1
|
Singh N, Batra K, Chaudhary D, Punia M, Kumar A, Maan NS, Maan S. Prevalence of porcine viral respiratory diseases in India. Anim Biotechnol 2023; 34:1642-1654. [PMID: 35112631 DOI: 10.1080/10495398.2022.2032117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pig industry is growing rapidly in India and contributes a major share of growth in the livestock sector. Over the last few years, there is a gradual increase in the adoption of pigs for production by economically weaker sections of the country. However, this production is affected by many respiratory diseases which are responsible for significant economic loss. The occurrence and impact of these diseases are still under-documented. The four important pathogens including porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza A viruses (SIV) and classical swine fever virus (CSFV) are documented here. These diseases are highly devastating in nature and frequent outbreaks have been reported from different parts of the country. The rapid and specific diagnosis, effective prevention and control measures are required for the eradication of these diseases which is urgently required for the growth of the pig industry. This review highlights the prevalence, epidemiology, diagnostics and information gaps on important respiratory viral pathogens of pigs reported from different parts of India. This review also emphasizes the importance of these viral diseases and the urgent need to develop vaccines and effective measures for the eradication of these diseases.
Collapse
Affiliation(s)
- Neha Singh
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Kanisht Batra
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Deepika Chaudhary
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Monika Punia
- Department of Biotechnology, Ch. Devi Lal University, Sirsa, India
| | - Aman Kumar
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Narender Singh Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| | - Sushila Maan
- College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Science (LUVAS), Hisar, India
| |
Collapse
|
2
|
E-2 Glycoprotein Structural Variations Analysed within the CSFV 2.2. Genogroup in a “Closed Grid” Sampling Study from Meghalaya, India. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
CSF is enzootic in most of pig-producing states, particularly in the NorthEastern (NE) region of India. In this study, a total of 249 sera and 190 tissue samples were collected from different parts of Meghalaya. Samples were processed by ELISA and RT-PCR for serological and molecular diagnosis. Representative positive samples from the Khasi Hills region were selected for sequencing and “close grid” phylogenetic relationship using partial genomic regions of 5′UTR and E2. High seroprevalence (74.7%) of CSFV was recorded. Detection of the CSFV genome in serologically positive serum samples and tissue samples was 61.29% and 18.94%, respectively. BLAST and phylogenetic analyses indicate the clustering of all the field samples in subgroup 2.2, with high identity with EF014334 from China. Molecular structural modelling of the E2 partial sequence using representative sequences MG563797 from Meghalaya and EF014334 from China indicate potential changes in the protein motif and its conformation, which may explain the emergence of subgroup 2.2 CSFV replacing the predominant subgroup 1.1 viruses in NorthEast India. The epidemiological information presented in this study may be helpful for determination of disease incidence in this region, whereas the virus profile may be useful for framing disease control programs.
Collapse
|
3
|
Investigation of congenital tremor associated with Classical swine fever virus genotype 2.2 in an organized pig farm in north-eastern India. Virusdisease 2021; 32:173-182. [PMID: 33748346 PMCID: PMC7965332 DOI: 10.1007/s13337-021-00678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
The present study describes an outbreak of Classical swine fever (CSF) in an organized pig farm followed by an episode of CSF virus (CSFV) associated congenital tremors in piglets. The outbreak was recorded in a newly procured herd of Hampshire pigs housed adjacent to the existing pigs of the farm. The recorded CSF outbreak caused a mortality of 100% in the newly procured and 54.28% in the existing herd. As the disease subsides, the clinically recovered boars were served naturally with Tamworth gilts. Though, the sows farrowed on usual gestation period, litters born to each sow showed congenital tremors and eventually died within 24 h of birth. Necropsy analysis of affected piglets was indicative of CSFV infection and was further confirmed using RT-PCR signifying a transplacental infection. The CSFV strains from the initial outbreak and post outbreak episode of congenital tremors were successfully isolated in PK-15 cells and detected in indirect FAT and RT-PCR. Phylogenetic analysis based on E2 gene and 5′NTR of CSFV grouped the isolates within the genotype 2.2 and revealed close resemblance with previously reported Indian isolates of CSFV genotype 2.2 origin. To the best of our knowledge, this is the first report of CSFV induced congenital form reported from India under natural conditions.
