1
|
Bjelić D, Finšgar M. The Role of Growth Factors in Bioactive Coatings. Pharmaceutics 2021; 13:1083. [PMID: 34371775 PMCID: PMC8309025 DOI: 10.3390/pharmaceutics13071083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
With increasing obesity and an ageing population, health complications are also on the rise, such as the need to replace a joint with an artificial one. In both humans and animals, the integration of the implant is crucial, and bioactive coatings play an important role in bone tissue engineering. Since bone tissue engineering is about designing an implant that maximally mimics natural bone and is accepted by the tissue, the search for optimal materials and therapeutic agents and their concentrations is increasing. The incorporation of growth factors (GFs) in a bioactive coating represents a novel approach in bone tissue engineering, in which osteoinduction is enhanced in order to create the optimal conditions for the bone healing process, which crucially affects implant fixation. For the application of GFs in coatings and their implementation in clinical practice, factors such as the choice of one or more GFs, their concentration, the coating material, the method of incorporation, and the implant material must be considered to achieve the desired controlled release. Therefore, the avoidance of revision surgery also depends on the success of the design of the most appropriate bioactive coating. This overview considers the integration of the most common GFs that have been investigated in in vitro and in vivo studies, as well as in human clinical trials, with the aim of applying them in bioactive coatings. An overview of the main therapeutic agents that can stimulate cells to express the GFs necessary for bone tissue development is also provided. The main objective is to present the advantages and disadvantages of the GFs that have shown promise for inclusion in bioactive coatings according to the results of numerous studies.
Collapse
Affiliation(s)
| | - Matjaž Finšgar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| |
Collapse
|
2
|
Oliveira ÉR, Nie L, Podstawczyk D, Allahbakhsh A, Ratnayake J, Brasil DL, Shavandi A. Advances in Growth Factor Delivery for Bone Tissue Engineering. Int J Mol Sci 2021; 22:E903. [PMID: 33477502 PMCID: PMC7831065 DOI: 10.3390/ijms22020903] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Shortcomings related to the treatment of bone diseases and consequent tissue regeneration such as transplants have been addressed to some extent by tissue engineering and regenerative medicine. Tissue engineering has promoted structures that can simulate the extracellular matrix and are capable of guiding natural bone repair using signaling molecules to promote osteoinduction and angiogenesis essential in the formation of new bone tissues. Although recent studies on developing novel growth factor delivery systems for bone repair have attracted great attention, taking into account the complexity of the extracellular matrix, scaffolding and growth factors should not be explored independently. Consequently, systems that combine both concepts have great potential to promote the effectiveness of bone regeneration methods. In this review, recent developments in bone regeneration that simultaneously consider scaffolding and growth factors are covered in detail. The main emphasis in this overview is on delivery strategies that employ polymer-based scaffolds for spatiotemporal-controlled delivery of both single and multiple growth factors in bone-regeneration approaches. From clinical applications to creating alternative structural materials, bone tissue engineering has been advancing constantly, and it is relevant to regularly update related topics.
Collapse
Affiliation(s)
- Érica Resende Oliveira
- Food Engineering Department, School of Agronomy, Universidade Federal de Goiás, Campus Samambaia, Goiânia CEP 74690-900, Goiás, Brazil;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 4/6 Norwida Street, 50-373 Wroclaw, Poland;
| | - Ahmad Allahbakhsh
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran;
| | - Jithendra Ratnayake
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand;
| | - Dandara Lima Brasil
- Food Science Department, Universidade Federal de Lavras, Lavras CEP 37200-900, Minas Gerais, Brazil;
| | - Amin Shavandi
- BioMatter Unit—École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50—CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Biocompatibility and bioactivity of an FGF-loaded microsphere-based bilayer delivery system. Acta Biomater 2020; 111:341-348. [PMID: 32428684 DOI: 10.1016/j.actbio.2020.04.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
Many drug delivery systems rely on degradation or dissolution of the carrier material to regulate release. In cases where mechanical support is required during regeneration, this necessitates composite systems in which the mechanics of the implant are decoupled from the drug release profile. To address this need, we developed a system in which microspheres (MS) were sequestered in a defined location between two nanofibrous layers. This bilayer delivery system (BiLDS) enables simultaneous structural support and decoupled release profiles. To test this new system, PLGA (poly-lactide-co-glycolic acid) microspheres were prepared using a water-in-oil-in-water (w/o/w) emulsion technique and incorporated Alexa Fluor-tagged bovine serum albumin (BSA) and basic fibroblast growth factor (bFGF). These MS were secured in a defined pocket between two polycaprolactone (PCL) nanofibrous scaffolds, where the layered scaffolds provide a template for new tissue formation while enabling independent and local release from the co-delivered MS. Scanning electron microscopy (SEM) images showed that the assembled BiLDS could localize and retain MS in the central pocket that was surrounded by a continuous seal formed along the margin. Cell viability and proliferation assays showed enhanced cell activity when exposed to BiLDS containing Alexa Fluor-BSA/bFGF-loaded MS, both in vitro and in vivo. MS delivered via the BiLDS system persisted in a localized area after subcutaneous implantation for at least 4 weeks, and bFGF release increased colonization of the implant. These data establish the BiLDS technology as a sustained in vivo drug delivery platform that can localize protein and other growth factor release to a surgical site while providing a structural template for new tissue formation. STATEMENT OF SIGNIFICANCE: Localized and controlled delivery systems for the sustained release of drugs are essential. Many strategies have been developed for this purpose, but most rely on degradation (and loss of material properties) for delivery. Here, we developed a bilayer delivery system (BiLDS) that decouples the physical properties of a scaffold from its delivery kinetics. For this, biodegradable PLGA microspheres were sequestered within a central pocket of a slowly degrading nanofibrous bilayer. Using this device, we show enhanced cell activity with FGF delivery from the BiLDS both in vitro and in vivo. These data support that BiLDS can localize sustained protein and biofactor delivery to a surgical site while also serving as a mechanical scaffold for tissue repair and regeneration.
