1
|
Ayoub VR, Abdel-Mottaleb MMA, Ibrahem IT, Motaleb MA, Geneidi AS. Novel radioiodinated desvenlafaxine-loaded lipid nanocapsule for brain delivery. Arch Pharm (Weinheim) 2024; 357:e2300618. [PMID: 38161231 DOI: 10.1002/ardp.202300618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
Lipid nanocapsules (LNCs) are lipid nanocarriers developed for drug delivery enhancement. The antidepressant drug desvenlafaxine (DSV) was entrapped in LNC to improve its brain delivery. Different DSV-loaded LNCs formulae using different oils and surfactants were studied to obtain the optimum formula for further studies. In vivo biodistribution studies were done using Swiss albino mice by intravenous injection of DSV-loaded LNCs by radioiodination technique. The optimum DSV-loaded LNC formula was obtained by using Labrafil® M1944CS as the oil and Solutol® HS15 as the surfactant in the ratio of 1:1, with a particle size of 34.28 ± 0.41 nm, a polydispersity index of 0.032 ± 0.05, a zeta potential of -25.77 ± 1.41, and good stability for up to 6 months. The in vivo biodistribution and pharmacokinetics data ensure the bioavailability improvement for DSV brain delivery as Cmax and AUC(1-t) increased more than double for intravenously DSV-loaded LNCs compared with the DSV solution. In conclusion, the results obtained from this study give an insight into the great potential of using DSV-loaded LNC for the enhancement of brain delivery.
Collapse
Affiliation(s)
- Veronia R Ayoub
- Department of Labelled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ismail T Ibrahem
- Department of Labelled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mohamed A Motaleb
- Department of Labelled Compounds, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
da Silva Santana RC, Prudente TP, de Sousa Guerra CH, de Lima NF, de Souza Lino Junior R, Vinaud MC. Albendazole - Ivermectin combination decreases inflammation in experimental neurocysticercosis. Exp Parasitol 2023:108568. [PMID: 37327965 DOI: 10.1016/j.exppara.2023.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Neurocysticercosis (NCC) is a public health issue in endemic regions and is considered the main preventable cause of neurologic disease. It is caused by the presence of Taenia solium cysticercus in the central nervous system. The current treatment is performed with anthelminthic drugs - albendazole (ABZ) or praziquantel - associated with anti-inflammatory and corticosteroids in order to prevent the negative effects of the inflammatory reaction to the parasite's death. Ivermectin (IVM) is an anthelminthic drug that has been shown to present an anti-inflammatory effect. The aim of this study was to was to evaluate the histopathologic aspects of experimental NCC after in vivo treatment with a combination of ABZ-IVM. Balb/c mice were intracranially inoculated with T. crassiceps cysticerci and after 30 days of infection were treated with a single dose of NaCl 0.9% (control group), ABZ monotherapy (40 mg/kg), IVM monotherapy (0.2 mg/kg) or a combination of ABZ-IVM. 24h after the treatment the animals were euthanized and the brain was removed for histopathologic analysis. The IVM monotherapy and ABZ-IVM combination showed more degenerated cysticerci, less inflammatory infiltration, meningitis and hyperemia than the other groups. Therefore, it is possible to recommend the combination of albendazole and ivermectin as alternative chemotherapy for NCC due to its antiparasitic and anti-inflammatory effects, with potential to decrease the negative effects of the inflammatory burst when the parasite is killed within the CNS.
Collapse
Affiliation(s)
| | - Tiago Paiva Prudente
- Medicine School, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | | | - Nayana Ferreira de Lima
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Ruy de Souza Lino Junior
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil
| | - Marina Clare Vinaud
- Tropical Pathology and Public Health Institute, Federal University of Goias, Goiânia, Goiás, CEP: 74605-050, Brazil.
