1
|
Djiman TA, Biguezoton AS, Saegerman C. Tick-Borne Diseases in Sub-Saharan Africa: A Systematic Review of Pathogens, Research Focus, and Implications for Public Health. Pathogens 2024; 13:697. [PMID: 39204297 PMCID: PMC11356977 DOI: 10.3390/pathogens13080697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Sub-Saharan Africa, with its hot and humid climate, is a conducive zone for tick proliferation. These vectors pose a major challenge to both animal and human health in the region. However, despite the relevance of emerging diseases and evidence of tick-borne disease emergence, very few studies have been dedicated to investigating zoonotic pathogens transmitted by ticks in this area. To raise awareness of the risks of tick-borne zoonotic diseases in sub-Saharan Africa, and to define a direction for future research, this systematic review considers the trends of research on tick-borne bacteria, parasites, and viruses from 2012 to 2023, aiming to highlight the circulation of these pathogens in ticks, cattle, sheep, goats, and humans. For this purpose, three international databases were screened to select 159 papers fitting designed inclusion criteria and used for qualitative analyses. Analysis of these studies revealed a high diversity of tick-borne pathogens in sub-Saharan Africa, with a total of 37 bacterial species, 27 parasite species, and 14 viruses identified. Among these, 27% were zoonotic pathogens, yet only 11 studies investigated their presence in humans. Furthermore, there is growing interest in the investigation of bacteria and parasites in both ticks and ruminants. However, research into viruses is limited and has only received notable interest from 2021 onwards. While studies on the detection of bacteria, including those of medical interest, have focused on ticks, little consideration has been given to these vectors in studies of parasites circulation. Regarding the limited focus on zoonotic pathogens transmitted by ticks, particularly in humans, despite documented cases of emerging zoonoses and the notable 27% proportion reported, further efforts should be made to fill these gaps. Future studies should prioritize the investigation of zoonotic pathogens, especially viruses, which represent the primary emerging threats, by adopting a One Health approach. This will enhance the understanding of their circulation and impact on both human and animal health. In addition, more attention should be given to the risk factors/drivers associated to their emergence as well as the perception of the population at risk of infection from these zoonotic pathogens.
Collapse
Affiliation(s)
- Tidjani A. Djiman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animals and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
- Vector-Borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Centre on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso 454, Burkina Faso;
| | - Abel S. Biguezoton
- Vector-Borne Diseases and Biodiversity Unit (UMaVeB), International Research and Development Centre on Livestock in Sub-humid Areas (CIRDES), Bobo-Dioulasso 454, Burkina Faso;
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animals and Health (FARAH) Center, Faculty of Veterinary Medicine, University of Liege, 4000 Liège, Belgium;
| |
Collapse
|
2
|
Amer MM, Galon EM, Soliman AM, Do T, Zafar I, Ma Y, Li H, Ji S, Mohanta UK, Xuan X. Molecular detection of tick-borne piroplasmids in camel blood samples collected from Cairo and Giza governorates, Egypt. Acta Trop 2024; 256:107252. [PMID: 38801911 DOI: 10.1016/j.actatropica.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Piroplasmosis, a tick-borne disease affecting livestock, including camels, is caused by intracellular apicomplexan parasites belonging to the order Piroplasmida. Despite its importance, there's limited research on piroplasmosis among Egyptian camels. This study aimed to fill this gap by investigating tick-borne piroplasmids in camels from Cairo and Giza Governorates. Out of 181 blood samples collected between October 2021 and March 2022 from apparently healthy one-humped camels (Camelus dromedarius), PCR assays revealed a 41.4 % infection rate with various piroplasmids. Detected species included B. bovis (17.7 %), B. bigemina (12.2 %), B. caballi (8.3 %), B. naoakii (11.6 %), B. microti (1.7 %), T. equi (4.4 %), and Theileria spp. (28.7 %). Phylogenetic analysis revealed the first detection of T. equi genotype E in Egypt and identified a novel B. caballi genotype. Additionally, B. microti isolates were identified as the US-type. These findings shed lights on piroplasmosis among Egyptian camels, and provide valuable information for devising effective control strategies, especially B. microti, a pathogen with potential human health risks.
