1
|
Dittrich SP, Adithya S, Ajith Y, Athira N, Athira KS, Safeer MS, Preena P, Aishwarya A, Athira K, Nisha AR, Devi G, Mäder M, Beena V, Jacob SS. Parasite diversity among domestic goats of tropical monsoon climatic zone in India. Parasitol Res 2024; 123:342. [PMID: 39373887 DOI: 10.1007/s00436-024-08366-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Among different climatic zones in India, the tropical monsoon region comprises a diverse ecosystem characterized by the endemic nature of several parasites including certain emerging and re-emerging vector-borne pathogens of humans, whereas a systematic investigation of the occurrence of different parasites among domestic goats in this area is not yet explored. The goal of the present study is to explore the parasite diversity focusing on molecular identification of vector-borne hemoparasites and its health impacts on domestic goats reared in the tropical monsoon climate zone of Kerala, India. Among 227 goats presented to the Teaching Veterinary Clinical Complex (TVCC) in the monsoon months of 2023, thirty animals were recruited for the study. The animals were screened for the presence of different hemoparasites (Anaplasma spp., Theileria spp., and Babesia spp.), ectoparasites (ticks, lice, and fleas), and gastrointestinal (GI) parasites (hookworms, threadworms, tapeworms, whipworms, and coccidia). The isolated hemoparasites were further characterized by sequencing and phylogenetic analysis. The correlation studies to elucidate the association between the occurrence of different parasites and clinical manifestations (hyperthermia, pallor of mucous membrane, circulatory failure, respiratory signs, neurological instability, and GI signs), blood picture (anemia, leukopenia, thrombocytopenia), demographics (sex and age), and treatment history (hemoparasitic therapy, ectoparasiticidal application, and prophylactic deworming) were conducted. The co-infection status of these parasites was also evaluated. A substantial portion of the goats in the study group was found to be affected by vector-borne hemoparasitic diseases and their arthropod vectors or GI parasites or both. This can be attributed to the constantly warm and humid climate of the region, which is favorable for the survival and growth of different life cycle stages of these parasites and vectors. A strategic parasitic disease surveillance-cum-control program is the need of the hour for ensuring climate resilience and profitable goat farming in the region.
Collapse
Affiliation(s)
| | - Sasi Adithya
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), MannuthyThrissur, 680651, Kerala, India
| | - Y Ajith
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, CVAS, KVASU, Thrissur, 680651, Kerala, India.
| | - N Athira
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), MannuthyThrissur, 680651, Kerala, India
| | - K S Athira
- Teaching Veterinary Clinical Complex, College of Veterinary and Animal Sciences (CVAS), Kerala Veterinary and Animal Sciences University (KVASU), MannuthyThrissur, 680651, Kerala, India
| | - M Saifudeen Safeer
- Department of Crop Management (Animal Husbandry/Biostatistics), Vanavarayar Institute of Agriculture, Pollachi, 642103, Tamil Nadu, India
| | - P Preena
- Department of Epidemiology and Preventive Medicine, CVAS, KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - A Aishwarya
- Department of Veterinary Clinical Medicine, Ethics and Jurisprudence, CVAS, KVASU, Thrissur, 680651, Kerala, India
| | - K Athira
- Department of Epidemiology and Preventive Medicine, CVAS, KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - A R Nisha
- Department of Veterinary Pharmacology and Toxicology, CVAS, KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - Gopinath Devi
- Regional Station, ICAR-Indian Veterinary Research Institute, Palampur, 176061, Himachal Pradesh, India
| | - Mia Mäder
- Ludwig Maximilian University of Munich, Munich, Germany
| | - V Beena
- Centre for Animal Adaptation to Environment and Climate Change Studies (CAADECCS), KVASU, Mannuthy, Thrissur, 680651, Kerala, India
| | - Siju Susan Jacob
- ICAR - National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru, 560064, Karnataka, India
| |
Collapse
|
2
|
Ulucesme MC, Ozubek S, Aktas M. Development and Evaluation of a Semi-Nested PCR Method Based on the 18S ribosomal RNA Gene for the Detection of Babesia aktasi Infections in Goats. Vet Sci 2024; 11:466. [PMID: 39453058 PMCID: PMC11511400 DOI: 10.3390/vetsci11100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
We developed and evaluated a semi-nested PCR assay for the detection of Babesia aktasi infection in goats based on the sequence of the B. aktasi 18S ribosomal RNA gene. Following in silico screening, the specificity of the primers was assessed using reference DNA samples, including B. ovis, B. motasi, B. crassa, B. venatorum, B. divergens, B. capreoli, Theileria ovis, and T. annulata. To determine the sensitivity of the method, blood infected with 2% parasitemia of B. aktasi was diluted to 10-fold serial dilutions. The method specifically amplified a 438 bp fragment of B. aktasi DNA, but did not demonstrate cross-amplification with the other hemoparasites tested. The sensitivity assay indicated that this PCR method was able to detect infection at a dilution of 10-8 of 2% parasitemia (0.074 parasites/200 µL). Ninety-seven blood samples collected from goats were used to analyze for B. aktasi, and the infection was detected in 18.5% of the goats. Additionally, the method was also applied to 44 field DNA samples that were detected to be positive for B. aktasi by reverse line blotting (RLB), and showed 84.1% agreement. The findings revealed that newly developed semi-nested PCR can detect B. aktasi infections in goats with high sensitivity and specificity.
