1
|
Fraser K, Hamlet A, Jean K, Ramos DG, Romano A, Horton J, Cibrelus L, Ferguson NM, Gaythorpe KAM. Assessing yellow fever outbreak potential and implications for vaccine strategy. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003781. [PMID: 39536033 PMCID: PMC11560047 DOI: 10.1371/journal.pgph.0003781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024]
Abstract
Yellow fever (YF), a vector-borne viral hemorrhagic fever, is endemic in tropical regions of Africa and South America, with large vaccination programmes being used for control. However, significant outbreaks have occurred in recent years. Data on infection rates and seroprevalence is often sparse, requiring robust mathematical models to estimate the burden of yellow fever. In particular, modelling is required to estimate the risk of outbreaks and inform policy decisions regarding the targeting of vaccination. We present a dynamic, stochastic model of YF transmission which uses environmental covariates to estimate the force of infection due to spillover from the sylvatic (non-human primate) reservoir and the basic reproduction number for human-to-human transmission. We examine the potential for targets identified by the World Health Organization EYE Strategy (50%, 60% or 80% vaccination coverage in 1-60 year olds) to achieve different threshold values for the effective reproduction number. Threshold values are chosen to reflect the potential for seasonal and/or climatic variation in YF transmission even in a scenario where vaccination lowers the median reproduction number below 1. Based on parameter estimates derived from epidemiological data, it is found that the 2022 EYE Strategy target coverage is sufficient to reduce the static averaged annual effective reproduction number R below 1 across most or all regions in Africa depending on the effectiveness of reported vaccinations, but insufficient to reduce it below 0.5 and thereby eliminate outbreaks in areas with high seasonal range. Coverage levels aligned with the 2026 targets are found to significantly decrease the proportion of regions where R is greater than 0.5.
Collapse
Affiliation(s)
- Keith Fraser
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Arran Hamlet
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Kévin Jean
- Laboratoire MESuRS and Unité PACRI, Institut Pasteur, Conservatoire National des Arts et Metiers, Paris, France
| | | | - Alessandro Romano
- Secretariat for Health Surveillance, Brazilian Ministry of Health, Brasilia, Brazil
| | | | | | - Neil M. Ferguson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| | - Katy A. M. Gaythorpe
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Olajiga OM, Jameson SB, Carter BH, Wesson DM, Mitzel D, Londono-Renteria B. Artificial Feeding Systems for Vector-Borne Disease Studies. BIOLOGY 2024; 13:188. [PMID: 38534457 DOI: 10.3390/biology13030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
This review examines the advancements and methodologies of artificial feeding systems for the study of vector-borne diseases, offering a critical assessment of their development, advantages, and limitations relative to traditional live host models. It underscores the ethical considerations and practical benefits of such systems, including minimizing the use of live animals and enhancing experimental consistency. Various artificial feeding techniques are detailed, including membrane feeding, capillary feeding, and the utilization of engineered biocompatible materials, with their respective applications, efficacy, and the challenges encountered with their use also being outlined. This review also forecasts the integration of cutting-edge technologies like biomimicry, microfluidics, nanotechnology, and artificial intelligence to refine and expand the capabilities of artificial feeding systems. These innovations aim to more accurately simulate natural feeding conditions, thereby improving the reliability of studies on the transmission dynamics of vector-borne diseases. This comprehensive review serves as a foundational reference for researchers in the field, proposing a forward-looking perspective on the potential of artificial feeding systems to revolutionize vector-borne disease research.
Collapse
Affiliation(s)
- Olayinka M Olajiga
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Samuel B Jameson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dawn M Wesson
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| | - Dana Mitzel
- Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, United States Department of Agriculture, Agricultural Research Service, Manhattan, KS 66506, USA
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Sousa DER, Wilson TM, Macêdo IL, Romano APM, Ramos DG, Passos PHO, Costa GRT, Fonseca VS, Mares-Guia MAMM, Giovanetti M, Alcantara LCJ, de Filippis AMB, Paludo GR, Melo CB, Castro MB. Case report: Urbanized non-human primates as sentinels for human zoonotic diseases: a case of acute fatal toxoplasmosis in a free-ranging marmoset in coinfection with yellow fever virus. Front Public Health 2023; 11:1236384. [PMID: 37670831 PMCID: PMC10475956 DOI: 10.3389/fpubh.2023.1236384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 09/07/2023] Open
Abstract
Free-ranging non-human primates (NHP) can live in anthropized areas or urban environments in close contact with human populations. This condition can enable the emergence and transmission of high-impact zoonotic pathogens. For the first time, we detected a coinfection of the yellow fever (YF) virus with Toxoplasma gondii in a free-ranging NHP in a highly urbanized area of a metropolis in Brazil. Specifically, we observed this coinfection in a black-tufted marmoset found dead and taken for a necropsy by the local health surveillance service. After conducting an epidemiological investigation, characterizing the pathological features, and performing molecular assays, we confirmed that the marmoset developed an acute fatal infection caused by T. gondii in coinfection with a new YF virus South American-1 sub-lineage. As a result, we have raised concerns about the public health implications of these findings and discussed the importance of diagnosis and surveillance of zoonotic agents in urbanized NHPs. As competent hosts of zoonotic diseases such as YF and environmental sentinels for toxoplasmosis, NHPs play a crucial role in the One Health framework to predict and prevent the emergence of dangerous human pathogens.
Collapse
Affiliation(s)
- Davi E. R. Sousa
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
- Veterinary Pathology Laboratory, University of Brasília, Brasília, Brazil
| | - Tais M. Wilson
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
- Veterinary Pathology Laboratory, University of Brasília, Brasília, Brazil
| | - Isabel L. Macêdo
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
- Veterinary Pathology Laboratory, University of Brasília, Brasília, Brazil
| | - Alessandro P. M. Romano
- Technical Group of Arbovirus Surveillance, General Coordination of Communicable Diseases, Department of Communicable Disease Surveillance, Secretariat of Health Surveillance, Brazilian Ministry of Health, Brasilia, Brazil
| | - Daniel G. Ramos
- Technical Group of Arbovirus Surveillance, General Coordination of Communicable Diseases, Department of Communicable Disease Surveillance, Secretariat of Health Surveillance, Brazilian Ministry of Health, Brasilia, Brazil
| | - Pedro H. O. Passos
- Technical Group of Arbovirus Surveillance, General Coordination of Communicable Diseases, Department of Communicable Disease Surveillance, Secretariat of Health Surveillance, Brazilian Ministry of Health, Brasilia, Brazil
| | - Gabriela R. T. Costa
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
- Environmental Health Surveillance Directorate of the Federal District, Brasilia, Brazil
| | - Vagner S. Fonseca
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Brazil
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico of Rome, Rome, Italy
| | - Luiz Carlos Junior Alcantara
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Arbovírus e Vírus Hemorrágicos (LARBOH), Instituto Osawldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Maria B. de Filippis
- Laboratório de Arbovírus e Vírus Hemorrágicos (LARBOH), Instituto Osawldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Giane R. Paludo
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
| | - Cristiano B. Melo
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
| | - Márcio B. Castro
- Graduate Program in Animal Science, University of Brasília, Brasilia, Brazil
- Veterinary Pathology Laboratory, University of Brasília, Brasília, Brazil
| |
Collapse
|