Collapse
Affiliation(s)
- Moaz M Amer
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Biotechnology, Animal Health Research Institute, Dokki 12618, Egypt
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Ahmed M Soliman
- Department of Biotechnology, Animal Health Research Institute, Dokki 12618, Egypt
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yihong Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
3
|
Mbizeni S, Mans BJ, Mukaratirwa S, Peba B, Maboko BB, Pienaar R, Magampa H, Marumo RD, Josemans A, Troskie C, Latif AA. Molecular and serological prevalence of corridor disease (buffalo associated Theileria parva infection) in cattle populations at the livestock/game interface of KwaZulu-Natal province, South Africa. Vet Parasitol Reg Stud Reports 2024; 47:100963. [PMID: 38199701 DOI: 10.1016/j.vprsr.2023.100963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Theileria parva are intracellular protozoal parasites responsible for three disease syndromes in cattle, namely East Coast fever (ECF), Corridor disease (CD) and Zimbabwean theileriosis. The increase in reports of CD outbreaks in recent years has raised questions about the probability of adaptation of buffalo-derived T. parva strains in cattle herds adjacent to game reserves. A cross-sectional study was conducted from March 2016 to December 2018 to investigate the extent of occurrence of T. parva infections in cattle in the CD-controlled area of KwaZulu-Natal Province. Blood samples were collected from 1137 cattle from 14 herds and analysed by quantitative real-time PCR (qPCR) and indirect fluorescent antibody test (IFAT) to determine the prevalence of T. parva. A total of 484 samples from 4 of the 14 herds were further tested on qPCR for the presence of T. taurotragi infections. The data were analysed using descriptive statistics and a chi-square test was used to assess association between variables. The overall prevalence of T. parva was 1.3% (95%CI:1-2%) and 19.9% (95%CI:17-22%) on qPCR and IFAT, respectively. The qPCR positive samples were detected in March and May while IFAT positive samples were detected in all seasons sampled, with higher numbers during summer months. The Pearson Chi-squared test showed that T. parva prevalence rates based on both qPCR and IFAT were positively associated with herds with previous history of CD outbreaks (χ2 = 8.594, p = 0.003; χ2 = 69.513, p < 0.001, respectively). The overall prevalence of T. taurotragi was 39.4% (95% CI: 35-44%) with the herd-level prevalence ranging between 35.0% and 43.4%. Possible cross-reaction of T. parva IFAT to T. taurotragi was detected on few samples, however, there was no significant association between T. taurotragi infections and IFAT positivity (χ2 = 0.829, p = 0.363). Results from this study demonstrated the extent of occurrence of subclinical carriers and the level of exposure to T. parva infections in cattle populations at a livestock/game interface area of KwaZulu-Natal Province. The molecular and seroprevalence rates were low when compared with other areas where cattle-adapted T. parva infections are endemic. The adaptation of buffalo-derived T. parva in cattle population resulting in cattle-cattle transmissions seem to be unlikely under the current epidemiological state.
Collapse
Affiliation(s)
- Sikhumbuzo Mbizeni
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Roodepoort, Florida 1710, South Africa; School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa; Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa.