Collapse
|
4
|
Hao G, Zhang H, Chen H, Qian P, Li X. Comparison of the Pathogenicity of Classical Swine Fever Virus Subgenotype 2.1c and 2.1d Strains from China. Pathogens 2020; 9:pathogens9100821. [PMID: 33036431 PMCID: PMC7600237 DOI: 10.3390/pathogens9100821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and devastating disease. The traditional live attenuated C-strain vaccine is widely used to control disease outbreaks in China. Since 2000, subgenotype 2.1 has become dominant in China. Here, we isolated subgenotype 2.1c and 2.1d strains from CSF-suspected pigs. The genetic variations and pathogenesis of subgenotype 2.1c and 2.1d strains were investigated experimentally. We aimed to evaluate and compare the replication characteristics and clinical signs of subgenotype 2.1c and 2.1d strains with those of the typical highly virulent CSFV SM strain. In PK-15 cells, the three CSFV isolates exhibited similar replication levels but significantly lower replication levels compared with the CSFV SM strain. The experimental animal infection model showed that the pathogenicity of subgenotype 2.1c and 2.1d strains was less than that of the CSFV SM strain. According to the clinical scoring system, subgenotype 2.1c (GDGZ-2019) and 2.1d (HBXY-2019 and GXGG-2019) strains were moderately virulent. This study showed that the pathogenicity of CSFV field strains will aid in the understanding of CSFV biological characteristics and the related epidemiology.
Collapse
Affiliation(s)
- Genxi Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huawei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (P.Q.); (X.L.); Tel.: +86-27-87282608 (P.Q.)
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (G.H.); (H.Z.); (H.C.)
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
- Correspondence: (P.Q.); (X.L.); Tel.: +86-27-87282608 (P.Q.)
| |
Collapse
|
5
|
Kumar R, Kumar V, Kekungu P, Barman NN, Kumar S. Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach. Arch Virol 2019; 164:3007-3017. [PMID: 31598846 DOI: 10.1007/s00705-019-04425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Classical swine fever (CSF) is an important viral disease of domestic pigs and wild boar. The structural proteins E2 and Erns of classical swine fever virus (CSFV), which participate in the attachment of the virion to the host cell surface and its subsequent entry, are immunogenic. The E2 and Erns proteins are used for diagnosis and the development of vaccines against CSFV infection in swine. Newcastle disease virus (NDV) has been successfully used as a viral vector to express heterologous proteins. In the present study, the E2 and Erns proteins of CSFV were expressed in cell culture as well as embryonated chicken eggs, using recombinant NDV (rNDV). Rescued rNDV expressing the E2 and Erns proteins induced the production of CSFV-neutralizing antibodies upon intranasal vaccination of pigs. Serum samples from vaccinated animals were found to neutralize both homologous and heterologous CSFV strains. Furthermore, rNDV expressing the E2 and Erns proteins of CSFV was used to develop an indirect ELISA, which was used to measure the the antibody titers of randomly collected serum samples. The results suggested that the ELISA based on rNDV-expressed E2 and Erns proteins could be used to screen for CSFV infections. This study shows that rNDV-based expression of CSFV antigens is potentially applicable for development of vaccines and diagnostic tests for CSFV infection. This approach could be an economically favorable alternative to the existing vaccine and diagnostics for CSFV in pigs.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Vishnu Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Puro Kekungu
- ICAR Research Complex for North East Hill Region, Shillong, Meghalaya, India
| | - Nagendra N Barman
- Department of Veterinary Microbiology, College of Veterinary Sciences, Assam Agricultural University, Khanapara, Guwahati, Assam, 781022, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
6
|
Zhou B. Classical Swine Fever in China-An Update Minireview. Front Vet Sci 2019; 6:187. [PMID: 31249837 PMCID: PMC6584753 DOI: 10.3389/fvets.2019.00187] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. The causative agent is CSF virus, it is highly contagious, with high morbidity and mortality rates; as such, it is an OIE-listed disease. Owing to a nationwide policy of vaccinations of pigs, CSF is well-controlled in China, with large-scale outbreaks rarely seen. Sporadic outbreaks are however still reported every year. In order to cope with future crises and to eradicate CSF, China should strengthen and support biosecurity measures such as the timely reporting of suspected disease, technologies for reliable diagnoses, culling infected herds, and tracing possible contacts, as well as continued vaccination and support of research into drug and genetic therapies. This mini-review summarizes the epidemiology of and control strategies for CSF in China.
