1
|
Hu S, Batool Z, Zheng X, Yang Y, Ullah A, Shen B. Exploration of innovative drug repurposing strategies for combating human protozoan diseases: Advances, challenges, and opportunities. J Pharm Anal 2025; 15:101084. [PMID: 39896318 PMCID: PMC11786068 DOI: 10.1016/j.jpha.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 02/04/2025] Open
Abstract
Protozoan infections (e.g., malaria, trypanosomiasis, and toxoplasmosis) pose a considerable global burden on public health and socioeconomic problems, leading to high rates of morbidity and mortality. Due to the limited arsenal of effective drugs for these diseases, which are associated with devastating side effects and escalating drug resistance, there is an urgent need for innovative antiprotozoal drugs. The emergence of drug repurposing offers a low-cost approach to discovering new therapies for protozoan diseases. In this review, we summarize recent advances in drug repurposing for various human protozoan diseases and explore cost-effective strategies to identify viable new treatments. We highlight the cross-applicability of repurposed drugs across diverse diseases and harness common chemical motifs to provide new insights into drug design, facilitating the discovery of new antiprotozoal drugs. Challenges and opportunities in the field are discussed, delineating novel directions for ongoing and future research.
Collapse
Affiliation(s)
- ShanShan Hu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Zahra Batool
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Xin Zheng
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Yin Yang
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Amin Ullah
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610213, China
| |
Collapse
|
2
|
Abdel-Wahab AA, Shafey DA, Selim SM, Sharaf SA, Mohsen KK, Allam DM, Elkhadry SW, Gouda MA. Spiramycin-loaded maltodextrin nanoparticles as a promising treatment of toxoplasmosis on murine model. Parasitol Res 2024; 123:286. [PMID: 39046555 PMCID: PMC11269460 DOI: 10.1007/s00436-024-08280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Despite being the initial choice for treating toxoplasmosis, sulfadiazine and pyrimethamine have limited effectiveness in eliminating the infection and were linked to a variety of adverse effects. Therefore, the search for new effective therapeutic strategies against toxoplasmosis is still required. The current work is the first research to assess the efficacy of spiramycin-loaded maltodextrin nanoparticles (SPM-loaded MNPs) as a novel alternative drug therapy against toxoplasmosis in a murine model. Fifty laboratory-bred Swiss albino mice were divided into five groups: normal control group (GI, n = 10), positive control group (GII, n = 10), orally treated with spiramycin (SPM) alone (GIII, n = 10), intranasal treated with SPM-loaded MNPs (GIV, n = 10), and orally treated with SPM-loaded MNPs (GV, n = 10). Cysts of Toxoplasma gondii ME-49 strain were used to infect the mice. Tested drugs were administered 2 months after the infection. Drug efficacy was assessed by counting brain cysts, histopathological examination, and measures of serum CD19 by flow cytometer. The orally treated group with SPM-loaded MNPs (GV) showed a marked reduction of brain cyst count (88.7%), histopathological improvement changes, and an increasing mean level of CD19 (80.2%) with significant differences. SPM-loaded MNPs showed potent therapeutic effects against chronic toxoplasmosis. Further research should be conducted to assess it in the treatment of human toxoplasmosis, especially during pregnancy.
Collapse
Affiliation(s)
- Ayman A Abdel-Wahab
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Dalia A Shafey
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Sahar M Selim
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Soraya A Sharaf
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Khloud K Mohsen
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt.
| | - Dina M Allam
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin Elkom, Egypt
| | - Sally W Elkhadry
- Department of Epidemiology and Preventive Medicine, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Marwa A Gouda
- Department of Clinical and Molecular Parasitology, National Liver Institute, Menoufia University, Menoufia, Egypt
| |
Collapse
|
3
|
Sarhan MH, Felemban SG, Alelwani W, Sharaf HM, Abd El-Latif YA, Elgazzar E, Kandil AM, Tellez-Isaias G, Mohamed AA. Zinc Oxide and Magnesium-Doped Zinc Oxide Nanoparticles Ameliorate Murine Chronic Toxoplasmosis. Pharmaceuticals (Basel) 2024; 17:113. [PMID: 38256946 PMCID: PMC10819917 DOI: 10.3390/ph17010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.
Collapse
Affiliation(s)
- Mohamed H. Sarhan
- Microbiology Section, Basic Medical Sciences Department, College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia
- Medical Parasitology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Shatha G. Felemban
- Medical Laboratory Science Department, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23890, Saudi Arabia;
| | - Hesham M. Sharaf
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Yasmin A. Abd El-Latif
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| | - Elsayed Elgazzar
- Physics Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Ahmad M. Kandil
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo 11651, Egypt;
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Aya A. Mohamed
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (H.M.S.); (Y.A.A.E.-L.); (A.A.M.)
| |
Collapse
|
4
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|