| | - Ben J Mans
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa; Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Roodepoort, Florida 1710, South Africa; Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa; One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Brian Peba
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Boitumelo B Maboko
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Ronel Pienaar
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Hero Magampa
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Ratselane D Marumo
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Antoinette Josemans
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Christo Troskie
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research, Private Bag X05, Onderstepoort, 0110, Pretoria, South Africa
| | - Abdalla A Latif
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville Campus, Durban 4000, South Africa
| |
Collapse
|
4
|
Haji I, Simuunza M, Jiang N, Chen Q. Tick populations and molecular detection of selected tick-borne pathogens in questing ticks from northern and central Tanzania. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 90:389-407. [PMID: 37464132 PMCID: PMC10406711 DOI: 10.1007/s10493-023-00816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
Ticks are vectors and reservoirs of a variety of pathogens including protozoa, bacteria and viruses which cause tick-borne diseases (TBDs) in humans and livestock. TBDs pose serious constraints to the improvement of livestock production in tropical and subtropical regions of the world. Despite their wide distribution, information on the tick and pathogen relationship is scarce in Tanzania. We used nested PCR and sequencing to screen pathogens of public and veterinary health importance in ticks collected by flagging from four districts of Tanzania. In total, 2021 ticks comprising nine species were identified. DNA from ticks was pooled according to tick species, developmental stage, and location, then screened for Babesia bigemina, Babesia bovis, Theileria parva and Coxiella burnetii. Out of 377 pools, 34.7% were positive for at least one pathogen. Theileria parva was the most abundant with a minimum infection rate (MIR) of 2.8%, followed by B. bigemina (MIR = 1.8%) and B. bovis (MIR = 0.8%). Multiple pathogens detection was observed in 7.2% of the tested pools. However, PCR screening of individual tick DNA revealed that only 0.3% of the examined pools had co-infection. DNA of C. burnetii was never detected in any tick DNA pool. The MIR of tick-borne pathogens (TBPs) differed significantly among districts, seasons, tick species, and tick developmental stages. Sequence analysis showed that B. bigemina RAP-1a, B. bovis SBP-4, and T. parva p104 genes were conserved among pathogens in the four districts. Despite the absence of C. burnetii in ticks, considering its pathogenic potential, it is essential to continue monitoring for its possible recurrence in ticks. This information adds to the knowledge of TBPs epidemiology and will contribute to the scientific basis for planning future control strategies.
Collapse
Affiliation(s)
- Isihaka Haji
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
- Department of Veterinary Microbiology, Parasitology and Biotechnology, Sokoine University of Agriculture, P. O. Box 3019, Morogoro, Tanzania.
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P. O. Box 32379, Lusaka, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, P. O. Box 32379, Lusaka, Zambia
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Key Laboratory of Zoonosis, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, China.
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang, 110866, China.
| |
Collapse
|
5
|
Kolo A. Anaplasma Species in Africa-A Century of Discovery: A Review on Molecular Epidemiology, Genetic Diversity, and Control. Pathogens 2023; 12:pathogens12050702. [PMID: 37242372 DOI: 10.3390/pathogens12050702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Anaplasma species, belonging to the family Anaplasmataceae in the order Rickettsiales, are obligate intracellular bacteria responsible for various tick-borne diseases of veterinary and human significance worldwide. With advancements in molecular techniques, seven formal species of Anaplasma and numerous unclassified species have been described. In Africa, several Anaplasma species and strains have been identified in different animals and tick species. This review aims to provide an overview of the current understanding of the molecular epidemiology and genetic diversity of classified and unclassified Anaplasma species detected in animals and ticks across Africa. The review also covers control measures that have been taken to prevent anaplasmosis transmission on the continent. This information is critical when developing anaplasmosis management and control programs in Africa.