Collapse
Affiliation(s)
| | | | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Fırat, Elazığ 23200, Türkiye; (M.C.U.); (S.O.)
| |
Collapse
|
3
|
Yu X, Xu H, Mu X, Yuan K, Li Y, Xu N, Li Q, Zeng W, Chen S, Hong Y. A Multiplex PCR Assay for Simultaneous Detection of Giardia duodenalis, Cryptosporidium parvum, Blastocystis spp. and Enterocytozoon bieneusi in Goats. Vet Sci 2024; 11:448. [PMID: 39330827 PMCID: PMC11435618 DOI: 10.3390/vetsci11090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024] Open
Abstract
Giardia duodenalis, Cryptosporidium parvum, Blastocystis spp. and Enterocytozoon bieneusi are four common zoonotic parasites associated with severe diarrhea and enteric diseases. In this study, we developed a multiplex PCR assay for the simultaneous detection of these four zoonotic protozoans in goat stool samples and assessed its detection efficiency. Specific primers were designed from conserved gene sequences retrieved from GenBank, and the PCR conditions were optimized. Genomic DNA from 130 samples was subjected to both single-target PCR and multiplex PCR. The multiplex PCR assay successfully amplified specific gene fragments (G. duodenalis, 1400 bp; C. parvum, 755 bp; Blastocystis spp., 573 bp; E. bieneusi, 314 bp). The assay sensitivity was ≥102 copies of pathogenic DNA clones with high specificity confirmed by negative results for other intestinal parasites. The detection rates were 23.08% (30/130) for G. duodenalis, 24.62% (32/130) for C. parvum, 41.54% (54/130) for Blastocystis spp., and 12.31% (16/130) for E. bieneusi, matching the single-target PCR results. The sensitivity and predictive values were 100.00%. This multiplex PCR provided a rapid, sensitive, specific, and cost-effective approach for detecting these four parasites. It also provided essential technical support for the rapid detection and epidemiological investigation of G. duodenalis, C. parvum, Blastocystis spp., and E. bieneusi infections in goat fecal samples.
