1
|
White BE, Hodo CL, Hamer SA, Saunders AB, Laucella SA, Hall DB, Tarleton RL. Serial 'deep-sampling' PCR of fragmented DNA reveals the wide range of Trypanosoma cruzi burden among chronically infected hosts and allows accurate monitoring of parasite load following treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598182. [PMID: 39574718 PMCID: PMC11580963 DOI: 10.1101/2024.06.10.598182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Infection with the protozoan parasite Trypanosoma cruzi is generally well-controlled by host immune responses, but appears to be rarely eliminated. The resulting persistent, low-level infection results in cumulative tissue damage with the greatest impact generally in the heart in the form of chagasic cardiomyopathy. The relative success in immune control of T. cruzi infection usually averts acute phase death but has the negative consequence that the low-level presence of T. cruzi in hosts is challenging to detect unequivocally. Thus, it is difficult to identify those who are actively infected and, as well, problematic to gauge the impact of treatment, particularly in the evaluation of the relative efficacy of new drugs. In this study we employ DNA fragmentation and high numbers of replicate PCR reaction ('deep-sampling') to extend the quantitative range of detecting T. cruzi in blood by at least 3 orders of magnitude relative to current protocols. When combined with sampling blood at multiple time points, deep sampling of fragmented DNA allowed for detection of T. cruzi in all infected hosts in multiple host species. In addition, we provide evidence for a number of characteristics not previously rigorously quantified in the population of hosts with naturally acquired T. cruzi infection, including, a > 6-log variation between chronically infected individuals in the stable parasite levels, a continuing decline in parasite load during the second and third years of infection in some hosts, and the potential for parasite load to change dramatically when health conditions change. Although requiring strict adherence to contamination-prevention protocols and significant resources, deep-sampling PCR provides an important new tool for assessing new therapies and for addressing long-standing questions in T. cruzi infection and Chagas disease.
Collapse
Affiliation(s)
- Brooke E. White
- Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia, USA
| | - Carolyn L. Hodo
- Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Ashley B. Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Susana A. Laucella
- Research Department, Instituto Nacional de Parasitología “Dr. Mario Fatala Chaben”, Buenos Aires, Argentina. Chagas Disease Unit, Hospital Interzonal General de Agudos Eva Perón, Buenos Aires, Argentina
| | - Daniel B. Hall
- Department of Statistics, University of Georgia, Athens, Georgia, USA
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Disease, University of Georgia, Athens, Georgia, USA
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Morales-Velásquez M, Barón-Vera JP, Osorio-Pulgarín MI, Sánchez-Jiménez MM, Ospina-Villa JD. Biomarkers for the diagnosis, treatment follow-up, and prediction of cardiac complications in Chagas disease in chronic phase: Recent advances. Parasite Immunol 2023; 45:e13013. [PMID: 37795913 DOI: 10.1111/pim.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Chagas disease is caused by the Trypanosoma cruzi parasite and is transmitted by infected triatomine bugs. This infection affects approximately 8 million people in the Americas, and due to globalisation and displacement, it is becoming increasingly common to find infected patients worldwide. Diagnosis of the disease in its acute form is relatively simple, as the parasite can be detected in peripheral blood smears, and symptoms are visible. However, in its chronic condition, the parasite is almost undetectable, and indirect tests are necessary to determine the presence of antibodies in infected patients. It is important to note that a single test is not enough to confirm the disease in this phase, as a second serological test should confirm the diagnosis. If the results are contradictory, a third test should be performed to confirm or discard the disease. Unfortunately, laboratories may not have access to all necessary tests in many rural areas where the disease is more frequent. Rapid tests to diagnose this disease present problems, such as significant variations in sensitivity and specificity in different countries. Therefore, searching for new biomarkers that allow for optimal correlation is essential. In this work, we have searched scientific literature from the last 10 years for mentions of novel biomarkers for diagnosis, treatment follow-up, and prediction of cardiac complications in Chagas disease in its chronic phase.