Collapse
Affiliation(s)
- Agatha Kolo
- Department of Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Ringo AE, Nonga HE, Galon EM, Ji S, Rizk MA, El-Sayed SAES, Mohanta UK, Ma Z, Chikufenji B, Do TT, Xuan X. Molecular Investigation of Tick-Borne Haemoparasites Isolated from Indigenous Zebu Cattle in the Tanga Region, Tanzania. Animals (Basel) 2022; 12:ani12223171. [PMID: 36428398 PMCID: PMC9686548 DOI: 10.3390/ani12223171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tick-borne diseases (TBDs) are a major hindrance to livestock production in pastoral communities of Africa. Although information on tick-borne infections is necessary for setting up control measures, this information is limited in the pastoral communities of Tanzania. Therefore, this study aimed to provide an overview of the tick-borne infections in the indigenous cattle of Tanzania. A total of 250 blood samples were collected from the indigenous zebu cattle in the Tanga region, Tanzania. Then, we conducted a molecular survey using the polymerase chain reaction (PCR) and gene sequencing to detect and identify the selected tick-borne pathogens. The PCR was conducted using assays, based on Theileria spp. (18S rRNA), Theileria parva (p104), Theileria mutans and T. taurotragi (V4 region of the 18S rRNA), Babesia bigemina (RAP-1a), B. bovis (SBP-2), Anaplasma marginale (heat shock protein groEL) and Ehrlichia ruminantium (pCS20). The PCR screening revealed an overall infection rate of (120/250, 48%) for T. mutans, (64/250, 25.6%) for T. parva, (52/250, 20.8%) for T. taurotragi, (33/250, 13.2%) for B. bigemina and (81/250, 32.4%) for A. marginale. Co-infections of up to four pathogens were revealed in 44.8% of the cattle samples. A sequence analysis indicated that T. parva p104 and A. marginale groEL genes were conserved among the sampled animals with sequence identity values of 98.92−100% and 99.88−100%, respectively. Moreover, the B. bigemina RAP-1a gene and the V4 region of the 18S rRNA of T. mutans genes were diverse among the sampled cattle, indicating the sequence identity values of 99.27−100% and 22.45−60.77%, respectively. The phylogenetic analyses revealed that the T. parva (p104) and A. marginale (groEL) gene sequences of this study were clustered in the same clade. In contrast, the B. bigemina (RAP-1a) and the T. mutans V4 region of the 18S rRNA gene sequences appeared in the different clades. This study provides important basement data for understanding the epidemiology of tick-borne diseases and will serve as a scientific basis for planning future control strategies in the study area.
Collapse
Affiliation(s)
- Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Zanzibar Livestock Research Institute, Ministry of Agriculture, Irrigation, Natural Resources and Livestock, Zanzibar P.O. Box 159, Tanzania
| | - Hezron Emanuel Nonga
- Ministry of Livestock and Fisheries, Government City Mtumba, Dodoma P.O. Box 2870, Tanzania
| | - Eloiza May Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Shengwei Ji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Mohamed Abdo Rizk
- Department of Internal medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Shimaa Abd El-Salam El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura 35516, Egypt
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Boniface Chikufenji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Thanh Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
- Correspondence: ; Tel.: +81-(155)-495-648
| |
Collapse
|
7
|
Sontigun N, Boonhoh W, Phetcharat Y, Wongtawan T. First study on molecular detection of hemopathogens in tabanid flies (Diptera: Tabanidae) and cattle in Southern Thailand. Vet World 2022; 15:2089-2094. [PMID: 36313830 PMCID: PMC9615497 DOI: 10.14202/vetworld.2022.2089-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Background and Aim: Female tabanids play a key role in disease transmission as mechanical vectors for various hemopathogens, but only a limited number of studies have been conducted on them. This study aimed to investigate the occurrence of hemopathogens in tabanid flies compared to those found in nearby cattle hosts. Materials and Methods: Tabanids were collected using a Nzi trap for three consecutive days per month during the dry season (February–May 2021). Furthermore, blood samples were collected from 20 beef cattle (Bos taurus) raised in the same area where the flies were captured. Conventional polymerase chain reaction (PCR) was used to detect hemopathogenic DNA in flies and beef cattle. Results: In total, 279 female tabanids belonging to five species were collected: Tabanus megalops, Tabanus rubidus, Tabanus mesogaeus, Chrysops dispar, and Chrysops fuscomarginalis. Notably, T. megalops was the most abundant species, accounting for 89.2% of the flies collected (n = 249). PCR technique revealed that 76.6% of T. megalops carried at least one pathogen (Anaplasma, Ehrlichia, Babesia, or Theileria). In addition, all beef cattle had multiple hemopathogenic infections (Anaplasma marginale, Ehrlichia spp., Babesia bigemina, Babesia bovis, and Theileria spp.). Conclusion: Although T. megalops could carry many hemopathogens, it might not be an important vector due to the limited number of flies and parasitic load. Furthermore, T. megalops could be utilized to monitor the presence of hemopathogens in the study area, but not the disease occurrence in the individual host species. Knowing the presence of hemopathogens in flies could help manage the disease in this area.