Collapse
Affiliation(s)
- Xingang Yu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Hui Xu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Xuanru Mu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Kaijian Yuan
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yilong Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Nuo Xu
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Qiaoyu Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Wenjing Zeng
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Shengfeng Chen
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| | - Yang Hong
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC) (Institute of Parasitic Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, China), Shanghai 200025, China
- Hainan Tropical Disease Research Centre (Hainan Branch of the National Research Centre for Tropical Diseases), Haikou 571199, China
| |
Collapse
|
4
|
Arnuphapprasert A, Nugraheni YR, Khunmanee S, Kaewlamun W, Kaewthamasorn M. Seasonal dynamics and genetic characterization of bovine arthropod-borne parasites in Nan Province, Thailand with molecular identification of Anaplasma platys and Trypanosoma theileri. Comp Immunol Microbiol Infect Dis 2024; 107:102156. [PMID: 38457963 DOI: 10.1016/j.cimid.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
Virulent species or strains of hematophagous borne pathogens such as Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp., are lethal to susceptible animals or reduce their productivity on a global scale. Nonetheless, efforts to diagnose the causative agents and assess the genotypic profiles as well as quantify the parasite burden of aforementioned parasites across seasons remain limited. Therefore, the present investigation sought to elucidate the genotypic composition of Anaplasma spp., Babesia spp., Theileria spp., and Trypanosoma spp. The findings revealed heightened infection rates during the summer, manifesting a correlation between Trypanosoma spp. infection and seasonal fluctuations. Among the identified pathogens, Anaplasma marginale emerged as the most dominant species, while the occurrence of Anaplasma platys in Thai cattle was confirmed via the sequencing of the groEL gene. Moreover, the study successfully identified two lineages of Trypanosoma theileri. The findings of this investigation offer valuable insights that can inform the development of preventive strategies for vector-borne diseases, such as considering the appropriate use of insect repellent, mosquito or insect nets, or eliminating breeding places for insects in each season.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
| | - Sarawanee Khunmanee
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Winai Kaewlamun
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
5
|
Wang BH, Du LF, Zhang MZ, Xia LY, Li C, Lin ZT, Wang N, Gao WY, Ye RZ, Liu JY, Han XY, Shi WQ, Shi XY, Jiang JF, Jia N, Cui XM, Zhao L, Cao WC. Genomic Characterization of Theileria luwenshuni Strain Cheeloo. Microbiol Spectr 2023; 11:e0030123. [PMID: 37260375 PMCID: PMC10434005 DOI: 10.1128/spectrum.00301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.
Collapse
Affiliation(s)
- Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Nguyen AHL, Nugraheni YR, Nguyen TT, Aung A, Narapakdeesakul D, Kaewlamun W, Asada M, Kaewthamasorn M. Molecular characterization of anopheline mosquitoes from the goat malaria-endemic areas of Thailand. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:381-395. [PMID: 36598082 DOI: 10.1111/mve.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/20/2022] [Indexed: 05/18/2023]
Abstract
Despite the fact that over a 100 anopheline mosquito species have been identified as human malaria vectors, little is known about ungulate malaria vectors. Consequently, we focused on investigating the bionomics and genetic characterizations of anopheline mosquitoes in goat malaria-endemic regions. We also attempted to screen for ungulate malaria potential vectors. A total of 1019 female anopheline mosquitoes were collected from six goat farms in four provinces of Thailand from 2020 to 2021. Mosquitoes were morphologically identified and subsequently confirmed using the mitochondrial DNA barcoding region-cytochrome oxidase c subunit I (MtDNA-COI), mitochondrial DNA-cytochrome c oxidase subunit II (MtDNA-COII), and ribosomal DNA internal transcribed spacer 2 (rDNA-ITS2) sequences. The current study reveals the genetic characteristics and distribution of nine mosquito species within the Anopheles and Cellia subgenera. Four dominant species, including Anopheles peditaeniatus, Anopheles subpictus, Anopheles vagus, and Anopheles aconitus exhibited significant intraspecific gene flow within their corresponding species. Although malaria parasites were not found in 126 mosquito pools, meaning more investigation is necessary, the current study adds to the existing DNA barcoding data collection and improves the current understanding of the genetic structure and distribution of anopheline mosquito species, which could be useful for effective control of mosquito-borne diseases.