Collapse
|
4
|
Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S943-S949. [DOI: 10.1080/21691401.2018.1521816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Long-chain polyphosphate in osteoblast matrix vesicles: Enrichment and inhibition of mineralization. Biochim Biophys Acta Gen Subj 2018; 1863:199-209. [PMID: 30312769 DOI: 10.1016/j.bbagen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/24/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation. METHODS PolyP was quantified by 4',6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization. RESULTS PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation. CONCLUSION PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix. GENERAL SIGNIFICANCE PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.
Collapse
|
6
|
Sakoda M, Kaneko M, Ohta S, Qi P, Ichimura S, Yatomi Y, Ito T. Injectable Hemostat Composed of a Polyphosphate-Conjugated Hyaluronan Hydrogel. Biomacromolecules 2018; 19:3280-3290. [DOI: 10.1021/acs.biomac.8b00588] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Megumu Sakoda
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | | | | | - Shigetoshi Ichimura
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | | | - Taichi Ito
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Rivas M, del Valle LJ, Armelin E, Bertran O, Turon P, Puiggalí J, Alemán C. Hydroxyapatite with Permanent Electrical Polarization: Preparation, Characterization, and Response against Inorganic Adsorbates. Chemphyschem 2018; 19:1746-1755. [DOI: 10.1002/cphc.201800196] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Manuel Rivas
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Luis J. del Valle
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Elaine Armelin
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Oscar Bertran
- Department of PhysicsUniversitat Politècnica de Catalunya EEI, Av. Pla de la Massa, 8 08700 Igualada Spain
| | - Pau Turon
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- B. Braun Surgical, S.A Carretera de Terrassa 121 08191 Rubí (Barcelona) Spain
| | - Jordi Puiggalí
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| | - Carlos Alemán
- Department of Chemical EngineeringUniversitat Politècnica de Catalunya EEBE, C/Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
- Barcelona Research Center for Multiscale Science and EngineeringUniversitat Politècnica de Catalunya Institution EEBE, C/ Eduard Maristany 10–14, Ed. I2 08019 Barcelona Spain
| |
Collapse
|
8
|
Feng L, Li Y, Zeng W, Xia B, Zhou D, Zhou J. Enhancing effects of basic fibroblast growth factor and fibronectin on osteoblast adhesion to bone scaffolds for bone tissue engineering through extracellular matrix-integrin pathway. Exp Ther Med 2017; 14:6087-6092. [PMID: 29285162 DOI: 10.3892/etm.2017.5320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/10/2017] [Indexed: 10/18/2022] Open
Abstract
The present study aimed to investigate the effects of basic fibroblast growth factor (bFGF) and fibronectin (FN) on adhesion of osteoblasts seeded into bio-derived bone scaffolds. Rat calvarial osteoblasts were separated and their osteogenic phenotypes were determined by staining for alkaline phosphatase as well as alizarin red staining. The bio-derived bone scaffolds were prepared from the metaphysis of porcine femur and their physicochemical properties were assessed by scanning electron microscopy (SEM) and X-ray diffraction analysis. An MTT assay was used to detect the effects of bFGF and FN on osteoblast adhesion or proliferation on cell/scaffold constructs through blocking the extracellular matrix FN-integrin pathway by the Gly-Arg-Gly-Asp-Ser (GRGDS) peptide. Western blot analysis was used to measure the β1 integrin levels. Based on the adhesion of osteoblasts stimulated by various concentrations of bFGF (0.1, 1, 10 and 100 ng/ml) on bio-derived bone scaffolds modified by various concentrations of FN (0.1, 1, 10 and 100 µg/ml), the cell/scaffold constructs were divided into four groups: i) Control, non-stimulated and non-modified group; ii) 10 µg/ml FN-modified group; iii) 100 ng/ml bFGF-stimulated group; iv) 10 µg/ml FN + 100 ng/ml bFGF group. Cell proliferation curves acquired by MTT assay and micrographs obtained by SEM showed that the combination of bFGF and FN significantly improved cell adhesion, particularly in the 10 µg/ml FN + 100 ng/ml bFGF group vs. the other groups, and the effect on cell adhesion was inhibited by 1 mmol/l GRGDS peptide through the FN-integrin pathway. Western blot results showed that the combination of bFGF and FN significantly enhanced β1 integrin expression levels. These results suggested that osteoblasts stimulated by 100 ng/ml bFGF and bio-derived bone materials modified by 10 µg/ml FN should be combined to be applied in the bone tissue engineering.
