1
|
Kim Y, Lee J, Lee S, Jung HI, Kwak B. Anisotropic tumor spheroid remission with binary tumor-microenvironment-on-a-chip. Biosens Bioelectron 2023; 243:115787. [PMID: 39492183 DOI: 10.1016/j.bios.2023.115787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Microphysiological system (MPS) is a powerful tool for the in vitro disease validation platform. It is employed to substantially enhance understanding of tumor and their microenvironments. It aims to assist or replace preclinical studies for validating the efficacy of anti-cancer drugs, precision medicine, and investigating metastatic mechanisms. However, it still faces formidable challenges due to poor and complex usability, low yield, and limited applications for heterogeneous biological samples. Herein, we present a newly developed MPS consisting of a binary tumor-microenvironment-on-a-chip. The system is divided into two independent and separate MPS, each capable of forming a different compartment for the tumor and microenvironment via concurrent processing. These individually formed compartments can be interconnected whenever needed through simple mechanical compression, resulting in a fully integrated tumor-microenvironment-on-a-chip system. This interconnected system enables precise validation of drug efficacy and can be easily separated to retrieve the finished reaction sample for further downstream analysis. In this study, we also propose anisotropic tumor remission by forced convection phenomenon.
Collapse
Affiliation(s)
- Youngwon Kim
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea
| | - Jaehun Lee
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea
| | - Sunghan Lee
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea
| | - Hyo-Il Jung
- Yonsei University, School of Mechanical Engineering, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; DABOM Inc., 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Bongseop Kwak
- Dongguk University, College of Medicine, 32 Dongguk-ro, Ilsandong-gu, Goyangsi, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
2
|
Gu C, Chai M, Liu J, Wang H, Du W, Zhou Y, Tan WS. Expansion of Transdifferentiated Human Hepatocytes in a Serum-Free Microcarrier Culture System. Dig Dis Sci 2020; 65:2009-2023. [PMID: 31722057 DOI: 10.1007/s10620-019-05925-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Bioartificial livers (BALs) have attracted much attention as potential supportive therapies for liver diseases. A serum-free microcarrier culture strategy for the in vitro high-density expansion of human-induced hepatocyte-like cells (hiHeps) suitable for BALs was studied in this article. METHODS hiHeps were transdifferentiated from human fibroblasts by the lentiviral overexpression of FOXA3, HNF1A, and HNF4A. Cells were cultured on microcarriers, their proliferation was evaluated by cell count and CCK-8 assays, and their function was evaluated by detecting liver function parameters in the supernatant, including urea secretion, albumin synthesis, and lactate dehydrogenase levels. The expressions of hepatocyte function-associated genes of hiHeps were measured by qRT-PCR in 2D and 3D conditions. The expression of related proteins during fibronectin promotes cell adhesion, and proliferation on microcarrier was detected by western blotting. RESULTS During microcarrier culture, the optimal culture conditions during the adherence period were the use of half-volume high-density inoculation, Cytodex 3 at a concentration of 3 mg/mL, a cell seeding density of 2.0 × 105 cells/mL, and a stirring speed of 45 rpm. The final cell density in self-developed, chemically defined serum-free medium (SFM) reached 2.53 × 106 cells/mL, and the maximum increase in expansion was 12.61-fold. In addition, we found that fibronectin (FN) can promote hiHep attachment and proliferation on Cytodex 3 microcarriers and that this pro-proliferative effect was mediated by the integrin-β1/FAK/ERK/CyclinD1 signaling pathway. Finally, the growth and function of hiHeps on Cytodex 3 in SFM were close to those of hiHeps on Cytodex 3 in hepatocyte maintenance medium (HMM), and cells maintained their morphology and function after harvest on microcarriers. CONCLUSIONS Serum-free microcarrier culture has important implications for the expansion of a sufficient number of hiHeps prior to the clinical application of BALs.