Collapse
Affiliation(s)
| | - Juan Pablo Barón-Vera
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Antioquia, Colombia
| | | | | | | |
Collapse
|
3
|
Sánchez Martín N, Domínguez Castellano Á. Is Trypanosoma cruzi PCR useful for the follow-up of patients with Chagas disease? Travel Med Infect Dis 2023; 56:102665. [PMID: 37956727 DOI: 10.1016/j.tmaid.2023.102665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
|
4
|
Mendes FDSNS, Perez-Molina JA, Angheben A, Meymandi SK, Sosa-Estani S, Molina I. Critical analysis of Chagas disease treatment in different countries. Mem Inst Oswaldo Cruz 2022; 117:e210034. [PMID: 35830002 PMCID: PMC9273179 DOI: 10.1590/0074-02760210034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
As a result of globalization and constant migratory flows, Chagas disease is now present in almost all continents. The management and treatment of the disease is often influenced by the economic and social context of the societies that host patients. In this manuscript, we aim to provide a comparative review of approaches to patients with Chagas disease in the Americas and Europe.
Collapse
Affiliation(s)
| | - Jose Antonio Perez-Molina
- Ramón y Cajal University Hospital, Instituto Ramón y Cajal de Investigación Sanitaria, Infectious Diseases Department, National Referral Unit for Tropical Diseases, Madrid, Spain
| | - Andrea Angheben
- Istituto di Ricovero e Cura a Carattere Scientifico Sacro Cuore Don Calabria Hospital Department of Infectious - Tropical Diseases and Microbiology, Negrar di Valpolicella, Verona, Italy
| | - Sheba K Meymandi
- University of California, Center of Excellence for Chagas Disease at Olive View, Los Angeles, CA, US
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative, Rio de Janeiro, RJ, Brasil
- National Scientific and Technical Research Council, Epidemiology and Public Health Research Center, Buenos Aires, Argentina
| | - Israel Molina
- Vall d’Hebron University Hospital, Department of Infectious Diseases, Programa de Salut Internacional de l’Institut Català de la Salut, Barcelona, Spain
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Laboratório de Triatomíneos e Epidemiologia da Doença de Chagas, Belo Horizonte, MG, Brasil
| |
Collapse
|
5
|
Muñoz-Calderón AA, Besuschio SA, Wong S, Fernández M, García Cáceres LJ, Giorgio P, Barcan LA, Markham C, Liu YE, de Noya BA, Longhi SA, Schijman AG. Loop-Mediated Isothermal Amplification of Trypanosoma cruzi DNA for Point-of-Care Follow-Up of Anti-Parasitic Treatment of Chagas Disease. Microorganisms 2022; 10:microorganisms10050909. [PMID: 35630354 PMCID: PMC9142941 DOI: 10.3390/microorganisms10050909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
A loop-mediated isothermal amplification assay was evaluated as a surrogate marker of treatment failure in Chagas disease (CD). A convenience series of 18 acute or reactivated CD patients who received anti-parasitic treatment with benznidazole was selected-namely, nine orally infected patients: three people living with HIV and CD reactivation, five chronic CD recipients with reactivation after organ transplantation and one seronegative recipient of a kidney and liver transplant from a CD donor. Fifty-four archival samples (venous blood treated with EDTA or guanidinium hydrochloride-EDTA buffer and cerebrospinal fluid) were extracted using a Spin-column manual kit and tested by T. cruzi Loopamp kit (Tc-LAMP, index test) and standardized real-time PCR (qPCR, comparator test). Of them, 23 samples were also extracted using a novel repurposed 3D printer designed for point-of-care DNA extraction (PrintrLab). The agreement between methods was estimated by Cohen's kappa index and Bland-Altman plot analysis. The T. cruzi Loopamp kit was as sensitive as qPCR for detecting parasite DNA in samples with parasite loads higher than 0.5 parasite equivalents/mL and infected with different discrete typing units. The agreement between qPCR and Tc-LAMP (Spin-column) or Tc-LAMP (PrintrLab) was excellent, with a mean difference of 0.02 [CI = -0.58-0.62] and -0.04 [CI = -0.45-0.37] and a Cohen's kappa coefficient of 0.78 [CI = 0.60-0.96] and 0.90 [CI = 0.71 to 1.00], respectively. These findings encourage prospective field studies to validate the use of LAMP as a surrogate marker of treatment failure in CD.