Collapse
Affiliation(s)
- Anh Hoang Lan Nguyen
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Trang Thuy Nguyen
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Aung Aung
- The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Duriyang Narapakdeesakul
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Winai Kaewlamun
- School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Department of Global Cooperation, Research Unit for Global Infection Control, Obihiro University of Agriculture and Veterinary, Obihiro, Japan
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Arnuphapprasert A, Nugraheni YR, Aung A, Asada M, Kaewthamasorn M. Detection of Babesia bovis using loop-mediated isothermal amplification (LAMP) with improved thermostability, sensitivity and alternative visualization methods. Sci Rep 2023; 13:1838. [PMID: 36725982 PMCID: PMC9892585 DOI: 10.1038/s41598-023-29066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Bovine babesiosis is one of the most economically important tick-borne diseases in tropical and subtropical countries. A conventional microscopic diagnosis is typically used because it is inexpensive and expeditious. However, it is highly dependent on well-trained microscopists and tends to be incapable of detecting subpatent and chronic infections. Here, we developed a novel nucleic acid-based amplification method using loop-mediated isothermal amplification (LAMP) in conjunction with a colori-fluorometric dual indicator for the rapid and accurate detection of Babesia bovis based on the mitochondrial cytochrome b gene. We aimed to improve the thermostability, sensitivity, specificity, and alternative visualization of LAMP-based methods. We assessed its diagnostic performance compared to two conventional PCR agarose gel electrophoresis (PCR-AGE) methods. The thermostability of LAMP reaction mixtures and DNA templates in variable conditions was also assessed. In addition, we evaluated alternative visualization methods using different light sources including neon, LED, and UV lights. We found that the LAMP-neon was ten times more sensitive than the PCR-AGE, while the LAMP-LED and LAMP-UV were 1,000 times more sensitive. The current LAMP method showed no cross-amplification with uninfected cattle DNA or other common blood parasites in cattle, including Babesia bigemina, Theileria orientalis, Anaplasma marginale, and Trypanosoma evansi. In addition, the developed LAMP method has good thermostability and the potential for on-site utility as B. bovis DNA could still be detected up to 72 h after initial preparation. Our findings suggested that the developed LAMP method provides an alternative approach for B. bovis detection with sensitivity higher than PCR-AGE diagnostics, high specificity, and the flexibility to use neon, LED, and UV light sources for positive signal observations.
Collapse
Affiliation(s)
- Apinya Arnuphapprasert
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yudhi Ratna Nugraheni
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Pathobiology Graduate Program, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aung Aung
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Masahito Asada
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Unit, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Nguyen AHL, Pattaradilokrat S, Kaewlamun W, Kaneko O, Asada M, Kaewthamasorn M. Myzomyia and Pyretophorus series of Anopheles mosquitoes acting as probable vectors of the goat malaria parasite Plasmodium caprae in Thailand. Sci Rep 2023; 13:145. [PMID: 36599869 PMCID: PMC9812981 DOI: 10.1038/s41598-022-26833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Unlike malaria parasites in humans, non-human primates, rodents, and birds, ungulate malaria parasites and their vectors have received little attention. As a result, understanding of the hosts, vectors, and biology of ungulate malaria parasites has remained limited. In this study, we aimed to identify the vectors of the goat malaria parasite Plasmodium caprae. A total of 1019 anopheline and 133 non-anopheline mosquitoes were collected from goat farms in Thailand, where P. caprae-infected goats were discovered. Anopheline mosquitoes were identified using molecular biological methods that target the cytochrome c oxidase subunit 1 (cox1), the cytochrome c oxidase subunit 2 (cox2) genes, and the internal transcribed spacer 2 (ITS2) region. Pool and individual mosquitoes were tested for P. caprae using the head-thorax parts that contain the salivary glands, with primers targeting three genetic markers including cytochrome b, cytochrome c oxidase subunit 1, and 18S small subunit ribosomal RNA genes. Additionally, goat blood samples were collected concurrently with mosquito surveys and screened to determine the status of malaria infection. This study revealed nine mosquito species belonging to six groups on goat farms, including Hyrcanus, Barbirostris, Subpictus, Funestus, Tessellatus, and Annularis. The DNA of P. caprae was detected in Anopheles subpictus and Anopheles aconitus. This is the first time An. subpictus and An. aconitus have been implicated as probable vectors of P. caprae.