Collapse
Affiliation(s)
- Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiaxing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wenjing Du
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| |
Collapse
|
3
|
Hellmann A, Klein S, Hesselmann F, Djeljadini S, Schmitz‐Rode T, Jockenhoevel S, Cornelissen CG, Thiebes AL. EndOxy: Mid‐term stability and shear stress resistance of endothelial cells on PDMS gas exchange membranes. Artif Organs 2020; 44:E419-E433. [DOI: 10.1111/aor.13712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Ariane Hellmann
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
| | - Sarah Klein
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Faculty of Science and Engineering Aachen‐Maastricht Institute for Biobased Materials Maastricht University Geleen The Netherlands
| | - Felix Hesselmann
- Department of Cardiovascular Engineering (CVE) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
| | | | - Thomas Schmitz‐Rode
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
| | - Stefan Jockenhoevel
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Faculty of Science and Engineering Aachen‐Maastricht Institute for Biobased Materials Maastricht University Geleen The Netherlands
| | - Christian G. Cornelissen
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Clinic for Pneumology and Internistic Intensive Medicine (Medical Clinic V) University Hospital Aachen Aachen Germany
| | - Anja Lena Thiebes
- Department of Biohybrid & Medical Textiles (BioTex) AME – Institute of Applied Medical Engineering Helmholtz Institute RWTH Aachen University Aachen Germany
- Faculty of Science and Engineering Aachen‐Maastricht Institute for Biobased Materials Maastricht University Geleen The Netherlands
| |
Collapse
|
4
|
D’Ovidio TJ, Friederich ARW, de Herrera N, Davis-Hall D, Mann EE, Magin CM. Micropattern-mediated apical guidance accelerates epithelial cell migration to improve healing around percutaneous gastrostomy tubes. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab50d5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Hypergranulation, bacterial infection, and device dislodgment are common complications associated with percutaneous gastronomy (PG) tube placement for enteral feeding largely attributable to delayed stoma tract maturation around the device. Stoma tract maturation is a wound-healing process that requires collective and complete migration of an advancing epithelial layer. While it is widely accepted that micropatterned surfaces enhance cell migration when cells are cultured directly on the substrate, few studies have investigated the influence of apical contact guidance from micropatterned surfaces on cell migration, as occurs during stoma tract formation. Here, we developed 2D and 3D in vitro epithelial cell migration assays to test the effect of various Sharklet micropatterns on apically-guided cell migration. The 2D modified scratch wound assay identified a Sharklet micropattern (+10SK50×50) that enhanced apical cell migration by 4-fold (p = 0.0105) compared to smooth controls over the course of seven days. The best-performing micropattern was then applied to cylindrical prototypes with the same outer diameter as a pediatric PG tube. These prototypes were evaluated in the novel 3D migration assay where magnetic levitation aggregated cells around prototypes to create an artificial stoma. Results indicated a 50% increase (p < 0.0001) in cell migration after seven days along Sharklet-micropatterned prototypes compared to smooth controls. The Sharklet micropattern enhanced apically-guided epithelial cell migration in both 2D and 3D in vitro assays. These data suggest that the incorporation of a Sharklet micropattern onto the surface of a PG tube may accelerate cell migration via apical contact, improve stoma tract maturation, and reduce skin-associated complications.
Collapse
|
5
|
Zeiger AS, Liu FD, Durham JT, Jagielska A, Mahmoodian R, Van Vliet KJ, Herman IM. Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting. Phys Biol 2016; 13:046006. [PMID: 27526677 DOI: 10.1088/1478-3975/13/4/046006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.