Collapse
Affiliation(s)
- Arturo A Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires 1428, Argentina
| | - Susana A Besuschio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires 1428, Argentina
| | - Season Wong
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Marisa Fernández
- Hospital de Enfermedades Infecciosas "Dr. Francisco J. Muñiz", Buenos Aires 1282, Argentina
| | - Lady J García Cáceres
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires 1428, Argentina
| | - Patricia Giorgio
- Servicio de Infectología, Hospital Británico de Buenos Aires, Buenos Aires 1280, Argentina
| | - Laura A Barcan
- Sección Infectología, Departamento de Medicina, Hospital Italiano, Buenos Aires 1199, Argentina
| | - Cole Markham
- AI Biosciences, Inc., College Station, TX 77845, USA
| | - Yanwen E Liu
- AI Biosciences, Inc., College Station, TX 77845, USA
| | | | - Silvia A Longhi
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires 1428, Argentina
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI-CONICET), Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Bosch-Nicolau P, Espinosa-Pereiro J, Salvador F, Sánchez-Montalvá A, Molina I. Association Between Trypanosoma cruzi DNA in Peripheral Blood and Chronic Chagasic Cardiomyopathy: A Systematic Review. Front Cardiovasc Med 2022; 8:787214. [PMID: 35174221 PMCID: PMC8841718 DOI: 10.3389/fcvm.2021.787214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic chagasic cardiomyopathy (CCC) is the most important complication of patients with Chagas disease (CD). The role of persistent detection of DNA in peripheral blood and its association to CCC is unknown. We performed a systematic review up to July 2021, including studies that reported ratios of CCC and PCR positivity among non-treated adult patients. We identified 749 records and selected 12 for inclusion corresponding to 1,686 patients. Eight studies were performed in endemic countries and 4 in non-endemic countries. Only two studies showed an association between CCC and Trypanosoma cruzi parasitemia by means of PCR detection. Six studies reported greater positive PCR ratios among patients with CCC than in the patients with indeterminate chagas disease (ICD) with no statistical significance. A significant risk of bias has been detected among most of the studies. Therefore, while we performed a meta-analysis, wide inter-study heterogeneity impeded its interpretation.ConclusionsWith the available information, we could not establish a correlation between PCR-detectable parasitemia and CCC.Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020216072, identifier: CRD42020216072.
Collapse
Affiliation(s)
- Pau Bosch-Nicolau
- Tropical Medicine & International Health Unit Vall d'Hebrón - Drassanes, Infectious Diseases Department, PROSICS Barcelona, University Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Espinosa-Pereiro
- Tropical Medicine & International Health Unit Vall d'Hebrón - Drassanes, Infectious Diseases Department, PROSICS Barcelona, University Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fernando Salvador
- Tropical Medicine & International Health Unit Vall d'Hebrón - Drassanes, Infectious Diseases Department, PROSICS Barcelona, University Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Tropical Medicine & International Health Unit Vall d'Hebrón - Drassanes, Infectious Diseases Department, PROSICS Barcelona, University Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Israel Molina
- Tropical Medicine & International Health Unit Vall d'Hebrón - Drassanes, Infectious Diseases Department, PROSICS Barcelona, University Hospital Vall d'Hebron, Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Israel Molina
| |
Collapse
|
7
|
Drug associations as alternative and complementary therapy for neglected tropical diseases. Acta Trop 2022; 225:106210. [PMID: 34687644 DOI: 10.1016/j.actatropica.2021.106210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022]
Abstract
The present paper aims to establish different treatments for neglected tropical disease by a survey on drug conjugations and possible fixed-dose combinations (FDC) used to obtain alternative, safer and more effective treatments. The source databases used were Science Direct and PubMed/Medline, in the intervals between 2015 and 2021 with the drugs key-words or diseases, like "schistosomiasis", "praziquantel", "malaria", "artesunate", "Chagas' disease", "benznidazole", "filariasis", diethylcarbamazine", "ivermectin", " albendazole". 118 works were the object of intense analysis, other articles and documents were used to increase the quality of the studies, such as consensuses for harmonizing therapeutics and historical articles. As a result, an effective NTD control can be achieved when different public health approaches are combined with interventions guided by the epidemiology of each location and the availability of appropriate measures to detect, prevent and control disease. It was also possible to verify that the FDCs promote a simplification of the therapeutic regimen, which promotes better patient compliance and enables a reduction in the development of parasitic resistance, requiring further studies aimed at resistant strains, since the combined APIs usually act by different mechanisms or at different target sites. In addition to eliminating the process of developing a new drug based on the identification and validation of active compounds, which is a complex, long process and requires a strong long-term investment, other advantages that FDCs have are related to productive gain and gain from the industrial plant, which can favor and encourage the R&D of new FDCs not only for NTDs but also for other diseases that require the use of more than one drug.
