1
|
Khaki Vaighan M, Shams MH, Tatari F, Jafari R, Sohrabi SM, Eskandari N, Mohammadi M. Ameliorative Effects of Ginger on Allergic Diseases: An Updated Review. Mol Nutr Food Res 2024; 68:e2300899. [PMID: 39358946 DOI: 10.1002/mnfr.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/08/2024] [Indexed: 10/04/2024]
Abstract
The hypersensitivity reaction of the immune system to harmless environmental substances causes allergic diseases. Today, about 22%-30% of the world's population suffers from allergic diseases. Since the probability of change in the genetic structure during the past decades of lives is very low, genetic disorders cannot be blamed for causing allergic diseases. Thus, factors such as air pollution, climate change, change in diet, increased antibiotics consumption, change in the gut microbiome, migration toward urban areas, and increase in airborne allergens should be considered as the main causes of the spread and increase in allergic diseases. Methods of preventing contact with allergens, drug treatment, and allergen-specific immunotherapy are used to treat allergic diseases. In recent years, the therapeutic efficacy of herbal compounds has been significantly investigated by the scientific community, because these compounds have very few side effects. Ginger is one of the plant compounds that have anti-inflammatory, antioxidant, and immunomodulatory properties. The ameliorative effects of this plant on allergic diseases have been identified. Therefore, the aim of this short review is to summarize the knowledge, which is available about the ameliorative properties of the compounds found in the ginger plant that can reduce the clinical symptoms of allergic diseases.
Collapse
Affiliation(s)
- Mohammad Khaki Vaighan
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohammad Hossein Shams
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Tatari
- Hepatitis Research Center and Department of Medical Immunology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Jafari
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyyed Mohsen Sohrabi
- Department of Production Engineering and Plant Genetic, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Mohammadi
- Hepatitis Research Center and Department of Pharmaceutical, Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
2
|
Li C, Wang Z, Ren M, Ren S, Wu G, Wang L. Synaptic vesicle protein 2A mitigates parthanatos via apoptosis-inducing factor in a rat model of pharmacoresistant epilepsy. CNS Neurosci Ther 2024; 30:e14778. [PMID: 38801174 PMCID: PMC11129553 DOI: 10.1111/cns.14778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
AIMS Synaptic vesicle protein 2A (SV2A) is a unique therapeutic target for pharmacoresistant epilepsy (PRE). As seizure-induced neuronal programmed death, parthanatos was rarely reported in PRE. Apoptosis-inducing factor (AIF), which has been implicated in parthanatos, shares a common cytoprotective function with SV2A. We aimed to investigate whether parthanatos participates in PRE and is mitigated by SV2A via AIF. METHODS An intraperitoneal injection of lithium chloride-pilocarpine was used to establish an epileptic rat model, and phenytoin and phenobarbital sodium were utilized to select PRE and pharmacosensitive rats. The expression of SV2A was manipulated via lentivirus delivery into the hippocampus. Video surveillance was used to assess epileptic ethology. Biochemical tests were employed to test hippocampal tissues following a successful SV2A infection. Molecular dynamic calculations were used to simulate the interaction between SV2A and AIF. RESULTS Parthanatos core index, PARP1, PAR, nuclear AIF and MIF, γ-H2AX, and TUNEL staining were all increased in PRE. SV2A is bound to AIF to form a stable complex, successfully inhibiting AIF and MIF nuclear translocation and parthanatos and consequently mitigating spontaneous recurrent seizures in PRE. Moreover, parthanatos deteriorated after the SV2A reduction. SIGNIFICANCE SV2A protected hippocampal neurons and mitigated epileptic seizures by inhibiting parthanatos via binding to AIF in PRE.