Collapse
Affiliation(s)
- Narin Sontigun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Yotsapat Phetcharat
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
8
|
Tawana M, Onyiche TE, Ramatla T, Mtshali S, Thekisoe O. Epidemiology of Ticks and Tick-Borne Pathogens in Domestic Ruminants across Southern African Development Community (SADC) Region from 1980 until 2021: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:pathogens11080929. [PMID: 36015049 PMCID: PMC9414594 DOI: 10.3390/pathogens11080929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022] Open
Abstract
Ticks are hematophagous ectoparasites that are capable of infesting a wide range of mammals, including domestic animals, ruminants, wildlife, and humans across the world, and they transmit disease-causing pathogens. Numerous individual epidemiological studies have been conducted on the distribution and prevalence of ticks and tick-borne diseases (TBDs) in the Southern African Developing Community (SADC) region, but no effort has been undertaken to synchronize findings, which would be helpful in the implementation of consolidated tick control measures. With the aim of generating consolidated pooled prevalence estimates of ticks and TBDs in the SADC region, we performed a systematic review and meta-analysis of published articles using the PRISMA 2020 guidelines. A deep search was performed on five electronic databases, namely, PubMed, ScienceDirect, Google Scholar, AJOL, and Springer Link. Of the 347 articles identified, only 61 of the articles were eligible for inclusion. In total, 18,355 tick specimens were collected, belonging to the genera Amblyomma, Haemaphysalis, Hyalomma, and Rhipicephalus (including Boophilus) across several countries, including South Africa (n = 8), Tanzania (n = 3), Zambia (n = 2), Zimbabwe (n = 2), Madagascar (n = 2), Angola (n = 2), Mozambique (n = 1), and Comoros (n = 1). The overall pooled prevalence estimate (PPE) of TBPs in livestock was 52.2%, with the highest PPE in cattle [51.2%], followed by sheep [45.4%], and goats [29.9%]. For bacteria-like and rickettsial TBPs, Anaplasma marginale had the highest PPE of 45.9%, followed by A. centrale [14.7%], A. phagocytophilum [2.52%], and A. bovis [0.88%], whilst Ehrlichia ruminantium had a PPE of 4.2%. For piroplasmids, Babesia bigemina and B. bovis had PPEs of 20.8% and 20.3%, respectively. Theileria velifera had the highest PPE of 43.0%, followed by T. mutans [29.1%], T. parva [25.0%], and other Theileria spp. [14.06%]. Findings from this study suggest the need for a consolidated scientific approach in the investigation of ticks, TBPs, and TBDs in the whole SADC region, as most of the TBDs are transboundary and require a regional control strategy.