Collapse
|
8
|
Alonso-Vega C, Urbina JA, Sanz S, Pinazo MJ, Pinto JJ, Gonzalez VR, Rojas G, Ortiz L, Garcia W, Lozano D, Soy D, Maldonado RA, Nagarkatti R, Debrabant A, Schijman A, Thomas MC, López MC, Michael K, Ribeiro I, Gascon J, Torrico F, Almeida IC. New chemotherapy regimens and biomarkers for Chagas disease: the rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the Plurinational State of Bolivia. BMJ Open 2021; 11:e052897. [PMID: 34972765 PMCID: PMC8720984 DOI: 10.1136/bmjopen-2021-052897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Chagas disease (CD) affects ~7 million people worldwide. Benznidazole (BZN) and nifurtimox (NFX) are the only approved drugs for CD chemotherapy. Although both drugs are highly effective in acute and paediatric infections, their efficacy in adults with chronic CD (CCD) is lower and variable. Moreover, the high incidence of adverse events (AEs) with both drugs has hampered their widespread use. Trials in CCD adults showed that quantitative PCR (qPCR) assays remain negative for 12 months after standard-of-care (SoC) BZN treatment in ~80% patients. BZN pharmacokinetic data and the nonsynchronous nature of the proliferative mammal-dwelling parasite stage suggested that a lower BZN/NFX dosing frequency, combined with standard or extended treatment duration, might have the same or better efficacy than either drug SoC, with fewer AEs. METHODS AND ANALYSIS New ThErapies and Biomarkers for ChagaS infEctiOn (TESEO) is an open-label, randomised, prospective, phase-2 clinical trial, with six treatment arms (75 patients/arm, 450 patients). Primary objectives are to compare the safety and efficacy of two new proposed chemotherapy regimens of BZN and NFX in adults with CCD with the current SoC for BZN and NFX, evaluated by qPCR and biomarkers for 36 months posttreatment and correlated with CD conventional serology. Recruitment of patients was initiated on 18 December 2019 and on 20 May 2021, 450 patients (study goal) were randomised among the six treatment arms. The treatment phase was finalised on 18 August 2021. Secondary objectives include evaluation of population pharmacokinetics of both drugs in all treatment arms, the incidence of AEs, and parasite genotyping. ETHICS AND DISSEMINATION The TESEO study was approved by the National Institutes of Health (NIH), U.S. Food and Drug Administration (FDA), federal regulatory agency of the Plurinational State of Bolivia and the Ethics Committees of the participating institutions. The results will be disseminated via publications in peer-reviewed journals, conferences and reports to the NIH, FDA and participating institutions. TRIAL REGISTRATION NUMBER NCT03981523.
Collapse
Affiliation(s)
| | - Julio A Urbina
- Center for Biochemistry and Biophysics, Venezuelan Institute for Scientific Research (IVIC), Caracas, Distrito Capital, Venezuela, Bolivarian Republic of
| | - Sergi Sanz
- Biostatistics and Data Management Unit, Barcelona Institute for Global Health, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Basic Clinical Practice, Universitat de Barcelona, Barcelona, Spain
| | - María-Jesús Pinazo
- Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Jimy José Pinto
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Virginia R Gonzalez
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Gimena Rojas
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Lourdes Ortiz
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Tarija, Bolivia, Plurinational State of
- Universidad Autónoma Juan Misael Saracho, Tarija, Bolivia, Plurinational State of
| | - Wilson Garcia
- Centro Plataforma Chagas Sucre, Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Sucre, Bolivia, Plurinational State of
- Programa Departamental de Chagas Chuquisaca, Servicio Departamental de Salud de Chuquisaca, Chuquisaca, Bolivia, Plurinational State of
| | - Daniel Lozano
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Dolors Soy
- Pharmacy Service, Division of Medicines, Hospital Clinic de Barcelona, Barcelona, Spain
- Institut de Investigació Biomèdica Agustí Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Rosa A Maldonado
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| | - Rana Nagarkatti
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Alain Debrabant
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, Maryland, USA
| | - Alejandro Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - M Carmen Thomas
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López-Neyra, Granada, Spain
| | - Manuel Carlos López
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López-Neyra, Granada, Spain
| | - Katja Michael
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas, USA
| | - Isabela Ribeiro
- Dynamic Portfolio Unit, Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGLOBAL), Barcelona, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Faustino Torrico
- Fundación Ciencia y Estudios Aplicados para el Desarrollo en Salud y Medio Ambiente (CEADES), Cochabamba, Bolivia, Plurinational State of
| | - Igor C Almeida
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, Texas, USA
| |
Collapse
|
9
|