Collapse
Affiliation(s)
- Chen Li
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Ziqi Wang
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Mianmian Ren
- School of Clinical MedicineGuizhou Medical UniversityGuiyangGuizhouChina
| | - Siying Ren
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Guofeng Wu
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Likun Wang
- The Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
3
|
Windah ALL, Tallei TE, AlShehail BM, Suoth EJ, Fatimawali, Alhashem YN, Halwani MA, AlShakhal MM, Aljeldah M, Alissa M, Alsuwat MA, Almanaa TN, Alshehri AA, Rabaan AA. Immunoinformatics-Driven Strategies for Advancing Epitope-Based Vaccine Design for West Nile Virus. J Pharm Sci 2024; 113:906-917. [PMID: 38042341 DOI: 10.1016/j.xphs.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
The West Nile virus (WNV) is the causative agent of West Nile disease (WND), which poses a potential risk of meningitis or encephalitis. The aim of the study was to design an epitope-based vaccine for WNV by utilizing computational analyses. The epitope-based vaccine design process encompassed WNV sequence collection, phylogenetic tree construction, and sequence alignment. Computational models identified B-cell and T-cell epitopes, followed by immunological property analysis. Epitopes were then modeled and docked with B-cell receptors, MHC I, and MHC II. Molecular dynamics simulations further explored dynamic interactions between epitopes and receptors. The findings indicated that the B-cell epitope QINHHWHKSGSSIG, along with three T-cell epitopes (FLVHREWFM for MHC I, NPFVSVATANAKVLI for MHC II, and NAYYVMTVGTKTFLV for MHC II), successfully passed the immunological evaluations. These four epitopes were further subjected to docking and molecular dynamics simulation studies. Although each demonstrated favorable affinities with their respective receptors, only NAYYVMTVGTKTFLV displayed a stable interaction with MHC II during MDS analysis, hence emerging as a potential candidate for a WNV epitope-based vaccine. This study demonstrates a comprehensive approach to epitope vaccine design, combining computational analyses, molecular modeling, and simulation techniques to identify potential vaccine candidates for WNV.
Collapse
Affiliation(s)
- Axl Laurens Lukas Windah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, East Java, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia.
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Elly Juliana Suoth
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Mana-do 95115, North Sulawesi, Indonesia
| | - Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Mana-do 95115, North Sulawesi, Indonesia
| | - Yousef N Alhashem
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University. Al Baha 4781, Saudi Arabia
| | - Mouayd M AlShakhal
- Internal Medicine Department, Qatif Central Hospital, Qatif 32654, Saudi Arabia
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Meshari A Alsuwat
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Al-Taif 21974, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
4
|
Lin Y, Ma J, Yuan H, Chen Z, Xu X, Jiang M, Zhu J, Meng W, Qiu W, Liu Y. Integrating Reinforcement Learning and Monte Carlo Tree Search for enhanced neoantigen vaccine design. Brief Bioinform 2024; 25:bbae247. [PMID: 38770719 PMCID: PMC11107383 DOI: 10.1093/bib/bbae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.
Collapse
Affiliation(s)
- Yicheng Lin
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Jiakang Ma
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Haozhe Yuan
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Ziqiang Chen
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Xingyu Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Mengping Jiang
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Jialiang Zhu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Weida Meng
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| | - Wenqing Qiu
- Shanghai Xuhui Central Hospital, 366 North Longchuan Road, Shanghai, 200231, China
| | - Yun Liu
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Shanghai Xuhui Central Hospital, Fudan University, 131 DongAn Road, Shanghai, 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 131 DongAn Road, Shanghai, 200032, China
| |
Collapse
|
5
|
Wang H, Wang J, Song Z, Guo J, Yang Y, Liu Z, Sun Y, Liu L, Zhang Y, Song X. Risk Factors for Acute Rhinosinusitis in Childhood Asthma. Int Arch Allergy Immunol 2023; 184:1198-1202. [PMID: 37669623 DOI: 10.1159/000533329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Specific pathogen infections associated with acute rhinosinusitis (ARS) in infants are risk factors for allergic asthma in adolescents. However, the risk factors for ARS onset remain largely unknown in asthmatic children. In this study, we aim to investigate the risk factors for ARS in childhood asthma. METHODS This study retrospectively compared and analyzed the clinical characteristics of asthmatic children with (n = 194) or without ARS (n = 799). Univariate regression analyses were performed to identify ARS-associated risk factors in asthmatic children, and subsequent multivariate backward stepwise logistic regression analyses were performed to identify independent risk factors. RESULTS The onset age, values of blood eosinophils (EOS) (%), and total IgE were significantly lower in patients with ARS than in those without ARS. Moreover, the proportions of patients allergic to Dermatophagoides pteronyssinus (d1) and Dermatophagoides farinae (d2) were significantly smaller in children with ARS (all p values <0.05). Univariate analyses showed that an older onset age, a higher body mass index, a higher value of blood EOS (%) were protective factors, while a higher value of blood lymphocytes (%) and a higher degree of sensitization to d1 and d2 were risk factors for ARS. Further backward stepwise multivariate logistic regression analyses confirmed that a younger onset age and allergic sensitization to d1 were independent risk factors for ARS in childhood asthma. CONCLUSION Younger onset age and allergic sensitization to d1 are risk factors for the onset of ARS in childhood asthma, so allergen intervention should be performed as early as possible in asthmatic children.
