRAE, ANSES, ENVA, 94700, Maisons-Alfort, France
| | - I García-Bocanegra
- Department of Animal Health, University of Cordoba, 14014, Cordoba, Spain
| |
Collapse
|
17
|
Chevalier V, Marsot M, Molia S, Rasamoelina H, Rakotondravao R, Pedrono M, Lowenski S, Durand B, Lecollinet S, Beck C. Serological Evidence of West Nile and Usutu Viruses Circulation in Domestic and Wild Birds in Wetlands of Mali and Madagascar in 2008. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061998. [PMID: 32197367 PMCID: PMC7142923 DOI: 10.3390/ijerph17061998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022]
Abstract
The geographical distribution and impact on animal and human health of both West Nile and Usutu viruses, two flaviviruses of the Japanese encephalitis complex, have been increasing during the past two decades. Both viruses circulate in Europe and Africa within a natural cycle between wild birds and mosquitoes, mainly from the Culex genus. We retrospectively analyzed sera from domestic and wild birds sampled in 2008 in two wetlands, namely the Inner Niger Delta, Mali, and the Lake Alaotra area, Madagascar. Sera were first tested using a commercial ID Screen West Nile Competition Multi-species ELISA kit. Then, positive sera and sera with insufficient volume for testing with ELISA were tested with a Microneutralization Test. In Mali, the observed seroprevalence in domestic birds was 28.5% [24.5; 32.8] 95%CI, 3.1 % [1.8; 5.2] 95%CI, 6.2% [3.4; 10.2] 95%CI and 9.8 % [7.3; 12.8] 95%CI, for West Nile virus (WNV), Usutu virus (USUV), undetermined flavivirus, and WNV/USUV respectively. Regarding domestic birds of Madagascar, the observed seroprevalence was 4.4 % [2.1; 7.9]95%CI for WNV, 0.9% [0.1; 3.1] 95%CI for USUV, 1.3% [0.5; 2.8] 95%CI for undetermined flavivirus, and null for WNV/USUV. Among the 150 wild birds sampled in Madagascar, two fulvous whistling-ducks (Dendrocygna bicolor) were positive for WNV and two for an undetermined flavivirus. One white-faced whistling-duck (Dendrocygna viduata) and one Hottentot teal (Spatula hottentota) were tested positive for USUV. African and European wetlands are linked by wild bird migrations. This first detection of USUV—as well as the confirmed circulation of WNV in domestic birds of two wetlands of Mali and Madagascar—emphasizes the need to improve the surveillance, knowledge of epidemiological patterns, and phylogenetic characteristics of flavivirus in Africa, particularly in areas prone to sustained, intense flavivirus transmission such as wetlands.
Collapse
Affiliation(s)
- Véronique Chevalier
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh PO Box 983, Cambodia
| | - Maud Marsot
- University Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, 94700 Maisons-Alfort, France
| | - Sophie Molia
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- Centre Régional de Santé Animale, Parc Sotuba, Bamako, Mali
| | | | | | - Miguel Pedrono
- CIRAD, UMR ASTRE, F-34090 Montpellier, France
- Université Montpellier, F-34090 Montpellier, France
- FOFIFA-DRZV, 101 Antananarivo, Madagascar
| | - Steve Lowenski
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| | - Benoit Durand
- University Paris Est, ANSES, Laboratory for Animal Health, Epidemiology Unit, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| | - Cécile Beck
- UMR 1161 Virology, ANSES, INRA, ENVA, ANSES Animal Health Laboratory, EURL for Equine Diseases, 94704 Maisons-Alfort, France
| |
Collapse
|
18
|
Bournez L, Umhang G, Faure E, Boucher JM, Boué F, Jourdain E, Sarasa M, Llorente F, Jiménez-Clavero MA, Moutailler S, Lacour SA, Lecollinet S, Beck C. Exposure of Wild Ungulates to the Usutu and Tick-Borne Encephalitis Viruses in France in 2009-2014: Evidence of Undetected Flavivirus Circulation a Decade Ago. Viruses 2019; 12:E10. [PMID: 31861683 PMCID: PMC7019733 DOI: 10.3390/v12010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Abstract: Flaviviruses have become increasingly important pathogens in Europe over the past few decades. A better understanding of the spatiotemporal distribution of flaviviruses in France is needed to better define risk areas and to gain knowledge of the dynamics of virus transmission cycles. Serum samples from 1014 wild boar and 758 roe deer from 16 departments (administrative units) in France collected from 2009 to 2014 were screened for flavivirus antibodies using a competitive ELISA (cELISA) technique. Serum samples found to be positive or doubtful by cELISA were then tested