Silgado A, Armas M, Sánchez-Montalvá A, Goterris L, Ubals M, Temprana-Salvador J, Aparicio G, Chicharro C, Serre-Delcor N, Ferrer B, Molina I, García-Patos V, Pumarola T, Sulleiro E. Changes in the microbiological diagnosis and epidemiology of cutaneous leishmaniasis in real-time PCR era: A six-year experience in a referral center in Barcelona. PLoS Negl Trop Dis 2021; 15:e0009884. [PMID: 34758023 PMCID: PMC8580242 DOI: 10.1371/journal.pntd.0009884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Leishmaniasis is a neglected disease caused by different species of the protozoa Leishmania spp. Cutaneous lesions are the most common clinical manifestation. This disease is prevalent in tropical and subtropical areas, including the Mediterranean basin. In Spain, Leishmania (L.) infantum is the only endemic species, but imported cases are often diagnosed. Different classical parasitological methods can be performed for cutaneous leishmaniasis (CL) diagnosis; but currently molecular techniques serve as a relevant tool for the detection and characterization of Leishmania parasites. We aimed to evaluate clinical and epidemiological characteristics of CL diagnosed patients by real-time PCR in a tertiary hospital over a six-year period. METHODOLOGY/PRINCIPAL FINDINGS Clinical, epidemiological and microbiological data were retrospectively collected and analyzed. In our study, CL was confirmed in 59 (31.4%) out of 188 patients by real-time PCR, showing an increase over recent years: 11 cases of CL between 2014 and 2016 and 48 between 2017 and 2019. Real-time PCR was performed on skin swabs and/or biopsies samples, with a positivity of 38.5% and 26.5%, respectively. Results were 100% concordant when biopsy and skin swab were performed simultaneously. L. (L.) infantum was the most frequent species detected (50%), followed by L. (L.) major (45%) and Viannia subgenus (5%), which were detected only in imported cases. L. (L.) major was almost entirely detected in travelers/migrants from Morocco. Multiple and atypical skin lesions were more common in imported cases than in autochthonous cases (44.4% vs. 21.8%). CONCLUSIONS/SIGNIFICANCE An increase in both autochthonous and imported CL cases has been observed in past years in our hospital. Molecular techniques assist in improving CL diagnosis and characterization of the Leishmania species, mainly in imported cases.
Collapse
Affiliation(s)
- Aroa Silgado
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Mayuli Armas
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Adrián Sánchez-Montalvá
- Department of Infectious Diseases-Drassanes, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Lidia Goterris
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Maria Ubals
- Department of Dermatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Temprana-Salvador
- Department of Pathology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gloria Aparicio
- Department of Dermatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Núria Serre-Delcor
- Department of Infectious Diseases-Drassanes, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Berta Ferrer
- Department of Pathology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Israel Molina
- Department of Infectious Diseases-Drassanes, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Vicenç García-Patos
- Department of Dermatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tomas Pumarola
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| | - Elena Sulleiro
- Department of Microbiology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, PROSICS Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Murphy N, Cardinal MV, Bhattacharyya T, Enriquez GF, Macchiaverna NP, Alvedro A, Freilij H, Martinez de Salazar P, Molina I, Mertens P, Gilleman Q, Gürtler RE, Miles MA. Assessing antibody decline after chemotherapy of early chronic Chagas disease patients. Parasit Vectors 2021; 14:543. [PMID: 34670602 PMCID: PMC8527601 DOI: 10.1186/s13071-021-05040-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chagas disease remains a significant public health problem in Latin America. There are only two chemotherapy drugs, nifurtimox and benznidazole, and both may have severe side effects. After complete chemotherapy of acute cases, seropositive diagnosis may revert to negative. However, there are no definitive parasitological or serological biomarkers of cure. METHODS Following a pilot study with seven Bolivian migrants to Spain, we tested 71 serum samples from chronic patients (mean age 12.6 years) inhabiting the Argentine Chaco region. Benznidazole chemotherapy (5-8 mg/kg day, twice daily for 60 days) was administered during 2011-2016. Subsequently, pre-and post-chemotherapy serum samples were analysed in pairs by IgG1 and IgG ELISA using two different antigens and Chagas Sero K-SeT rapid diagnostic tests (RDT). Molecular diagnosis by kDNA-PCR was applied to post-treatment samples. RESULTS Pilot data demonstrated IgG1 antibody decline in three of seven patients from Bolivia 1 year post-treatment. All Argentine patients in 2017 (averaging 5 years post-treatment), except one, were positive by conventional serology. All were kDNA-PCR-negative. Most (91.5%) pre-treatment samples were positive by the Chagas Sero K-SeT RDT, confirming the predominance of TcII/V/VI. IgG1 and IgG of Argentine patients showed significant decline in antibody titres post-chemotherapy, with either lysate (IgG, P = 0.0001, IgG1, P = 0.0001) or TcII/V/VI peptide antigen (IgG, P = 0.0001, IgG1, P = 0.0001). IgG1 decline was more discriminative than IgG. Antibody decline after treatment was also detected by the RDT. Incomplete treatment was associated with high IgG1 post-treatment titres against lysate (P = 0.013), as were IgG post-treatment titres to TcII/V/VI peptide (P = 0.0001). High pre-treatment IgG1 with lysate was associated with Qom ethnicity (P = 0.045). No associations were found between gender, age, body mass index and pre- or post-treatment antibody titres. CONCLUSIONS We show that following chemotherapy of early chronic Chagas disease, significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure. We show that following chemotherapy of early chronic Chagas disease, a significant decline in IgG1 antibody suggests cure, whereas sustained or increased IgG1 is a potential indicator of treatment failure. Due to restricted sensitivity, IgG1 should not be used as a diagnostic marker but has promise, with further development, as a biomarker of cure.