Collapse
Affiliation(s)
- Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Zheying Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Zi Liu
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Allergy, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yuemei Sun
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Allergy, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Liping Liu
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Department of Allergy, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
6
|
Dey D, Hossain R, Biswas P, Paul P, Islam MA, Ema TI, Gain BK, Hasan MM, Bibi S, Islam MT, Rahman MA, Kim B. Amentoflavone derivatives significantly act towards the main protease (3CL PRO/M PRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol Divers 2023; 27:857-871. [PMID: 35639226 PMCID: PMC9153225 DOI: 10.1007/s11030-022-10459-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
Abstract
SARS-CoV-2 is the foremost culprit of the novel coronavirus disease 2019 (nCoV-19 and/or simply COVID-19) and poses a threat to the continued life of humans on the planet and create pandemic issue globally. The 3-chymotrypsin-like protease (MPRO or 3CLPRO) is the crucial protease enzyme of SARS-CoV-2, which directly involves the processing and release of translated non-structural proteins (nsps), and therefore involves the development of virus pathogenesis along with outbreak the forecasting of COVID-19 symptoms. Moreover, SARS-CoV-2 infections can be inhibited by plant-derived chemicals like amentoflavone derivatives, which could be used to develop an anti-COVID-19 drug. Our research study is designed to conduct an in silico analysis on derivatives of amentoflavone (isoginkgetin, putraflavone, 4''''''-methylamentoflavone, bilobetin, ginkgetin, sotetsuflavone, sequoiaflavone, heveaflavone, kayaflavone, and sciadopitysin) for targeting the non-structural protein of SARS-CoV-2, and subsequently further validate to confirm their antiviral ability. To conduct all the in silico experiments with the derivatives of amentoflavone against the MPRO protein, both computerized tools and online servers were applied; notably the software used is UCSF Chimera (version 1.14), PyRx, PyMoL, BIOVIA Discovery Studio tool (version 4.5), YASARA (dynamics simulator), and Cytoscape. Besides, as part of the online tools, the SwissDME and pKCSM were employed. The research study was proposed to implement molecular docking investigations utilizing compounds that were found to be effective against the viral primary protease (MPRO). MPRO protein interacted strongly with 10 amentoflavone derivatives. Every time, amentoflavone compounds outperformed the FDA-approved antiviral medicine that is currently underused in COVID-19 in terms of binding affinity (- 8.9, - 9.4, - 9.7, - 9.1, - 9.3, - 9.0, - 9.7, - 9.3, - 8.8, and - 9.0 kcal/mol, respectively). The best-selected derivatives of amentoflavone also possessed potential results in 100 ns molecular dynamic simulation (MDS) validation. It is conceivable that based on our in silico research these selected amentoflavone derivatives more precisely 4''''''-methylamentoflavone, ginkgetin, and sequoiaflavone have potential for serving as promising lead drugs against SARS-CoV-2 infection. In consequence, it is recommended that additional in vitro as well as in vivo research studies have to be conducted to support the conclusions of this current research study.
Collapse
Affiliation(s)
- Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Rajib Hossain
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh.
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Md Aminul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Bibhuti Kumar Gain
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, 8100, Bangladesh
| | - Md Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
7
|
Reddy S. V. V, Mudnakudu-Nagaraju KK. Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Aim: Allergic diseases are IgE-mediated hypersensitivity reactions affecting approximately 30% of the general population globally. Dermatophagoides pteronyssinus (Der-p) is the most prevalent house dust mite (HDM) species consisting of 23 mite allergen groups. Among these, group 1 and 2 are major allergenic proteins, which causes allergic asthma in 80% of sensitized individuals, with elevated IgE titres in the serum. This study involves in silico analysis of potential B-cell epitopes of group 1 and group 2 of Der-p, which can be utilized in designing immunotherapeutic vaccines.
Materials and Methods: Allergen sequences obtained from the database- International Union of Immunological Societies (IUIS), for predicting of B-cell epitopes. The physiochemical properties and secondary structures of the obtained sequence were evaluated. The sequences were further subjected to determining antigenicity, surface accessibility, and prediction of linear and discontinuous B-cell epitope by utilizing IEDB tools.