Collapse
Affiliation(s)
- A S Zeiger
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. BioSystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore 138602
| | | | | | | | | | | | | |
Collapse
|
6
|
Khan M, Yang J, Shi C, Lv J, Feng Y, Zhang W. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater 2015; 20:69-81. [PMID: 25839123 DOI: 10.1016/j.actbio.2015.03.032] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/31/2015] [Accepted: 03/27/2015] [Indexed: 11/26/2022]
Abstract
Surface tailoring is an attractive approach to enhancing selective endothelialization, which is a prerequisite for current vascular prosthesis applications. Here, we modified polycarbonate urethane (PCU) surface with both poly(ethylene glycol) and Cys-Ala-Gly-peptide (CAG) for the purpose of creating a hydrophilic surface with targeting adhesion of endothelial cells (ECs). In the first step, PCU-film surface was grafted with poly(ethylene glycol) methacrylate (PEGMA) to covalently tether hydrophilic polymer brushes via surface initiated atom transfer radical polymerization (SI-ATRP), followed by grafting of an active monomer pentafluorophenyl methacrylate (PFMA) by a second ATRP. The postpolymerization modification of the terminal reactive groups with allyl amine molecules created pendant allyl groups, which were subsequently functionalized with cysteine terminated CAG-peptide via photo-initiated thiol-ene click chemistry. The functionalized surfaces were characterized by water contact angle and XPS analysis. The growth and proliferation of human ECs or human umbilical arterial smooth muscle cells on the functionalized surfaces were investigated for 1, 3 and 7 day/s. The results indicated that these peptide functionalized surfaces exhibited enhanced EC adhesion, growth and proliferation. Furthermore, they suppressed platelet adhesion in contact with platelet-rich plasma for 2h. Therefore, these surfaces with EC targeting ligand could be an effective anti-thrombogenic platform for vascular tissue engineering application.
Collapse
|
7
|
Li J, Zhang K, Wu J, Zhang L, Yang P, Tu Q, Huang N. Tailoring of the titanium surface by preparing cardiovascular endothelial extracellular matrix layer on the hyaluronic acid micro-pattern for improving biocompatibility. Colloids Surf B Biointerfaces 2015; 128:201-210. [DOI: 10.1016/j.colsurfb.2015.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 01/14/2023]
|
8
|
Yang J, Khan M, Zhang L, Ren X, Guo J, Feng Y, Wei S, Zhang W. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. J Mater Chem B 2015; 3:7682-7697. [DOI: 10.1039/c5tb01155h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional surfaces have been created by surface modification and click reactions. These surfaces possess excellent hemocompatibility and endothelialization, as well as effective antimicrobial activity.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Musammir Khan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Li Zhang
- Tianjin University Helmholtz-Zentrum Geesthacht
- Joint Laboratory for Biomaterials and Regenerative Medicine
- 300072 Tianjin
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Shuping Wei
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
9
|
Tran PL, Gamboa JR, McCracken KE, Riley MR, Slepian MJ, Yoon JY. Nanowell-trapped charged ligand-bearing nanoparticle surfaces: a novel method of enhancing flow-resistant cell adhesion. Adv Healthc Mater 2013; 2:1019-27. [PMID: 23225491 PMCID: PMC4077426 DOI: 10.1002/adhm.201200250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/29/2012] [Indexed: 01/07/2023]
Abstract
Assuring cell adhesion to an underlying biomaterial surface is vital in implant device design and tissue engineering, particularly under circumstances where cells are subjected to potential detachment from overriding fluid flow. Cell-substrate adhesion is a highly regulated process involving the interplay of mechanical properties, surface topographic features, electrostatic charge, and biochemical mechanisms. At the nanoscale level, the physical properties of the underlying substrate are of particular importance in cell adhesion. Conventionally, natural, pro-adhesive, and often thrombogenic, protein biomaterials are frequently utilized to facilitate adhesion. In the present study, nanofabrication techniques are utilized to enhance the biological functionality of a synthetic polymer surface, polymethymethacrylate, with respect to cell adhesion. Specifically we examine the effect on cell adhesion of combining: 1. optimized surface texturing, 2. electrostatic charge and 3. cell adhesive ligands, uniquely assembled on the substrata surface, as an ensemble of nanoparticles trapped in nanowells. Our results reveal that the ensemble strategy leads to enhanced, more than simply additive, endothelial cell adhesion under both static and flow conditions. This strategy may be of particular utility for enhancing flow-resistant endothelialization of blood-contacting surfaces of cardiovascular devices subjected to flow-mediated shear.