Collapse
Affiliation(s)
- Li Feng
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yehong Li
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Wenchao Zeng
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bo Xia
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dongsheng Zhou
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250014, P.R. China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
9
|
Song R, Wang D, Zeng R, Wang J. Synergistic effects of fibroblast growth factor-2 and bone morphogenetic protein-2 on bone induction. Mol Med Rep 2017; 16:4483-4492. [PMID: 28791357 PMCID: PMC5647008 DOI: 10.3892/mmr.2017.7183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
The present study investigated the synergistic effect of co-administering fibroblast growth factor-2 (FGF-2) and bone morphogenetic protein-2 (BMP-2) on osteoblastic differentiation in C2C12 cells and in rats. C2C12 murine myoblast cells represent a well-accepted in vitro model system to study the ability of BMP-2 to alter cell lineage from the myogenic to the osteogenic phenotype. The osteoblastic differentiation potency was determined by alkaline phosphatase (ALP) and Alizarin red S staining. ALP activity and calcium concentrations were colorimetrically measured. Simultaneous administration of 4 µg/ml recombinant human BMP-2 with 2 ng/ml FGF-2 markedly enhanced ALP activity (an early marker of osteogenesis) of C2C12 cells. This combination also increased extracellular signal-regulated kinase1/2 mitogen activated protein kinase signaling that is involved in the promoting effect of FGF-2 on BMP-2-induced osteoblastic differentiation in C2C12 cells. Calcium deposition (a late marker of osteogenesis) and the expression of CD34 (a marker of new vessels) were promoted optimally by simultaneous local sustained administration of FGF-2 and BMP-2 using collagen and chitosan-coated antigen-extracted porcine cancellous implants in a rat ectopic implantation model. The synergistic effects of a combination of BMP-2 and FGF-2 may have potential for bone regenerative therapeutics.
Collapse
Affiliation(s)
- Rongying Song
- Guangdong Provincial Key Laboratory of Bio‑Engineering Medicine (National Engineering Research Centre of Genetic Medicine), Guangzhou, Guangdong 510632, P.R. China
| | - Dingding Wang
- Department of Biotechnology, College of Life Science and Bio‑Pharmaceutical, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Ju Wang
- Guangdong Provincial Key Laboratory of Bio‑Engineering Medicine (National Engineering Research Centre of Genetic Medicine), Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
10
|
Rahman MZ, Shigeishi H, Sasaki K, Ota A, Ohta K, Takechi M. Combined effects of melatonin and FGF-2 on mouse preosteoblast behavior within interconnected porous hydroxyapatite ceramics - in vitro analysis. J Appl Oral Sci 2016; 24:153-61. [PMID: 27119764 PMCID: PMC4836923 DOI: 10.1590/1678-775720150606] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/01/2016] [Indexed: 11/21/2022] Open
Abstract
Objective Biocompatible materials such as interconnected porous hydroxyapatite ceramics (IP-CHA) loaded with osteogenic cells and bioactive agents are part of an evolving concept for overcoming craniofacial defects by use of artificial bone tissue regeneration. Amongst the bioactive agents, melatonin (MEL) and basic fibroblast growth factor (FGF-2) have been independently reported to induce osteoblastic activity. The present in vitro study was undertaken to examine the relationship between these two bioactive agents and their combinatory effects on osteoblastic activity and mineralization in vitro. Material and Methods Mouse preosteoblast cells (MC3T3-E1) were seeded and cultured within cylindrical type of IP-CHA block (ø 4x7 mm) by vacuum-assisted method. The IP-CHA/MC3T3 composites were subjected to FGF-2 and/or MEL. The proliferation assay, alkaline phosphatase enzyme activity (ALP), mRNA expressions of late bone markers, namely Osteocalcin (OCN) and Osteopontin (OPN), and Alizarin Red staining were examined over a period of 7 days. Results FGF-2 mainly enhanced the proliferation of MC3T3-E1 cells within the IP-CHA constructs. MEL mainly induced the mRNA expression of late bone markers (OCN and OPN) and showed increased ALP activity of MC3T3 cells cultured within IP-CHA construct. Moreover, the combination of FGF-2 and MEL showed increased osteogenic activity within the IP-CHA construct in terms of cell proliferation, upregulated expressions of OCN and OPN, increased ALP activity and mineralization with Alizarin Red. The synergy of the proliferative potential of FGF-2 and the differentiation potential of MEL showed increased osteogenic activity in MC3T3-E1 cells cultured within IP-CHA constructs. Conclusion These findings indicate that the combination of FGF-2 and MEL may be utilized with biocompatible materials to attain augmented osteogenic activity and mineralization.