Collapse
Affiliation(s)
- Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| | - ThankGod E. Onyiche
- Department of Veterinary Parasitology and Entomology, University of Maiduguri, Maiduguri 600230, Nigeria
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Correspondence: ; Tel.: +27-18-299-2521
| | - Sibusiso Mtshali
- Foundational Research and Services, South African National Biodiversity Institute, National Zoological Gardens, Pretoria 0001, South Africa
- University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
| |
Collapse
|
9
|
Chatanga E, Maganga E, Mohamed WMA, Ogata S, Pandey GS, Abdelbaset AE, Hayashida K, Sugimoto C, Katakura K, Nonaka N, Nakao R. High infection rate of tick-borne protozoan and rickettsial pathogens of cattle in Malawi and the development of a multiplex PCR for Babesia and Theileria species identification. Acta Trop 2022; 231:106413. [PMID: 35307457 DOI: 10.1016/j.actatropica.2022.106413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/01/2022]
Abstract
Malawi has an estimated cattle population of 1,884,803 heads, the indigenous Malawi zebu breed accounts for 91.2%, while the exotic and crossbred accounts for the remaining 8.8%. Although ticks and tick-borne diseases are widespread in Malawi, no molecular study has been conducted to investigate the tick-borne Anaplasmataceae and piroplasms infecting cattle. To provide an insight into the current status of tick-borne pathogens (TBPs) of cattle, a molecular survey was conducted in the central and southern regions of Malawi. A total of 191 cattle of which 132 were Malawi zebu, 44 were Holstein Friesian and 15 were Holstein-Friesian/ Malawi zebu crosses were screened for Anaplasmataceae and piroplasms using the heat shock protein groEL gene and 18S rDNA, respectively. A new 18S rDNA multiplex PCR assay was designed for Babesia and Theileria species identification without sequencing. Overall, 92.3% (n = 177) of the examined animals were infected with at least one TBP. Anaplasmataceae-positive rate was 57.6% (n = 110) while for piroplasms it was 80.1% (n = 153). The detected Anaplasmataceae were Anaplasma bovis 2.6% (n = 5), Anaplasma marginale 24.6% (n = 47), Anaplasma platys-like 13.6% (n = 26), uncharacterized Anaplasma sp. 14.1% (n = 27), and uncharacterized Ehrlichia sp. 16.2% (n = 31). The detected piroplasms were Babesia bigemina 2.6% (n = 5), Theileria mutans 73.8% (n = 141), Theileria parva 33.0% (n = 63), Theileria taurotragi 12.6% (n = 24), and Theileria velifera 53.4% (n = 102). Mixed infection rate was found in 79.6% (n = 152) of the samples analyzed. This study has shown a high burden of TBPs among cattle in Malawi which highlights the need to conceive new methods to control ticks and TBPs in order to improve animal health and productivity. The newly developed multiplex PCR assay would be a useful tool especially in resource limited settings where sequencing is not available and when mixed infections are expected.
Collapse
|
10
|
Anaplasma and Theileria Pathogens in Cattle of Lambwe Valley, Kenya: A Case for Pro-Active Surveillance in the Wildlife-Livestock Interface. Microorganisms 2020; 8:microorganisms8111830. [PMID: 33233713 PMCID: PMC7699859 DOI: 10.3390/microorganisms8111830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Tick-borne pathogens (TBPs) are major constraints to livestock production and a threat to public health in Africa. This cross-sectional study investigated the risk of infection with TBPs in cattle of Lambwe Valley, Kenya. Blood samples of 680 zebu cattle from 95 herds in six geospatial clusters within 5 km of Ruma National Park were screened for bacterial and protozoan TBPs by high-resolution melting analysis and sequencing of PCR products. We detected Anaplasma bovis (17.4%), Anaplasma platys (16.9%), Anaplasma marginale (0.6%), Theileria velifera (40%), and Theileria mutans (25.7%), as well as an Anaplasma sp. (11.6%) that matched recently reported Anaplasma sp. sequences from Ethiopia. Babesia, Rickettsia, and Ehrlichia spp. were not detected. The animal and herd-level prevalences for TBPs were 78.5% (95% confidence intervals (CI): 75.3, 81.5) and 95.8% (95% CI: 91.8, 99.8), respectively. About 31.6% of cattle were co-infected with 13 combinations of TBPs. The prevalence of TBPs differed between clusters and age, but the risk of infection was not associated with sex, herd size, or the distance of homesteads from Ruma. This study adds insight into the epidemiology of TBPs around Ruma and highlights the need for proactive surveillance of TBPs in livestock–wildlife interfaces.
Collapse
|