Results: The linear and discontinuous B-cell epitopes of Der-p1 and Der-p2 aeroallergen were predicted. Further, Der-p1 and Der-p2 showed 6 linear epitopes each respectively. Conformational epitopes predicted were 123 of Der-p1 and 72 of Der-p2 respectively, by the ElliPro tool. Based on the structure, antigenicity, and surface accessibility, only 10% of Der-p1 and Der-p2 which binds to B-cell epitopes are linear and the majority are discontinuous.
Conclusion: The linear and conformational epitopes of Der-p1 and Der-p2 are predicted using in silico tools. These identified epitopes might be useful for developing epitope-based immunotherapeutics for HDM allergy.
Collapse
|
8
|
Mahmood TB, Hossan MI, Mahmud S, Shimu MSS, Alam MJ, Bhuyan MMR, Emran TB. Missense mutations in spike protein of SARS-CoV-2 delta variant contribute to the alteration in viral structure and interaction with hACE2 receptor. Immun Inflamm Dis 2022; 10:e683. [PMID: 36039645 PMCID: PMC9382871 DOI: 10.1002/iid3.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Many of the global pandemics threaten human existence over the decades among which coronavirus disease (COVID-19) is the newest exposure circulating worldwide. The RNA encoded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is referred as the pivotal agent of this deadly disease that induces respiratory tract infection by interacting host ACE2 receptor with its spike glycoprotein. Rapidly evolving nature of this virus modified into new variants helps in perpetrating immune escape and protection against host defense mechanism. Consequently, a new isolate, delta variant originated from India is spreading perilously at a higher infection rate. METHODS In this study, we focused to understand the conformational and functional significance of the missense mutations found in the spike glycoprotein of SARS-CoV-2 delta variant performing different computational analysis. RESULTS From physiochemical analysis, we found that the acidic isoelectric point of the virus elevated to basic pH level due to the mutations. The targeted mutations were also found to change the interactive bonding pattern and conformational stability analyzed by the molecular dynamic's simulation. The molecular docking study also revealed that L452R and T478K mutations found in the RBD domain of delta variant spike protein contributed to alter interaction with the host ACE2 receptor. CONCLUSIONS Overall, this study provided insightful evidence to understand the morphological and attributive impact of the mutations on SARS-CoV-2 delta variant.
Collapse
Affiliation(s)
- Tousif Bin Mahmood
- Department of Biotechnology and Genetic EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Mohammad Imran Hossan
- Department of Biotechnology and Genetic EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | | | - Md. Jahidul Alam
- Department of Applied Chemistry and Chemical EngineeringNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Mahfuzur Rahman Bhuyan
- Department of Biochemistry and Molecular BiologyNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Talha Bin Emran
- Department of PharmacyBGC Trust University BangladeshChittagongBangladesh
- Department of PharmacyFaculty of Allied Health Sciences, Daffodil International UniversityDhakaBangladesh
| |
Collapse
|
9
|
Anowar Hosen M, Sultana Munia N, Al-Ghorbani M, Baashen M, Almalki FA, Ben Hadda T, Ali F, Mahmud S, Abu Saleh M, Laaroussi H, Kawsar SMA. Synthesis, antimicrobial, molecular docking and molecular dynamics studies of lauroyl thymidine analogs against SARS-CoV-2: POM study and identification of the pharmacophore sites. Bioorg Chem 2022; 125:105850. [PMID: 35533581 PMCID: PMC9065685 DOI: 10.1016/j.bioorg.2022.105850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022]
Abstract
Nucleoside precursors and nucleoside analogs occupy an important place in the treatment of viral respiratory pathologies, especially during the current COVID-19 pandemic. From this perspective, the present study has been designed to explore and evaluate the synthesis and spectral characterisation of 5́-O-(lauroyl) thymidine analogs 2-6 with different aliphatic and aromatic groups through comprehensive in vitro antimicrobial screening, cytotoxicity assessment, physicochemical aspects, molecular docking and molecular dynamics analysis, along with pharmacokinetic prediction. A unimolar one-step lauroylation of thymidine under controlled conditions furnished the 5́-O-(lauroyl) thymidine and indicated the selectivity at C-5́ position and the development of thymidine based potential antimicrobial analogs, which were further converted into four newer 3́-O-(acyl)-5́-O-(lauroyl) thymidine analogs in reasonably good yields. The chemical structures of the newly synthesised analogs were ascertained by analysing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial tests against five bacteria and two fungi, along with the prediction of activity spectra for substances (PASS), indicated promising antibacterial functionality for these thymidine analogs compared to antifungal activity. In support of this observation, molecular docking experiments have been performed against the main protease of SARS-CoV-2, and significant binding affinities and non-bonding interactions were observed against the main protease (6LU7, 6Y84 and 7BQY), considering hydroxychloroquine (HCQ) as standard. Moreover, the 100 ns molecular dynamics simulation process was performed to monitor the behaviour of the complex structure formed by the main protease under in silico physiological conditions to examine its stability over time, and this revealed a stable conformation and binding pattern in a stimulating environment of thymidine analogs. Cytotoxicity determination confirmed that compounds were found less toxic. Pharmacokinetic predictions were investigated to evaluate their absorption, distribution, metabolism and toxic properties, and the combination of pharmacokinetic and drug-likeness predictions has shown promising results in silico. The POM analysis shows the presence of an antiviral (O1δ-, O2δ-) pharmacophore site. Overall, the current study should be of great help in the development of thymidine-based, novel, multiple drug-resistant antimicrobial and COVID-19 drugs.