for antibodies directed against West Nile virus (WNV), Usutu virus (USUV), Bagaza virus (BAGV), and tick-borne encephalitis/Louping ill viruses (TBEV/LIV) by microsphere immunoassays (except BAGV) and micro-neutralization tests. USUV antibodies were detected only in southeastern and southwestern areas. TBEV/LIV antibodies were detected in serum samples from eastern, southwestern and northern departments. The results indicate continuous circulation of USUV in southern France from 2009 to 2014, which was unnoticed by the French monitoring system for bird mortality. The findings also confirm wider distribution of TBEV in the eastern part of the country than of human clinical cases. However, further studies are needed to determine the tick-borne flavivirus responsible for the seroconversion in southwestern and northern France.
Collapse
Affiliation(s)
- Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Gérald Umhang
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Eva Faure
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
| | - Jean-Marc Boucher
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Franck Boué
- Nancy Laboratory for Rabies and Wildlife, The French Agency for Food, Environmental and Occupational Health and Safety (ANSES), CS 40009 54220 Malzéville, France; (G.U.); (J.-M.B.); (F.B.)
| | - Elsa Jourdain
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité mixte de recherche Epidémiologie des maladies animales et zoonotiques (UMR EPIA), 63122 Saint-Genès-Champanelle, France;
| | - Mathieu Sarasa
- National Hunters Federation, 92130 Issy-les-Moulineaux, France; (E.F.); (M.S.)
- Biologie et Ecologie des Organismes et Populations Sauvages (BEOPS), 1 Esplanade Compans Caffarelli, 31000 Toulouse, France
| | - Francisco Llorente
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
| | - Miguel A. Jiménez-Clavero
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CISA), 28130 Valdeolmos, Spain; (F.L.); (M.A.J.-C.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Sara Moutailler
- Unité mixte de recherche Biologie moléculaire et Immunologie Parasitaire (UMR BIPAR), ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Maisons-Alfort 94700, France;
| | - Sandrine A. Lacour
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Sylvie Lecollinet
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| | - Cécile Beck
- Unité mixte de recherche (UMR) Virologie, INRAE, Ecole Nationale Vétérinaire d’Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France; (S.A.L.); (S.L.); (C.B.)
| |
Collapse
|
19
|
Eritja R, Ruiz-Arrondo I, Delacour-Estrella S, Schaffner F, Álvarez-Chachero J, Bengoa M, Puig MÁ, Melero-Alcíbar R, Oltra A, Bartumeus F. First detection of Aedes japonicus in Spain: an unexpected finding triggered by citizen science. Parasit Vectors 2019; 12:53. [PMID: 30674335 PMCID: PMC6344982 DOI: 10.1186/s13071-019-3317-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Aedes japonicus is an invasive vector mosquito from Southeast Asia which has been spreading across central Europe since the year 2000. Unlike the Asian Tiger mosquito (Aedes albopictus) present in Spain since 2004, there has been no record of Ae. japonicus in the country until now. RESULTS Here, we report the first detection of Ae. japonicus in Spain, at its southernmost location in Europe. This finding was triggered by the citizen science platform Mosquito Alert. In June 2018, a citizen sent a report via the Mosquito Alert app from the municipality of Siero in the Asturias region (NW Spain) containing pictures of a female mosquito compatible with Ae. japonicus. Further information was requested from the participant, who subsequently provided several larvae and adults that could be classified as Ae. japonicus. In July, a field mission confirmed its presence at the original site and in several locations up to 9 km away, suggesting a long-time establishment. The strong media impact in Asturias derived from the discovery raised local participation in the Mosquito Alert project, resulting in further evidence from surrounding areas. CONCLUSIONS Whilst in the laboratory Ae. japonicus is a competent vector for several mosquito-borne pathogens, to date only West Nile virus is a concern based on field evidence. Nonetheless, this virus has yet not been detected in Asturias so the vectorial risk is currently considered low. The opportunity and effectiveness of combining citizen-sourced data to traditional surveillance methods are discussed.