Collapse
Affiliation(s)
- Mohammad Zeshaan Rahman
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideo Shigeishi
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuki Sasaki
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akira Ota
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kouji Ohta
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masaaki Takechi
- Department of Oral and Maxillofacial Surgery, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Doi K, Kubo T, Makihara Y, Oue H, Morita K, Oki Y, Kajihara S, Tsuga K. Osseointegration aspects of placed implant in bone reconstruction with newly developed block-type interconnected porous calcium hydroxyapatite. J Appl Oral Sci 2016; 24:325-31. [PMID: 27556202 PMCID: PMC4990360 DOI: 10.1590/1678-775720150597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/20/2016] [Indexed: 12/01/2022] Open
Abstract
Artificial bone has been employed to reconstruct bone defects. However, only few reports on implant placement after block bone grafting exist.
Collapse
Affiliation(s)
- Kazuya Doi
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takayasu Kubo
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yusuke Makihara
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Hiroshi Oue
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Koji Morita
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Yoshifumi Oki
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Shiho Kajihara
- Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Kazuhiro Tsuga
- Hiroshima University Graduate School of Biomedical and Health Sciences
| |
Collapse
|
12
|
Bae WJ, Auh QS, Kim GT, Moon JH, Kim EC. Effects of sodium tri- and hexameta-phosphate in vitro osteoblastic differentiation in Periodontal Ligament and Osteoblasts, and in vivo bone regeneration. Differentiation 2016; 92:257-269. [DOI: 10.1016/j.diff.2016.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/29/2016] [Accepted: 04/21/2016] [Indexed: 01/08/2023]
|
13
|
Lui ELH, Ao CKL, Li L, Khong ML, Tanner JA. Inorganic polyphosphate triggers upregulation of interleukin 11 in human osteoblast-like SaOS-2 cells. Biochem Biophys Res Commun 2016; 479:766-771. [PMID: 27693781 DOI: 10.1016/j.bbrc.2016.09.137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/26/2016] [Indexed: 02/03/2023]
Abstract
Polyphosphate (polyP) is abundant in bone but its roles in signaling and control of gene expression remain unclear. Here, we investigate the effect of extracellular polyP on proliferation, migration, apoptosis, gene and protein expression in human osteoblast-like SaOS-2 cells. Extracellular polyP promoted SaOS-2 cell proliferation, increased rates of migration, inhibited apoptosis and stimulated the rapid phosphorylation of extracellular-signal-regulated kinase (ERK) directly through basic fibroblast growth factor receptor (bFGFR). cDNA microarray revealed that polyP induced significant upregulation of interleukin 11 (IL-11) at both RNA and protein levels.
Collapse
Affiliation(s)
- Eric Lik-Hang Lui
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Carl Ka-Leong Ao
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Lina Li
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Mei-Li Khong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Julian Alexander Tanner
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Zhang C, Li Q, Deng S, Fu W, Tang X, Chen G, Qin T, Li J. bFGF- and CaPP-Loaded Fibrin Clots Enhance the Bioactivity of the Tendon-Bone Interface to Augment Healing. Am J Sports Med 2016; 44:1972-82. [PMID: 27159301 DOI: 10.1177/0363546516637603] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tendon-to-bone healing is a complex and slow process, and the rate of poor healing remains high. In recent years, several new strategies have been developed that enhance tendon-to-bone healing by increasing the bioactivity. Fibrin clots have been widely used to improve tissue healing and tissue engineering, HYPOTHESIS Modified fibrin clots can improve the bioactivity of the tendon-bone interface and histological appearance. STUDY DESIGN Controlled laboratory study. METHODS A total of 27 male New Zealand White rabbits were used. Of these, 3 were used for cell isolation, and the remaining 24 rabbits were divided into 2 groups (12 per group) for an in vivo partial patellectomy study. The setting time, degradation time, and basic fibroblast growth factor (bFGF) and ceramide-activated protein phosphatase (CaPP) release kinetics of bFGF- and CaPP-loaded fibrin clots were modified appropriately for early tendon-to-bone healing. In an in vitro experiment, the bFGF- and CaPP-loaded fibrin clots were assessed for cell migration and proliferation by microscopy, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay, and DAPI (4',6-diamidino-2-phenylindole) assay. Quantitative real-time reverse transcription polymerase chain reaction and a Western blot assay were performed to test for an induction effect of the bFGF- and CaPP-loaded fibrin clots. Finally, for the in vivo experiment, the rabbits were divided into 2 treatment groups: one with bFGF- and CaPP-loaded fibrin clots and one without bFGF- and CaPP-loaded fibrin clots after partial patellectomy in patella-patellar tendon sutured sites. A histological evaluation was performed at 2, 4, and 6 weeks after surgery. RESULTS The sitting time and degradation time of the bFGF- and CaPP-loaded fibrin clots were set at 15 seconds and more than 2 weeks, respectively, and the porosity was minimized to achieve the highest levels of cell migration and growth. In the bFGF-CaPP group of the in vitro experiment, cell proliferation increased to a greater extent relative to the control group (P < .05); the mRNA expression of osteopontin, alkaline phosphatase, runt-related transcription factor 2, vascular endothelial growth factor, and collagen type I was upregulated (P < .05); and the relative protein expression of these factors was enhanced (P < .05). In vivo, hematoxylin and eosin staining showed that the tendon-to-bone connections were more mature and more arranged when treated with bFGF- and CaPP-loaded fibrin clots than when untreated, and the histological scores were higher. CONCLUSION bFGF- and CaPP-loaded fibrin clots enhanced cell migration and proliferation and the expression of related genes and proteins, which increased the bioactivity of the tendon-bone interface and resulted in the histological improvement of tendon-to-bone healing. CLINICAL RELEVANCE As fibrin clots have already been used in clinical practice, bFGF- and CaPP-loaded fibrin clots can be further used to augment healing in the early stages of tendon-to-bone healing.