Collapse
Affiliation(s)
- Niamh Murphy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - M Victoria Cardinal
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Tapan Bhattacharyya
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Gustavo F Enriquez
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia P Macchiaverna
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Alejandra Alvedro
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Héctor Freilij
- Hopital de Niños "Dr. Ricardo Gutiérrez", CABA, Argentina
| | | | - Israel Molina
- Barcelona Institute for Global Health (IS Global), Barcelona, Spain
| | | | | | - Ricardo E Gürtler
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Universidad de Buenos Aires, Ciudad Universitaria, Av. Int. Güiraldes 2180, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Michael A Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
11
|
Hernández-Cuevas NA, Marín-Cervera A, Garcia-Polanco S, Martínez-Vega P, Rosado-Vallado M, Dumonteil E. Fibronectin degradation as biomarker for Trypanosoma cruzi infection and treatment monitoring in mice. Parasitology 2021; 148:1067-1073. [PMID: 34024298 PMCID: PMC11010125 DOI: 10.1017/s0031182021000809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022]
Abstract
Biomarkers (coming from host or parasite) to monitor Chagas disease (CD) progression as well as the therapeutic response in chronic CD are critically needed, since seronegativization, which may be considered the best indicator of therapeutic cure, takes several years to be observed in adults. Several molecules have been suggested as biomarkers for CD, however, they have to be validated. Taking advantage of mouse models of Trypanosoma cruzi infection, we investigated changes in the degradation profile of fibronectin in plasma. The degradation profile of fibronectin was different in the acute phase compared to the chronic phase of the infection. Fibronectin fragments of approximately 150, 100, 40 and 30 kDa were identified. Furthermore, those degradation profiles correlated with acute parasitaemia as well as with cardiac parasite burden and tissue damage during the infection. The usefulness of fibronectin degradation as a biomarker for therapeutic response following drug treatment and immunotherapeutic vaccination also was evaluated and a decreased fibronectin degradation profile was observed upon benznidazole or a vaccine candidate treatment.
Collapse
Affiliation(s)
- Nora Adriana Hernández-Cuevas
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ‘Dr. Hideyo Noguchi’, Universidad Autónoma de Yucatán, Mérida, México
| | - Andrea Marín-Cervera
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ‘Dr. Hideyo Noguchi’, Universidad Autónoma de Yucatán, Mérida, México
| | - Shineily Garcia-Polanco
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ‘Dr. Hideyo Noguchi’, Universidad Autónoma de Yucatán, Mérida, México
| | - Pedro Martínez-Vega
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ‘Dr. Hideyo Noguchi’, Universidad Autónoma de Yucatán, Mérida, México
| | - Miguel Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales ‘Dr. Hideyo Noguchi’, Universidad Autónoma de Yucatán, Mérida, México
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
12
|
Avendaño C, Patarroyo MA. Loop-Mediated Isothermal Amplification as Point-of-Care Diagnosis for Neglected Parasitic Infections. Int J Mol Sci 2020; 21:ijms21217981. [PMID: 33126446 PMCID: PMC7662217 DOI: 10.3390/ijms21217981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The World Health Organisation (WHO) has placed twenty diseases into a group known as neglected tropical diseases (NTDs), twelve of them being parasitic diseases: Chagas’ disease, cysticercosis/taeniasis, echinococcosis, food-borne trematodiasis, human African trypanosomiasis (sleeping sickness), leishmaniasis, lymphatic filariasis, onchocerciasis (river blindness), schistosomiasis, soil-transmitted helminthiasis (ascariasis, hookworm, trichuriasis), guinea-worm and scabies. Such diseases affect millions of people in developing countries where one of the main problems concerning the control of these diseases is diagnosis-based due to the most affected areas usually being far from laboratories having suitable infrastructure and/or being equipped with sophisticated equipment. Advances have been made during the last two decades regarding standardising and introducing techniques enabling diagnoses to be made in remote places, i.e., the loop-mediated isothermal amplification (LAMP) technique. This technique’s advantages include being able to perform it using simple equipment, diagnosis made directly in the field, low cost of each test and the technique’s high specificity. Using this technique could thus contribute toward neglected parasite infection (NPI) control and eradication programmes. This review describes the advances made to date regarding LAMP tests, as it has been found that even though several studies have been conducted concerning most NPI, information is scarce for others.