Collapse
Affiliation(s)
- Roger Eritja
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ignacio Ruiz-Arrondo
- Center for Rickettsioses and Arthropod-Borne Diseases, Hospital San Pedro-CIBIR, 26006 Logroño, Spain
| | - Sarah Delacour-Estrella
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Francis Schaffner
- Francis Schaffner Consultancy, 4125 Riehen, Switzerland
- National Centre for Vector Entomology, Institute of Parasitology, VetSuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | | | - Mikel Bengoa
- Consultoria Moscard Tigre, 07013 Palma de Mallorca, Islas Baleares Spain
| | | | | | - Aitana Oltra
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), 17300 Blanes, Spain
| | - Frederic Bartumeus
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Cerdanyola del Vallès, 08193 Barcelona, Spain
- Centre d’Estudis Avançats de Blanes (CEAB-CSIC), 17300 Blanes, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
20
|
Hess A, Davis JK, Wimberly MC. Identifying Environmental Risk Factors and Mapping the Distribution of West Nile Virus in an Endemic Region of North America. GEOHEALTH 2018; 2:395-409. [PMID: 32159009 PMCID: PMC7007078 DOI: 10.1029/2018gh000161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/10/2018] [Accepted: 11/28/2018] [Indexed: 05/19/2023]
Abstract
Understanding the geographic distribution of mosquito-borne disease and mapping disease risk are important for prevention and control efforts. Mosquito-borne viruses (arboviruses), such as West Nile virus (WNV), are highly dependent on environmental conditions. Therefore, the use of environmental data can help in making spatial predictions of disease distribution. We used geocoded human case data for 2004-2017 and population-weighted control points in combination with multiple geospatial environmental data sets to assess the environmental drivers of WNV cases and to map relative infection risk in South Dakota, USA. We compared the effectiveness of (1) land cover and physiography data, (2) climate data, and (3) spectral data for mapping the risk of WNV in South Dakota. A final model combining all data sets was used to predict spatial patterns of disease transmission and characterize the associations between environmental factors and WNV risk. We used a boosted regression tree model to identify the most important variables driving WNV risk and generated risk maps by applying this model across the entire state. We found that combining multiple sources of environmental data resulted in the most accurate predictions. Elevation, late-season humidity, and early-season surface moisture were the most important predictors of disease distribution. Indices that quantified interannual variability of climatic conditions and land surface moisture were better predictors than interannual means. We suggest that combining measures of interannual environmental variability with static land cover and physiography variables can help to improve spatial predictions of arbovirus transmission risk.
Collapse
Affiliation(s)
- A. Hess
- Department of Geography and Environmental SustainabilityUniversity of OklahomaNormanOKUSA
| | - J. K. Davis
- Department of Geography and Environmental SustainabilityUniversity of OklahomaNormanOKUSA
| | - M. C. Wimberly
- Department of Geography and Environmental SustainabilityUniversity of OklahomaNormanOKUSA
| |
Collapse
|
21
|
Portillo A, Ruiz-Arrondo I, Oteo JA. Arthropods as vectors of transmissible diseases in Spain. ACTA ACUST UNITED AC 2018; 151:450-459. [PMID: 32289078 PMCID: PMC7140251 DOI: 10.1016/j.medcle.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Different aspects related to globalization together with the great capacity of the arthropod vectors to adapt to a changing world favour the emergence and reemergence of numerous infectious diseases transmitted by them. Diptera (mosquitoes and sandflies), ticks, fleas and lice, among others, cause a wide spectrum of diseases with relevance in public health. Herein, arthropod-borne disease are reviewed, with special emphasis on the existing risk to contract them in Spain according to different parameters, such as the presence of arthropod and the circulation or the possible circulation of the causative agents.