Collapse
Affiliation(s)
- Chenghao Zhang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Senlin Deng
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Weili Fu
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Tang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Chen
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tingwu Qin
- Institute of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Li
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
McClellan P, Landis WJ. Recent Applications of Coaxial and Emulsion Electrospinning Methods in the Field of Tissue Engineering. Biores Open Access 2016; 5:212-27. [PMID: 27610268 PMCID: PMC5003012 DOI: 10.1089/biores.2016.0022] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Electrospinning has emerged as an effective method of producing nanoscale fibers for use in multiple fields of study. One area of significant interest is nanofiber utilization for tissue engineering because the nanofibrous mats can mimic the native extracellular matrix of biological tissues. A logical next step is the inclusion of certain molecules and compounds to accelerate or increase the efficacy of tissue regeneration. Two methods are under scrutiny for their capability to encapsulate therapeutic compounds within electrospun nanofibers: emulsion and coaxial electrospinning. Both have advantages and disadvantages, which need to be taken into careful consideration when deciding to use them in a specific application. Several examples are provided here to highlight the vast potential of multilayered nanofibers as well as the emergence of new techniques to produce three-dimensional scaffolds of nanofibers for use in the field of tissue engineering.
Collapse
|
16
|
Wang C, Meng H, Wang X, Zhao C, Peng J, Wang Y. Differentiation of Bone Marrow Mesenchymal Stem Cells in Osteoblasts and Adipocytes and its Role in Treatment of Osteoporosis. Med Sci Monit 2016; 22:226-33. [PMID: 26795027 PMCID: PMC4727494 DOI: 10.12659/msm.897044] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is a systemic metabolic bone disorder characterized by a decrease in bone mass and degradation of the bone microstructure, leaving bones that are fragile and prone to fracture. Most osteoporosis treatments improve symptoms, but to date there is no quick and effective therapy. Bone marrow mesenchymal stem cells (BMMSCs) have pluripotent potential. In adults, BMMSCs differentiate mainly into osteoblasts and adipocytes in the skeleton. However, if this differentiation is unbalanced, it may lead to a decrease in bone mass. If the number of adipocyte cells increases and that of osteoblast cells decreases, osteoporosis can result. A variety of hormones and cytokines play an important role in the regulation of BMMSCs bidirectional differentiation. Therefore, a greater understanding of the regulation mechanism of BMMSC differentiation may provide new methods to prevent and treat osteoporosis. In addition, autologous, allogeneic BMMSCs or genetically modified BMMSC transplantation can effectively increase bone mass and density, increase bone mechanical strength, correct the imbalance in bone metabolism, and increase bone formation, and is expected to provide a new strategy and method for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Cheng Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Haoye Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Xin Wang
- Department of Orthopedics, Urumqi General Hospital of Lanzhou Military Command, Urumqi, Xinjiang, China (mainland)
| | - Chenyang Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China (mainland)
| | - Jing Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China (mainland)
| |
Collapse
|
17
|
Kim YH, Tabata Y. Dual-controlled release system of drugs for bone regeneration. Adv Drug Deliv Rev 2015; 94:28-40. [PMID: 26079284 DOI: 10.1016/j.addr.2015.06.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/23/2015] [Accepted: 06/08/2015] [Indexed: 02/08/2023]
Abstract
Controlled release systems have been noted to allow drugs to enhance their ability for bone regeneration. To this end, various biomaterials have been used as the release carriers of drugs, such as low-molecular-weight drugs, growth factors, and others. The drugs are released from the release carriers in a controlled fashion to maintain their actions for a long time period. Most research has been focused on the controlled release of single drugs to demonstrate the therapeutic feasibility. Controlled release of two combined drugs, so-called dual release systems, are promising and important for tissue regeneration. This is because the tissue regeneration process of bone formation is generally achieved by multiple bioactive molecules, which are produced from cells by other molecules. If two types of bioactive molecules, (i.e., drugs), are supplied in an appropriate fashion, the regeneration process of living bodies will be efficiently promoted. This review focuses on the bone regeneration induced by dual-controlled release of drugs. In this paper, various dual-controlled release systems of drugs aiming at bone regeneration are overviewed explaining the type of drugs and their release materials.
Collapse
|
18
|
Rivas M, Casanovas J, del Valle LJ, Bertran O, Revilla-López G, Turon P, Puiggalí J, Alemán C. An experimental-computer modeling study of inorganic phosphates surface adsorption on hydroxyapatite particles. Dalton Trans 2015; 44:9980-91. [DOI: 10.1039/c5dt00209e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adsorption of different phosphates and a triphosphonate onto hydroxyapatite has been highlighted combining experiments and theoretical calculations.