| |
Collapse
|
3
|
Liang Z, Chen M, Yan Y, Chen D, Xie S. Nanocrystal Suspensions for Enhancing the Oral Absorption of Albendazole. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3032. [PMID: 36080069 PMCID: PMC9457984 DOI: 10.3390/nano12173032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Albendazole (ABZ), an effective benzimidazole antiparasitic drug is limited by its poor solubility and oral bioavailability. In order to overcome its disadvantages, ABZ nanocrystals were prepared using a novel bottom-up method based on acid-base neutralization recrystallization with high-speed mixing and dispersing. The cosolvent, stabilizer and preparation temperature were optimized using single factor tests. The physicochemical properties, solubility and pharmacokinetics of the optimal ABZ nanocrystals were evaluated. The high-performance liquid chromatography (HPLC), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) showed that ABZ had no structural and crystal phase change after nanocrystallization. The saturated solubility of ABZ nanocrystals in different solvents was increased by 2.2-118 fold. The oral bioavailability of the total active ingredients (ABZ and its metabolites of albendazole sulfoxide (ABZSO) and albendazole sulfone (ABZSO2)) of the nanocrystals in rats was enhanced by 1.40 times compared to the native ABZ. These results suggest that nanocrystals might be a promising way to enhance the solubility and oral bioavailability of ABZ and other insoluble drugs.
Collapse
Affiliation(s)
- Zhiwei Liang
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Yan
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Wuhan 430070, China
- MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
4
|
Waghule T, Saha RN, Alexander A, Singhvi G. Tailoring the multi-functional properties of phospholipids for simple to complex self-assemblies. J Control Release 2022; 349:460-474. [PMID: 35841998 DOI: 10.1016/j.jconrel.2022.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
The unique interfacial properties, huge diversity, and biocompatible nature of phospholipids make them an attractive pharmaceutical excipient. The amphiphilic nature of these molecules offers them the property to self-assemble into distinct structures. The solubility, chemical and structural properties, surface charge, and critical packing parameters of phospholipids play an essential role during formulation design. This review focuses on the relationship between the structural features of a phospholipid molecule and the formation of different lipid-based nanocarrier drug delivery systems. This provides a rationale and guideline for the selection of appropriate phospholipids while designing a drug delivery system. Finally, we refer to relevant recent case studies covering different types of phospholipid-based systems including simple to complex assemblies. Different carriers in the size range of 50 nm to a few microns can be prepared using phospholipids. The carriers can be delivered through oral, intravenous, nasal, dermal, transmucosal, and subcutaneous routes. A wide range of applicability can be achieved by incorporating various hydrophilic and lipophilic additives in the phospholipid bilayer. Advanced research has led to the discovery of phospholipid complexes and cell membrane mimicking lipids. Overall, phospholipids remain a versatile pharmaceutical excipient for drug delivery. They play multiple roles as solubilizer, emulsifier, surfactant, permeation enhancer, coating agent, release modifier, and liposome former.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
5
|
Magnaval JF, Bouhsira E, Fillaux J. Therapy and Prevention for Human Toxocariasis. Microorganisms 2022; 10:microorganisms10020241. [PMID: 35208697 PMCID: PMC8875715 DOI: 10.3390/microorganisms10020241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 01/08/2023] Open
Abstract
For the last four decades, knowledge about human toxocariasis with regard to its epidemiology, pathophysiology, clinical spectrum, and imaging or laboratory diagnosis has substantially progressed. Knowledge about specific therapy with anthelmintics has lagged behind. To date, only four drugs are registered for human use, and their efficacy has rarely been assessed in prospective controlled trials. It is likely that the repurposing of potent anthelmintics from veterinary medicine will improve this situation. Due to its wide availability and a lack of major side effects during short regimens, albendazole has become the drug of choice. However, its efficacy should be more precisely assessed. The role of anthelmintics in the treatment of neurological or ocular toxocariasis remains to be clarified. Prophylactic measures in humans or companion animals are efficient and represent first-line treatments for the control of this zoonosis. Unfortunately, their implementation in areas or countries where toxocariasis epidemiology is driven by poverty is quite difficult or unrealistic.