Collapse
Affiliation(s)
- Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
PATIL SS, SURESH KP, SAHA SNEHA, HAMSAPRIYA S, BARMAN NN, ROY PARIMAL. Import risk model: A quantitative risk assessment of classical swine fever virus (CSFV) introduction into Arunachal Pradesh via importation of pigs from bordering countries. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2018. [DOI: 10.56093/ijans.v88i10.84144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Sarkar S, Hossain ME, Gurley ES, Hasan R, Rahman MZ. An outbreak of classical swine fever in pigs in Bangladesh, 2015. Vet Med Sci 2017; 4:45-52. [PMID: 29468080 PMCID: PMC5813109 DOI: 10.1002/vms3.81] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In a group of 22 healthy pigs aged between 4 and 6 months, 2 pigs became ill with high fever, complete anorexia, cough and abnormal swaying movements on 22 June 2015. One of them died on June 24 and the second died on July 3. Shortly after, the remaining pigs also fell ill and died from the same illness by 10 August 2015. We investigated the aetiology, epidemiological and clinical features of the outbreak. We recorded the clinical signs and symptoms for each pig with the date of onset of illness. Veterinarians conducted post-mortem examinations on the 12 dead pigs, they collected tissue samples from the dead pigs and placed them in a tube containing 1 mL of nucleic acid extraction buffer (lysis buffer). We tested all the tissue samples by real-time reverse transcription polymerase chain reaction (rRT-PCR) to detect classical swine fever virus (CSFV) because the animals' symptoms matched those of this disease. We also conducted a phylogentic analysis of the nucleotide sequence of the E2 gene segment of CSFV detected in a lung tissue sample. The attack rate (22/22) and the case fatality were 100%. The predominant symptoms of the disease included high fever, cough, diarrhoea and swaying movements of the hind legs prior to death. Of the 12 pigs tissue samples tested, all had evidence of the presence of CSFV RNA by rRT-PCR. The phylogenetic analysis indicated that the virus belongs to genotype 2.2, which is closely related to CSFV genotype 2.2 reported in India. Our investigation suggests that CSF is circulating in pigs, posing a risk for communities in Bangladesh that rely on pigs for economic income and dietary protein. Future research could focus on estimating the disease and economic burden of CSFV in pig rearing areas to determine if interventions might be warranted or cost-effective.
Collapse
Affiliation(s)
- Shamim Sarkar
- Infectious Diseases DivisionProgramme for Emerging Infectionsicddr,bDhakaBangladesh
| | | | - Emily S Gurley
- Infectious Diseases DivisionProgramme for Emerging Infectionsicddr,bDhakaBangladesh
| | - Rashedul Hasan
- Infectious Diseases DivisionProgramme for Emerging Infectionsicddr,bDhakaBangladesh
| | - Mohammed Z Rahman
- Infectious Diseases DivisionProgramme for Emerging Infectionsicddr,bDhakaBangladesh
| |
Collapse
|