Collapse
Affiliation(s)
- Aránzazu Portillo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Ignacio Ruiz-Arrondo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - José A Oteo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, Spain
| |
Collapse
|
22
|
Lustig Y, Sofer D, Bucris ED, Mendelson E. Surveillance and Diagnosis of West Nile Virus in the Face of Flavivirus Cross-Reactivity. Front Microbiol 2018; 9:2421. [PMID: 30369916 PMCID: PMC6194321 DOI: 10.3389/fmicb.2018.02421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/21/2018] [Indexed: 01/20/2023] Open
Abstract
West Nile Virus (WNV) is an arthropod-borne flavivirus whose zoonotic cycle includes both mosquitoes and birds as amplifiers and humans and horses as dead-end hosts. In recent years WNV has been spreading globally and is currently endemic in Africa, The Middle East, India, Australia, central and southern Europe, and the Americas. Integrated surveillance schemes and environmental data aim to detect viral circulation and reduce the risk of infection for the human population emphasizing the critical role for One Health principles in public health. Approximately 20% of WNV infected patients develop West Nile Fever while in less than 1%, infection results in West Nile Neurological Disease. Currently, the diagnosis of WNV infection is primarily based on serology, since molecular identification of WNV RNA is unreliable due to the short viremia. The recent emergence of Zika virus epidemic in America and Asia has added another layer of complexity to WNV diagnosis due to significant cross-reactivity between several members of the Flaviviridae family such as Zika, dengue, Usutu, and West Nile viruses. Diagnosis is especially challenging in persons living in regions with flavivirus co-circulation as well as in travelers from WNV endemic countries traveling to Zika or dengue infected areas or vise-versa. Here, we review the recent studies implementing WNV surveillance of mosquitoes and birds within the One Health initiative. Furthermore, we discuss the utility of novel molecular methods, alongside traditional molecular and serological methods, in WNV diagnosis and epidemiological research.
Collapse
Affiliation(s)
- Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Danit Sofer
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Efrat Dahan Bucris
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel
| | - Ella Mendelson
- Central Virology Laboratory, Ministry of Health, Sheba Medical Center, Ramat Gan, Israel.,School of Public Health, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Portillo A, Ruiz-Arrondo I, Oteo JA. Arthropods as vectors of transmisible diseases in Spain. Med Clin (Barc) 2018; 151:450-459. [PMID: 30170738 PMCID: PMC7094594 DOI: 10.1016/j.medcli.2018.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
Abstract
Diferentes aspectos relacionados con la globalización junto a la gran capacidad de los artrópodos vectores para adaptarse a un mundo cambiante propician la emergencia y reemergencia de numerosos procesos infecciosos transmitidos por los mismos. Dípteros (culícidos y flebótomos), garrapatas, pulgas y piojos, entre otros, provocan un variado espectro de enfermedades con gran importancia en Salud Pública. En esta revisión se repasan las diferentes afecciones transmitidas por artrópodos vectores, haciendo un especial hincapié en el riesgo existente para contraerlas en España en función de diferentes parámetros, como la presencia del artrópodo y la circulación o posible circulación de los agentes causales.