Collapse
Affiliation(s)
- Catalina Avendaño
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Bogotá 111166, Colombia;
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 112111, Colombia
- Correspondence: ; Tel.: +57-1-3244672
| |
Collapse
|
13
|
Losada Galván I, Alonso-Padilla J, Cortés-Serra N, Alonso-Vega C, Gascón J, Pinazo MJ. Benznidazole for the treatment of Chagas disease. Expert Rev Anti Infect Ther 2020; 19:547-556. [PMID: 33043726 DOI: 10.1080/14787210.2021.1834849] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Chagas disease affects 6-7 million people, mainly in the Americas, and benznidazole is one of the two therapeutic options available. Trypanocide treatment aims to eliminate the parasite from the body to prevent the establishment or progression of visceral damage, mainly cardiac and/or digestive. Remarkably, it helps interrupt vertical transmission when administered to women of childbearing age. AREAS COVERED We discuss the basic and scarce data regarding chemical, pharmacokinetic, and pharmacodynamic structure. We also collect the most important data from previous phase II and III studies, as well as studies currently underway and upcoming. We reflect on the main indications for treatment and its challenges, such as the profile of adverse effects in adults, the pharmaceutical formulations, the search for reliable biomarkers, as well as regulatory aspects and access barriers. Alternative strategies such as shorter regimens, lower doses, and fixed doses are currently being evaluated to improve access and the safety profile of this treatment. EXPERT OPINION Benznidazole is likely to continue to be the drug of choice for Chagas disease in the coming years. However, it would probably be with a different treatment scheme.
Collapse
Affiliation(s)
| | | | | | | | - Joaquim Gascón
- ISGlobal, Hospital Clínic - Universitat De Barcelona, Barcelona, Spain
| | | |
Collapse
|
14
|
Besuschio SA, Picado A, Muñoz-Calderón A, Wehrendt DP, Fernández M, Benatar A, Diaz-Bello Z, Irurtia C, Cruz I, Ndung’u JM, Cafferata ML, Montenegro G, Sosa Estani S, Lucero RH, Alarcón de Noya B, Longhi SA, Schijman AG. Trypanosoma cruzi loop-mediated isothermal amplification (Trypanosoma cruzi Loopamp) kit for detection of congenital, acute and Chagas disease reactivation. PLoS Negl Trop Dis 2020; 14:e0008402. [PMID: 32797041 PMCID: PMC7458301 DOI: 10.1371/journal.pntd.0008402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/31/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
A Trypanosoma cruzi Loopamp kit was recently developed as a ready-to-use diagnostic method requiring minimal laboratory facilities. We evaluated its diagnostic accuracy for detection of acute Chagas disease (CD) in different epidemiological and clinical scenarios. In this retrospective study, a convenience series of clinical samples (venous blood treated with EDTA or different stabilizer agents, heel-prick blood in filter paper or cerebrospinal fluid samples (CSF)) from 30 infants born to seropositive mothers (13 with congenital CD and 17 noninfected), four recipients of organs from CD donors, six orally-infected cases after consumption of contaminated guava juice and six CD patients coinfected with HIV at risk of CD reactivation (N = 46 patients, 46 blood samples and 1 CSF sample) were tested by T. cruzi Loopamp kit (Tc LAMP) and standardized quantitative real-time PCR (qPCR). T. cruzi Loopamp accuracy was estimated using the case definition in the different groups as a reference. Cohen's kappa coefficient (κ) was applied to measure the agreement between Tc LAMP (index test) and qPCR (reference test). Sensitivity and specificity of T. cruzi Loopamp kit in blood samples from the pooled clinical groups was 93% (95% CI: 77-99) and 100% (95% CI: 80-100) respectively. The agreement between Tc LAMP and qPCR was almost perfect (κ = 0.92, 95% CI: 0.62-1.00). The T. cruzi Loopamp kit was sensitive and specific for detection of T. cruzi infection. It was carried out from DNA extracted from peripheral blood samples (via frozen EDTA blood, guanidine hydrochloride-EDTA blood, DNAgard blood and dried blood spots), as well as in CSF specimens infected with TcI or TcII/V/VI parasite populations. The T. cruzi Loopamp kit appears potentially useful for rapid detection of T. cruzi infection in congenital, acute and CD reactivation due to HIV infection.