Collapse
Affiliation(s)
- Phat L Tran
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Cornelissen CG, Dietrich M, Gromann K, Frese J, Krueger S, Sachweh JS, Jockenhoevel S. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed Eng Online 2013; 12:7. [PMID: 23356939 PMCID: PMC3617998 DOI: 10.1186/1475-925x-12-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/22/2013] [Indexed: 11/13/2022] Open
Abstract
Background Extracorporeal membrane oxygenation (ECMO) can replace the lungs’ gas exchange capacity in refractory lung failure. However, its limited hemocompatibility, the activation of the coagulation and complement system as well as plasma leakage and protein deposition hamper mid- to long-term use and have constrained the development of an implantable lung assist device. In a tissue engineering approach, lining the blood contact surfaces of the ECMO device with endothelial cells might overcome these limitations. As a first step towards this aim, we hypothesized that coating the oxygenator’s gas exchange membrane with proteins might positively influence the attachment and proliferation of arterial endothelial cells. Methods Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue culture treated well plates served as controls. Endothelial cell attachment and proliferation were analyzed for a period of 4 days by microscopic examination and computer assisted cell counting. Results Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibronectin treated surfaces only. Uncoated membranes as well as all other coatings lead to lower cell attachment. A confluent endothelial cell layer develops on fibronectin coated PDMS and the control surface only. Conclusions Fibronectin increases endothelial cells’ seeding efficiency on different oxygenator membrane material. PDMS coated with fibronectin shows sustained cell attachment for a period of four days in static culture conditions.
Collapse
Affiliation(s)
- Christian G Cornelissen
- Department for Tissue Engineering & Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute of the RWTH Aachen University Hospital, Pauwelsstraße 20, 52074 Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 2011; 39:2329-45. [PMID: 21761242 DOI: 10.1007/s10439-011-0352-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023]
Abstract
The effects of flow on endothelial cells (ECs) have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of EC morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines EC micropatterning research by exploring both the many alternative methods used to alter EC morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in EC proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, are discussed.
Collapse
|
12
|
Tay CY, Irvine SA, Boey FYC, Tan LP, Venkatraman S. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:1361-1378. [PMID: 21538867 DOI: 10.1002/smll.201100046] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 03/19/2011] [Indexed: 05/30/2023]
Abstract
The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.
Collapse
Affiliation(s)
- Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore
| | | | | | | | | |
Collapse
|
13
|
Stroka KM, Aranda-Espinoza H. A biophysical view of the interplay between mechanical forces and signaling pathways during transendothelial cell migration. FEBS J 2010; 277:1145-58. [PMID: 20121945 DOI: 10.1111/j.1742-4658.2009.07545.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vascular endothelium is exposed to an array of physical forces, including shear stress via blood flow, contact with other cells such as neighboring endothelial cells and leukocytes, and contact with the basement membrane. Endothelial cell morphology, protein expression, stiffness and cytoskeletal arrangement are all influenced by these mechanochemical forces. There are many biophysical tools that are useful in studying how forces are transmitted in endothelial cells, and these tools are also beginning to be used to investigate biophysical aspects of leukocyte transmigration, which is a ubiquitous mechanosensitive process. In particular, the stiffness of the substrate has been shown to have a significant impact on cellular behavior, and this is true for both endothelial cells and leukocytes. Thus, the stiffness of the basement membrane as an endothelial substrate, as well as the stiffness of the endothelium as a leukocyte substrate, is relevant to the process of transmigration. In this review, we discuss recent work that has related the biophysical aspects of endothelial cell interactions and leukocyte transmigration to the biochemical pathways and molecular interactions that take place during this process. Further use of biophysical tools to investigate the biological process of leukocyte transmigration will have implications for tissue engineering, as well as atherosclerosis, stroke and immune system disease research.
Collapse
Affiliation(s)
- Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|