Collapse
Affiliation(s)
- Aránzazu Portillo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, España
| | - Ignacio Ruiz-Arrondo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, España
| | - José A Oteo
- Centro de Rickettsiosis y Enfermedades Transmitidas por Artrópodos Vectores, Departamento de Enfermedades Infecciosas, Hospital Universitario San Pedro-Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, La Rioja, España.
| |
Collapse
|
24
|
Mosquito community influences West Nile virus seroprevalence in wild birds: implications for the risk of spillover into human populations. Sci Rep 2018; 8:2599. [PMID: 29422507 PMCID: PMC5805708 DOI: 10.1038/s41598-018-20825-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
Mosquito community composition plays a central role in the transmission of zoonotic vector-borne pathogens. We evaluated how the mosquito community affects the seroprevalence of West Nile virus (WNV) in house sparrows along an urbanisation gradient in an area with the endemic circulation of this virus. We sampled 2544 birds and 340829 mosquitoes in 45 localities, analysed in 15 groups, each containing one urban, one rural and one natural area. WNV seroprevalence was evaluated using an epitope-blocking ELISA kit and a micro virus-neutralization test (VNT). The presence of WNV antibodies was confirmed in 1.96% and 0.67% of birds by ELISA and VNT, respectively. The VNT-seropositive birds were captured in rural and natural areas, but not in urban areas. Human population density was zero in all the localities where VNT-positive birds were captured, which potentially explains the low incidence of human WNV cases in the area. The prevalence of neutralizing antibodies against WNV was positively correlated with the abundance of the ornithophilic Culex perexiguus but negatively associated with the abundance of the mammophilic Ochlerotatus caspius and Anopheles atroparvus. These results suggest that the enzootic circulation of WNV in Spain occurs in areas with larger populations of Cx. perexiguus and low human population densities.
Collapse
|
25
|
García-Bocanegra I, Belkhiria J, Napp S, Cano-Terriza D, Jiménez-Ruiz S, Martínez-López B. Epidemiology and spatio-temporal analysis of West Nile virus in horses in Spain between 2010 and 2016. Transbound Emerg Dis 2017; 65:567-577. [PMID: 29034611 DOI: 10.1111/tbed.12742] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Indexed: 10/18/2022]
Abstract
During the last decade, West Nile virus (WNV) outbreaks have increased sharply in both horses and human in Europe. The aims of this study were to evaluate characteristics and spatio-temporal distribution of WNV outbreaks in horses in Spain between 2010 and 2016 in order to identify the environmental variables most associated with WNV occurrence and to generate high-resolution WNV suitability maps to inform risk-based surveillance strategies in this country. Between August 2010 and November 2016, a total of 403 WNV suspected cases were investigated, of which, 177 (43.9%) were laboratory confirmed. Mean values of morbidity, mortality and case fatality rates were 7.5%, 1.6% and 21.2%, respectively. The most common clinical symptoms were as follows: tiredness/apathy, recumbency, muscular tremor, ataxia, incoordination and hyperaesthesia. The outbreaks confirmed during the last 7 years, with detection of WNV RNA lineage 1 in 2010, 2012, 2013, 2015 and 2016, suggest an endemic circulation of the virus in Spain. The spatio-temporal distribution of WNV outbreaks in Spain was not homogeneous, as most of them (92.7%) were concentrated in western part of Andalusia (southern Spain) and significant clusters were detected in this region in two non-consecutive years. These findings were supported by the results of the space-time scan statistics permutation model. A presence-only MaxEnt ecological niche model was used to generate a suitability map for WNV occurrence in Andalusia. The most important predictors selected by the Ecological Niche Modeling were as follows: mean annual temperature (49.5% contribution), presence of Culex pipiens (19.5% contribution), mean annual precipitation (16.1% contribution) and distance to Ramsar wetlands (14.9% contribution). Our results constitute an important step for understanding WNV emergence and spread in Spain and will provide valuable information for the development of more cost-effective surveillance and control programmes and improve the protection of horse and human populations in WNV-endemic areas.
Collapse
Affiliation(s)
- I García-Bocanegra
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - J Belkhiria
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - S Napp
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - D Cano-Terriza
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - S Jiménez-Ruiz
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - B Martínez-López
- Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|