Collapse
Affiliation(s)
- Susana A. Besuschio
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Albert Picado
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Diana P Wehrendt
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Marisa Fernández
- Hospital de Enfermedades Infecciosas “Dr. Francisco J. Muñiz” Buenos Aires, Argentina
- Instituto Nacional de Parasitología, “Dr Mario Fatala Chabén”, ANLIS CG Malbrán, Buenos Aires, Argentina
| | - Alejandro Benatar
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Zoraida Diaz-Bello
- Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela 5
| | - Cecilia Irurtia
- Hospital Nacional “Profesor Alejandro Posadas”, Villa Sarmiento, Buenos Aires, Argentina
| | - Israel Cruz
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
- National School of Public Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Joseph M Ndung’u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - María L Cafferata
- Departamento en Salud de la Madre y el Niño, Instituto de Efectividad Clínica y Sanitaria – Centro de Investigación en Epidemiología y Salud Pública (IECS-CIESP), Buenos Aires, Argentina
| | - Graciela Montenegro
- Hospital Nacional “Profesor Alejandro Posadas”, Villa Sarmiento, Buenos Aires, Argentina
| | - Sergio Sosa Estani
- Instituto Nacional de Parasitología, “Dr Mario Fatala Chabén”, ANLIS CG Malbrán, Buenos Aires, Argentina
| | - Raúl H. Lucero
- Área de Biología Molecular, Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia, Argentina
| | | | - Silvia A Longhi
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr Héctor Torres”, (INGEBI-CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Martinez SJ, Romano PS, Engman DM. Precision Health for Chagas Disease: Integrating Parasite and Host Factors to Predict Outcome of Infection and Response to Therapy. Front Cell Infect Microbiol 2020; 10:210. [PMID: 32457849 PMCID: PMC7225773 DOI: 10.3389/fcimb.2020.00210] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/16/2020] [Indexed: 01/01/2023] Open
Abstract
Chagas disease, caused by the infection with the protozoan parasite Trypanosoma cruzi, is clinically manifested in approximately one-third of infected people by inflammatory heart disease (cardiomyopathy) and, to a minor degree, gastrointestinal tract disorders (megaesophagus or megacolon). Chagas disease is a zoonosis transmitted among animals and people through the contact with triatomine bugs, which are found in much of the western hemisphere, including most countries of North, Central and South America, between parallels 45° north (Minneapolis, USA) and south (Chubut Province, Argentina). Despite much research on drug discovery for T. cruzi, there remain only two related agents in widespread use. Likewise, treatment is not always indicated due to the serious side effects of these drugs. On the other hand, the epidemiology and pathogenesis of Chagas disease are both highly complex, and much is known about both. However, it is still impossible to predict what will happen in an individual person infected with T. cruzi, because of the highly variability of parasite virulence and human susceptibility to infection, with no definitive molecular predictors of outcome from either side of the host-parasite equation. In this Minireview we briefly discuss the current state of T. cruzi infection and prognosis and look forward to the day when it will be possible to employ precision health to predict disease outcome and determine whether and when treatment of infection may be necessary.
Collapse
Affiliation(s)
- Santiago J Martinez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos," (IHEM-CONICET- Universidad Nacional de Cuyo), Mendoza, Argentina.,Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Patricia S Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora-Instituto de Histología y Embriología "Dr. Mario H. Burgos," (IHEM-CONICET- Universidad Nacional de Cuyo), Mendoza, Argentina
| | - David M Engman
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States.,Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Departments of Pathology and Microbiology-Immunology, Northwestern University, Chicago, IL, United States
| |
Collapse
|