Collapse
Affiliation(s)
- Manuel Rivas
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Jordi Casanovas
- Departament de Química
- Escola Politècnica Superior
- Universitat de Lleida
- Lleida E-25001
- Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Oscar Bertran
- Departament de Física Aplicada
- EEI
- Universitat Politècnica de Catalunya
- 08700 Igualada
- Spain
| | - Guillermo Revilla-López
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Pau Turon
- B. Braun Surgical
- 08191 Rubí (Barcelona)
- Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química
- E. T. S. d'Enginyeria Industrial de Barcelona
- Universitat Politècnica de Catalunya
- 08028 Barcelona
- Spain
| |
Collapse
|
19
|
Kang Y, Ren L, Yang Y. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9622-9633. [PMID: 24858072 PMCID: PMC4075998 DOI: 10.1021/am502056q] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/23/2014] [Indexed: 05/29/2023]
Abstract
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Yunqing Kang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
| | - Liling Ren
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- School
of Stomatology, Lanzhou University 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yunzhi Yang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- Department
of Materials Science and Engineering, Stanford
University, 300 Pasteur
Drive, Stanford, California 94305, United States
| |
Collapse
|
20
|
A Comparative Evaluation between New Ternary Zirconium Alloys as Alternative Metals for Orthopedic and Dental Prosthetic Devices. Int J Artif Organs 2014; 37:149-64. [DOI: 10.5301/ijao.5000287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2013] [Indexed: 11/20/2022]
Abstract
Purpose We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5 VM1.0 ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. Methods Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. Results Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5 Nb1.5 Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5 Nb1.5 Mo1.0 and Zr97.5 Nb1.5 Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5 Nb1.5 Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5 Nb1.5 Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). Conclusions The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5 Nb1.5 Ta1.0 seems to be the most appealing.
Collapse
|
21
|
Doi K, Kubo T, Takeshita R, Kajihara S, Kato S, Kawazoe Y, Shiba T, Akagawa Y. Inorganic polyphosphate adsorbed onto hydroxyapatite for guided bone regeneration: an animal study. Dent Mater J 2014; 33:179-86. [PMID: 24500369 DOI: 10.4012/dmj.2013-275] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inorganic polyphosphate (poly(P)) is recognized as a therapeutic agent that promotes fibroblast growth factor and enhances osteogenic differentiation, and in vivo, when adsorbed onto interconnected porous calcium hydroxyapatite (IP-CHA) enhances bone regeneration. The present study focused on the effect of poly(P) adsorbed onto IP-CHA granules (Poly(P)/IP-CHA) in guided bone regeneration (GBR). Dental implants were placed into the edentulous mandibular areas of five Beagle-Labrador hybrid dogs with screw expose on the buccal side, and then bone defects were filled Poly(P)/IP-CHA (test) or IP-CHA (control). After 12 weeks, histological evaluation and histomorphometrical analysis were performed. Newly-bone formation around exposed implant screw was clearly detected in the test-group. The ratio for regenerated bone height in the test group versus the control-group was 85.6±20.2 and 62.6±23.8, respectively, with no significant difference, while, that for bone implant contact was significantly higher (67.9±11.8 and 48.8±14.1, respectively). These findings indicate that Poly(P)/IP-CHA enhances bone regeneration in GBR.
Collapse
Affiliation(s)
- Kazuya Doi
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Polyphosphate-mediated inhibition of tartrate-resistant acid phosphatase and suppression of bone resorption of osteoclasts. PLoS One 2013; 8:e78612. [PMID: 24223830 PMCID: PMC3817253 DOI: 10.1371/journal.pone.0078612] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Inorganic polyphosphate (poly(P)) has recently been found to play an important role in bone formation. In this study, we found that tartrate-resistant acid phosphatase (TRAP), which is abundantly expressed in osteoclasts, has polyphosphatase activity that degrades poly(P) and yields Pi as well as shorter poly(P) chains. Since the TRAP protein that coprecipitated with anti-TRAP monoclonal antibodies exhibited both polyphosphatase and the original phosphatase activity, poly(P) degradation activity is dependent on TRAP and not on other contaminating enzymes. The ferrous chelator α, α’-bipyridyl, which inhibits the TRAP-mediated production of reactive oxygen species (ROS), had no effect on such poly(P) degradation, suggesting that the degradation is not dependent on ROS. In addition, shorter chain length poly(P) molecules were better substrates than longer chains for TRAP, and poly(P) inhibited the phosphatase activity of TRAP depending on its chain length. The IC50 of poly(P) against the original phosphatase activity of TRAP was 9.8 µM with an average chain length more than 300 phosphate residues, whereas the IC50 of poly(P) with a shorter average chain length of 15 phosphate residues was 8.3 mM. Finally, the pit formation activity of cultured rat osteoclasts differentiated by RANKL and M-CSF were markedly inhibited by poly(P), while no obvious decrease in cell number or differentiation efficiency was observed for poly(P). In particular, the inhibition of pit formation by long chain poly(P) with 300 phosphate residues was stronger than that of shorter chain poly(P). Thus, poly(P) may play an important regulatory role in osteoclastic bone resorption by inhibiting TRAP activity, which is dependent on its chain length.