Collapse
Affiliation(s)
- Jean-François Magnaval
- Service de Parasitologie Médicale, Faculté de Médecine, Université de Toulouse, 37 Allées Jules-Guesde, 31000 Toulouse, France
- Correspondence:
| | - Emilie Bouhsira
- Service de Parasitologie, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, 31076 Toulouse, France;
| | - Judith Fillaux
- Service de Parasitologie-Mycologie, Hôpital Purpan, Centre Hospitalier Universitaire de Toulouse, 330 Avenue de Grande-Bretagne, 31059 Toulouse, France;
| |
Collapse
|
6
|
Dabholkar N, Waghule T, Krishna Rapalli V, Gorantla S, Alexander A, Narayan Saha R, Singhvi G. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Eissa MM, El-Azzouni MZ, El-Khordagui LK, Abdel Bary A, El-Moslemany RM, Abdel Salam SA. Single oral fixed-dose praziquantel-miltefosine nanocombination for effective control of experimental schistosomiasis mansoni. Parasit Vectors 2020; 13:474. [PMID: 32933556 PMCID: PMC7493353 DOI: 10.1186/s13071-020-04346-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background The control of schistosomiasis has been centered to date on a single drug, praziquantel, with shortcomings including treatment failure, reinfection, and emergence of drug resistance. Drug repurposing, combination therapy or nanotechnology were explored to improve antischistosomal treatment. The aim of the present study was to utilize a novel combination of the three strategies to improve the therapeutic profile of praziquantel. This was based on a fixed-dose nanocombination of praziquantel and miltefosine, an antischistosomal repurposing candidate, co-loaded at reduced doses into lipid nanocapsules, for single dose oral therapy. Methods Two nanocombinations were prepared to provide 250 mg praziquantel-20 mg miltefosine/kg (higher fixed-dose) or 125 mg praziquantel-10 mg miltefosine/kg (lower fixed-dose), respectively. Their antischistosomal efficacy in comparison with a non-treated control and their praziquantel or miltefosine singly loaded counterparts was assessed in murine schistosomiasis mansoni. A single oral dose of either formulation was administered on the initial day of infection, and on days 21 and 42 post-infection. Scanning electron microscopic, parasitological, and histopathological studies were used for assessment. Preclinical data were subjected to analysis of variance and Tukeyʼs post-hoc test for pairwise comparisons. Results Lipid nanocapsules (~ 58 nm) showed high entrapment efficiency of both drugs (> 97%). Compared to singly loaded praziquantel-lipid nanocapsules, the higher nanocombination dose showed a significant increase in antischistosomal efficacy in terms of statistically significant decrease in mean worm burden, particularly against invasive and juvenile worms, and amelioration of hepatic granulomas (P ≤ 0.05). In addition, scanning electron microscopy examination showed extensive dorsal tegumental damage with noticeable deposition of nanostructures. Conclusions The therapeutic profile of praziquantel could be improved by a novel multiple approach integrating drug repurposing, combination therapy and nanotechnology. Multistage activity and amelioration of liver pathology could be achieved by a new praziquantel-miltefosine fixed-dose nanocombination providing 250 mg praziquantel-20 mg miltefosine/kg. To the best of our knowledge, this is the first report of a fixed-dose nano-based combinatorial therapy for schistosomiasis mansoni. Further studies are needed to document the nanocombination safety and explore its prophylactic activity and potential to hinder the onset of resistance to the drug components.![]()
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervat Z El-Azzouni
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Amany Abdel Bary
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sara A Abdel Salam
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Xu Q, Fang M, Zhu J, Dong H, Cao J, Yan L, Leonard F, Oppel F, Sudhoff H, Kaufmann AM, Albers AE, Qian X. Insights into Nanomedicine for Immunotherapeutics in Squamous Cell Carcinoma of the head and neck. Int J Biol Sci 2020; 16:2506-2517. [PMID: 32792853 PMCID: PMC7415431 DOI: 10.7150/ijbs.47068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Immunotherapies such as immune checkpoint blockade benefit only a portion of patients with head and neck squamous cell carcinoma. The multidisciplinary field of nanomedicine is emerging as a promising strategy to achieve maximal anti-tumor effect in cancer immunotherapy and to turn non-responders into responders. Various methods have been developed to deliver therapeutic agents that can overcome bio-barriers, improve therapeutic delivery into the tumor and lymphoid tissues and reduce adverse effects in normal tissues. Additional modification strategies also have been employed to improve targeting and boost cytotoxic T cell-based immune responses. Here, we review the state-of-the-art use of nanotechnologies in the laboratory, in advanced preclinical phases as well as those running through clinical trials assessing their advantages and challenges.
Collapse
Affiliation(s)
- Qiang Xu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Jing Zhu
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Haoru Dong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| | - Lin Yan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Fransisca Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, USA
| | - Felix Oppel
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Xu Qian
- Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences. Hangzhou, P.R. China
| |
Collapse
|