Collapse
Affiliation(s)
- Anh Hoang Lan Nguyen
- grid.7922.e0000 0001 0244 7875The International Graduate Program of Veterinary Science and Technology (VST), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Sittiporn Pattaradilokrat
- grid.7922.e0000 0001 0244 7875Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Winai Kaewlamun
- grid.7922.e0000 0001 0244 7875School of Agricultural Resources, Chulalongkorn University, Bangkok, Thailand
| | - Osamu Kaneko
- grid.174567.60000 0000 8902 2273Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Masahito Asada
- grid.412310.50000 0001 0688 9267National Research Center for Protozoan Diseases, Department of Global Cooperation, Research Unit for Global Infection Control, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555 Japan
| | - Morakot Kaewthamasorn
- grid.7922.e0000 0001 0244 7875Veterinary Parasitology Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
9
|
First Molecular Identification of Babesia, Theileria, and Anaplasma in Goats from the Philippines. Pathogens 2022; 11:pathogens11101109. [PMID: 36297166 PMCID: PMC9612162 DOI: 10.3390/pathogens11101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 12/01/2022] Open
Abstract
Goats are key livestock animals and goat raising is an income-generating venture for smallholder farmers, supporting agricultural development in many parts of the world. However, goat production is often limited by various factors, such as tick-borne diseases. Goat piroplasmosis is a disease caused by apicomplexan parasites Babesia spp. and Theileria spp., while anaplasmosis is caused by bacterial Anaplasma spp. In the Philippines, the presence of Babesia, Theileria, and Anaplasma has not been reported in goats. In this study, DNA obtained from goats were molecularly screened for Babesia/Theileria and Anaplasma. Of 396, 77.02% (305/396) and 38.64% (153/396) were positive for piroplasma and Anaplasma using PCR assays targeting the 18S rRNA and 16S rRNA genes, respectively. Similarly, Babesia ovis was detected in six samples (1.52%). Representative Babesia/Theileria sequences shared 89.97–97.74% identity with each other and were most closely related to T. orientalis, T. annulata, and Theileria spp. Meanwhile, Anaplasma 16SrRNA sequences were related to A. odocoilei, A. platys, and A. phagocytophilum. This is the first molecular identification of B. ovis, Theileria spp., and Anaplasma spp. in goats from the Philippines.
Collapse
|
10
|
Molecular Reports of Ruminant Babesia in Southeast Asia. Pathogens 2022; 11:pathogens11080915. [PMID: 36015035 PMCID: PMC9415187 DOI: 10.3390/pathogens11080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The protozoon Babesia is a blood parasite transmitted by hard ticks and commonly parasitizes ruminants such as cattle, buffaloes, goats, and sheep. Babesiosis, the disease caused by Babesia infection, has been considered a potential threat to ruminant production due to the grave and enormous impact it brings. About 125 million ruminants are at risk of babesiosis in Southeast Asia (SEA), a region composed of 11 countries. In recent decades, molecular-based diagnostic platforms, such as polymerase chain reaction (PCR) assays, have been a reliable and broadly employed tool in Babesia detection. In this article, the authors compiled and summarized the molecular studies conducted on ruminant babesiosis and mapped the species, including B. bovis, B. bigemina, B. ovata, Babesia sp. Mymensingh, Babesia sp. Hue, and B. ovis, and determined the host diversity of ruminant Babesia in SEA.
Collapse
|
11
|
Molecular Detection and Genetic Diversity of Tick-Borne Pathogens in Goats from the Southern Part of Thailand. Pathogens 2022; 11:pathogens11040477. [PMID: 35456152 PMCID: PMC9032176 DOI: 10.3390/pathogens11040477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Tick-borne hemoprotozoan and rickettsial diseases affect the health and productivity of small ruminants in tropical and subtropical regions. Despite the large population of goats in the southern part of Thailand, there is limited information on the prevalence of tick-borne pathogens. In this study, polymerase chain reaction was used to detect the presence of Theileria spp., T. ovis, T. orientalis, Babesia ovis, Anaplasma ovis, and A. marginale in 262 goats from three provinces in the southern part of Thailand. In this investigation, Theileria spp. and A. ovis were detected while T. ovis, B. ovis, and A. marginale were not detected. Overall infection rates of Theileria spp. and A. ovis were 10.3% and 1.5%, respectively. The co-infections of two parasites was observed in 1.5% of goats. Sequence analysis showed the presence of T. luwenshuni and T. orientalis in the goat samples. This study is the first to use the molecular detection of T. orientalis in Thai goats, and presents genetic characterization using the major piroplasm surface protein (MPSP) gene. In the phylogenetic analysis, the T. orientalis MPSP sequence was classified as type 7. The A. ovis major surface protein 4 (MSP4) gene sequences shared high identities and similarity with each other and clustered with isolates from other regions. This study provides information about the prevalence and genetic diversity of tick-borne pathogens in goats in the study area, and is expected to be valuable for the development of effective control measures to prevent disease in animals in Thailand.
Collapse
|
12
|
Aung A, Kaewlamun W, Narapakdeesakul D, Poofery J, Kaewthamasorn M. Molecular detection and characterization of tick-borne parasites in goats and ticks from Thailand. Ticks Tick Borne Dis 2022; 13:101938. [DOI: 10.1016/j.ttbdis.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023]
|