Collapse
|
23
|
McClellan P, Landis WJ. Three-dimensional coating of nanofibers on surfaces of poorly conductive objects. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Inorganic polyphosphates: biologically active biopolymers for biomedical applications. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2013; 54:261-94. [PMID: 24420717 DOI: 10.1007/978-3-642-41004-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inorganic polyphosphate (polyP) is a widely occurring but only rarely investigated biopolymer which exists in both prokaryotic and eukaryotic organisms. Only in the last few years, this polymer has been identified to cause morphogenetic activity on cells involved in human bone formation. The calcium complex of polyP was found to display a dual effect on bone-forming osteoblasts and bone-resorbing osteoclasts. Exposure of these cells to polyP (Ca(2+) complex) elicits the expression of cytokines that promote the mineralization process by osteoblasts and suppress the differentiation of osteoclast precursor cells to the functionally active mature osteoclasts dissolving bone minerals. The effect of polyP on bone formation is associated with an increased release of the bone morphogenetic protein 2 (BMP-2), a key mediator that activates the anabolic processes leading to bone formation. In addition, polyP has been shown to act as a hemostatic regulator that displays various effects on blood coagulation and fibrinolysis and might play an important role in platelet-dependent proinflammatory and procoagulant disorders.
Collapse
|
25
|
Doi K, Oue H, Morita K, Kajihara S, Kubo T, Koretake K, Perrotti V, Iezzi G, Piattelli A, Akagawa Y. Development of implant/interconnected porous hydroxyapatite complex as new concept graft material. PLoS One 2012; 7:e49051. [PMID: 23152848 PMCID: PMC3494665 DOI: 10.1371/journal.pone.0049051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/03/2012] [Indexed: 11/18/2022] Open
Abstract
Background Dental implant has been successfully used to replace missing teeth. However, in some clinical situations, implant placement may be difficult because of a large bone defect. We designed novel complex biomaterial to simultaneously restore bone and place implant. This complex was incorporated implant into interconnected porous calcium hydroxyapatite (IP-CHA). We then tested this Implant/IP-CHA complex and evaluated its effect on subsequent bone regeneration and implant stability in vivo. Methodology/Principal Findings A cylinder-type IP-CHA was used in this study. After forming inside of the cylinder, an implant was placed inside to fabricate the Implant/IP-CHA complex. This complex was then placed into the prepared bone socket in the femur of four beagle-Labrador hybrid dogs. As a control, implants were placed directly into the femur without any bone substrate. Bone sockets were allowed to heal for 2, 3 and 6 months and implant stability quotients (ISQ) were measured. Finally, tissue blocks containing the Implant/IP-CHA complexes were harvested. Specimens were processed for histology and stained with toluidine blue and bone implant contact (BIC) was measured. The ISQs of complex groups was 77.8±2.9 in the 6-month, 72.0±5.7 in the 3-month and 47.4±11.0 in the 2-month. There was no significant difference between the 3- or 6-month complex groups and implant control groups. In the 2-month group, connective tissue, including capillary angiogenesis, was predominant around the implants, although newly formed bone could also be observed. While, in the 3 and 6-month groups, newly formed bone could be seen in contact to most of the implant surface. The BICs of complex groups was 2.18±3.77 in the 2-month, 44.03±29.58 in the 3-month, and 51.23±8.25 in the 6-month. Significant difference was detected between the 2 and 6-month. Conclusions/Significance Within the results of this study, the IP-CHA/implant complex might be able to achieve both bone reconstruction and implant stability.
Collapse
Affiliation(s)
- Kazuya Doi
- Department of Advanced Prosthodontics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sun N, Zou H, Yang L, Morita K, Gong P, Shiba T, Akagawa Y, Yuan Q. Inorganic polyphosphates stimulate FGF23 expression through the FGFR pathway. Biochem Biophys Res Commun 2012; 428:298-302. [PMID: 23085229 DOI: 10.1016/j.bbrc.2012.10.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/10/2012] [Indexed: 11/16/2022]
Abstract
Polyphosphate (polyP) is composed of linear polymers of orthophosphate residues linked by high-energy phosphoanhydride bonds. It has been reported to improve osteoblastic differentiation, stimulate periodontal tissue regeneration, and accelerate bone repair. The aim of this study was to evaluate the effect of polyP on the expression of FGF23, a hormone secreted mostly be mature osteoblasts and osteocytes. In this study, different types of polyP were synthesized and co-cultured with osteoblast-like UMR-106 cells. Real-time PCR and western blot were used to analyze the gene and protein expression of FGF23. We found that 1 mM polyP was able to increase FGF23 expression after 4 h, reaching a peak after 12-24 h, with expression decreasing by 48 h. We also found that polyP could activate the FGFR pathway, as evidenced by increased phosphorylation of FGFR, FRS2, and Erk1/2. When FGFR signaling was inhibited by the specific inhibitor SU5402, the effect of polyP on FGF23 expression was significantly reduced. Our results indicate that polyP is able to stimulate osteoblastic FGF23 expression and that this effect is associated with activation of the FGFR pathway. These findings provide support for the clinical use of polyP by indicating a mechanism for polyP in bone regeneration.