Collapse
Affiliation(s)
- Mohammed Anowar Hosen
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Nasrin Sultana Munia
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mohammed Al-Ghorbani
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, Medina, Saudi Arabia
| | - Mohammed Baashen
- Department of Chemistry, Science and Humanities College, Shaqra University, Saudi Arabia
| | - Faisal A Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, 21955 Makkah, Saudi Arabia; Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| | - Ferdausi Ali
- Department of Microbiology, Faculty of Biological Science, University of Chittagong, V, Bangladesh
| | - Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Sciences, Mohammed Premier University, MB 524, 60000 Oujda, Morocco
| | - Sarkar M A Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh.
| |
Collapse
|
10
|
Yousaf M, Ullah A, Sarosh N, Abbasi SW, Ismail S, Bibi S, Hasan MM, Albadrani GM, Talaat Nouh NA, Abdulhakim JA, Abdel-Daim MM, Bin Emran T. Design of Multi-Epitope Vaccine for Staphylococcus saprophyticus: Pan-Genome and Reverse Vaccinology Approach. Vaccines (Basel) 2022; 10:vaccines10081192. [PMID: 36016080 PMCID: PMC9414393 DOI: 10.3390/vaccines10081192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus saprophyticus is a Gram-positive coccus responsible for the occurrence of cystitis in sexually active, young females. While effective antibiotics against this organism exist, resistant strains are on the rise. Therefore, prevention via vaccines appears to be a viable solution to address this problem. In comparison to traditional techniques of vaccine design, computationally aided vaccine development demonstrates marked specificity, efficiency, stability, and safety. In the present study, a novel, multi-epitope vaccine construct was developed against S. saprophyticus by targeting fully sequenced proteomes of its five different strains, which were examined using a pangenome and subtractive proteomic strategy to characterize prospective vaccination targets. The three immunogenic vaccine targets which were utilized to map the probable immune epitopes were verified by annotating the entire proteome. The predicted epitopes were further screened on the basis of antigenicity, allergenicity, water solubility, toxicity, virulence, and binding affinity towards the DRB*0101 allele, resulting in 11 potential epitopes, i.e., DLKKQKEKL, NKDLKKQKE, QDKLKDKSD, NVMDNKDLE, TSGTPDSQA, NANSDGSSS, GSDSSSSNN, DSSSSNNDS, DSSSSDRNN, SSSDRNNGD, and SSDDKSKDS. All these epitopes have the efficacy to cover 99.74% of populations globally. Finally, shortlisted epitopes were joined together with linkers and three different adjuvants to find the most stable and immunogenic vaccine construct. The top-ranked vaccine construct was further scrutinized on the basis of its physicochemical characterization and immunological profile. The non-allergenic and antigenic features of modeled vaccine constructs were initially validated and then subjected to docking with immune receptor major histocompatibility complex I and II (MHC-I and II), resulting in strong contact. In silico cloning validations yielded a codon adaptation index (CAI) value of 1 and an ideal percentage of GC contents (46.717%), indicating a putative expression of the vaccine in E. coli. Furthermore, immune simulation demonstrated that, after injecting the proposed MEVC, powerful antibodies were produced, resulting in the sharpest peaks of IgM + IgG formation (>11,500) within 5 to 15 days. Experimental testing against S. saprophyticus can evaluate the safety and efficacy of these prophylactic vaccination designs.
Collapse
Affiliation(s)
- Maha Yousaf
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan; (M.Y.); (N.S.)
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Nida Sarosh
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan; (M.Y.); (N.S.)
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
- Correspondence: (S.I.); (S.B.)
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
- Correspondence: (S.I.); (S.B.)
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nehal Ahmed Talaat Nouh
- Department of Microbiology, Medicine Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura 35516, Egypt
| | - Jawaher A. Abdulhakim
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu 46522, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh;
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
11
|
Dey D, Biswas P, Paul P, Mahmud S, Ema TI, Khan AA, Ahmed SZ, Hasan MM, Saikat ASM, Fatema B, Bibi S, Rahman MA, Kim B. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers 2022:10.1007/s11030-022-10491-9. [PMID: 35821161 DOI: 10.1007/s11030-022-10491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.
Collapse
Affiliation(s)
- Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh.
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6204, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Arysha Alif Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Babry Fatema
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
12
|
Molecular Docking and In Silico Simulation of Trichinella spiralis Membrane-Associated Progesterone Receptor Component 2 (Ts-MAPRC2) and Its Interaction with Human PGRMC1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7414198. [PMID: 35769668 PMCID: PMC9236782 DOI: 10.1155/2022/7414198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Background. Trichinellosis is a foodborne zoonotic disease caused by Trichinella spp., including Trichinella spiralis. This parasitic disease ranks as seven of the most infectious in the world. In this context, it is important to develop a vaccine that can combat Trichinellosis, especially for humans and pigs. This would be an important step in preventing transmission. In this study, we focus on homology modelling, binding site prediction, molecular modelling, and simulation techniques used to explore the association between Trichinella spiralis membrane-associated progesterone receptor component 2 (Ts-MAPRC2) and the human PGRMC1 protein. It was found that the progesterone receptor component 2 of T. spiralis has 44.54% sequence identity with human PGRMC1 (PDB ID: 4X8Y). Binding sites predicted for human PGRMC1 are GLU 7, PHE 8, PHE 10, PHE 18, LEU 27, ASP 36, and VAL 104. Molecular docking has six clusters based on Z scores. They range from -1.5 to 1.8. It was found that the progesterone receptor component 2 of T. spiralis has 44.54% sequence identity with human PGRMC1. During simulation, the average RMSD was 2.44 ± 0.20 Å, which indicated the overall stability of the protein. Based on docking studies and computational simulations, we hypothesized that the interaction of the proteins Trichinella spiralis membrane-associated progesterone receptor component 2 and human PGRMC1 formed stable complexes. The discovery of Ts-MAPRC2 may pave the way for the development of drugs and vaccines to treat Trichinellosis.
Collapse
|
13
|
Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Sultana Shimu MS, Saleh MA, Mostafa-Hedeab G, Alqarni M, Obaidullah AJ, Batiha GES. Molecular Docking and Dynamics Studies to Explore Effective Inhibitory Peptides Against the Spike Receptor Binding Domain of SARS-CoV-2. Front Mol Biosci 2022; 8:791642. [PMID: 35187069 PMCID: PMC8851422 DOI: 10.3389/fmolb.2021.791642] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic due to the high transmission and mortality rate of this virus. The world health and economic sectors have been severely affected by this deadly virus, exacerbated by the lack of sufficient efficient vaccines. The design of effective drug candidates and their rapid development is necessary to combat this virus. In this study, we selected 23 antimicrobial peptides from the literature and predicted their structure using PEP-FOLD 3.5. In addition, we docked them to the SARS-CoV-2 spike protein receptor-binding domain (RBD) to study their capability to inhibit the RBD, which plays a significant role in virus binding, fusion and entry into the host cell. We used several docking programs including HDOCK, HPEPDOCK, ClusPro, and HawkDock to calculate the binding energy of the protein-peptide complexes. We identified four peptides with high binding free energy and docking scores. The docking results were further verified by molecular dynamics (MD) simulations to characterize the protein-peptide complexes in terms of their root-mean-square fluctuation (RMSF), root-mean-square deviation (RMSD), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond formation. Allergenicity and toxicity predictions suggested that the peptides we identified were non-allergenic and non-toxic. This study suggests that these four antimicrobial peptides could inhibit the RBD of SARS-CoV-2. Future in vitro and in vivo studies are necessary to confirm this.
Collapse
Affiliation(s)
- Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit-medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|