Collapse
Affiliation(s)
- Ningyuan Sun
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Khojasteh A, Behnia H, Naghdi N, Esmaeelinejad M, Alikhassy Z, Stevens M. Effects of different growth factors and carriers on bone regeneration: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 116:e405-23. [PMID: 22901644 DOI: 10.1016/j.oooo.2012.01.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/26/2011] [Accepted: 01/10/2012] [Indexed: 02/08/2023]
Abstract
OBJECTIVE The application and subsequent investigations in the use of varied osteogenic growth factors in bone regeneration procedures have grown dramatically over the past several years. Owing to this rapid gain in popularity and documentation, a review was undertaken to evaluate the in vivo effects of growth factors on bone regeneration. STUDY DESIGN Using related key words, electronic databases (Medline, Embase, and Cochrane) were searched for articles published from 1999 to April 2010 to find growth factor application in bone regeneration in human or animal models. RESULTS A total of 63 articles were matched with the inclusion criteria of this study. Bone morphogenetic protein 2 (BMP-2) was the most studied growth factor. Carriers for the delivery, experimental sites, and methods of evaluation were different, and therefore articles did not come to a general agreement. CONCLUSIONS Within the limitations of this review, BMP-2 may be an appropriate growth factor for osteogenesis.
Collapse
Affiliation(s)
- Arash Khojasteh
- Assistant Professor of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Head, Division of Basic Sciences, Dental Research Center, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
28
|
Kulakovskaya TV, Vagabov VM, Kulaev IS. Inorganic polyphosphate in industry, agriculture and medicine: Modern state and outlook. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Jun SH, Lee EJ, Kim HE, Jang JH, Koh YH. Silica-chitosan hybrid coating on Ti for controlled release of growth factors. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2757-2764. [PMID: 22002514 DOI: 10.1007/s10856-011-4458-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 10/04/2011] [Indexed: 05/31/2023]
Abstract
A hybrid material composed of a silica xerogel and chitosan was coated on Ti for the delivery of growth-factors. Fibroblast growth factor (FGF) and green fluorescence protein were incorporated into the coatings for hard tissue engineering. Silica was chosen as a coating material because of its high surface area as well as its good bioactivity. Chitosan provides mechanical stability and contributes to the control of the release rate of the growth factors. When the chitosan composition was 30% or more, the hybrid coating was stable physically and mechanically. The release of the growth-factors, observed in phosphate buffer solution at 37°C, was strongly dependent on the coating material. The hybrid coating containing FGF showed significantly improved osteoblast cell responses compared to the pure xerogel coating with FGF or the hybrid coating without FGF. These results indicate that the hybrid coating is potentially very useful in enhancing the bioactivity of metallic implants by delivering growth-factors in a controlled manner.
Collapse
Affiliation(s)
- Shin-Hee Jun
- Department of Materials Science and Engineering, Seoul National University, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
Kubo T, Doi K, Hayashi K, Morita K, Matsuura A, Teixeira ER, Akagawa Y. Comparative evaluation of bone regeneration using spherical and irregularly shaped granules of interconnected porous hydroxylapatite. A beagle dog study. J Prosthodont Res 2011; 55:104-9. [DOI: 10.1016/j.jpor.2010.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/24/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
|
31
|
Wang Z, Li X, Li Z, Yang L, Sasaki Y, Wang S, Zhou L, Araki S, Mezawa M, Takai H, Ogata Y. Effects of inorganic polyphosphate on bone sialoprotein gene expression. Gene 2010; 452:79-86. [PMID: 20060443 DOI: 10.1016/j.gene.2009.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 12/12/2009] [Accepted: 12/30/2009] [Indexed: 11/26/2022]
Abstract
Inorganic polyphosphate (poly(P)) is a biopolymer existing in almost all cells and tissues. The biological functions of poly(P) in micro-organisms have been extensively investigated in studies of poly(P) in eukaryotic cells, especially osteoblasts, and are increasing. Bone sialoprotein (BSP) is thought to function in bone mineralization, and is selectively expressed by differentiated osteoblasts. In this study, application of sodium phosphate glass type 25 (SPG25, 12.5 and 125 microM) increased BSP mRNA levels at 12 h in osteoblast-like ROS 17/2.8 cells. In transient transfection assay, 12.5 and 125 microM SPG25 increased luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Introduction of 2 bp mutations to the luciferase constructs showed that the effects of SPG25 were mediated by a FGF2 response element (FRE) and a homeodomain protein binding site (HOX). Luciferase activities induced by SPG25 were blocked by tyrosine kinase inhibitor herbimycine A, MAP kinase kinase inhibitor U0126, PI3-kinase/Akt inhibitor LY249002 and inorganic phosphate transport inhibitor foscarnet. Gel shift analyses showed that both 12.5 and 125 microM SPG25 increased nuclear protein binding to FRE and HOX elements. These studies demonstrate that SPG25 stimulates BSP transcription by targeting FRE and HOX elements in the proximal promoter of the rat BSP gene.
Collapse
Affiliation(s)
- Zhitao Wang
- Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, 271-8587, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|