1
|
Foroushani FT, Dzobo K, Khumalo NP, Mora VZ, de Mezerville R, Bayat A. Advances in surface modifications of the silicone breast implant and impact on its biocompatibility and biointegration. Biomater Res 2022; 26:80. [PMID: 36517896 PMCID: PMC9749192 DOI: 10.1186/s40824-022-00314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022] Open
Abstract
Silicone breast implants are commonly used for cosmetic and oncologic surgical indications owing to their inertness and being nontoxic. However, complications including capsular contracture and anaplastic large cell lymphoma have been associated with certain breast implant surfaces over time. Novel implant surfaces and modifications of existing ones can directly impact cell-surface interactions and enhance biocompatibility and integration. The extent of foreign body response induced by breast implants influence implant success and integration into the body. This review highlights recent advances in breast implant surface technologies including modifications of implant surface topography and chemistry and effects on protein adsorption, and cell adhesion. A comprehensive online literature search was performed for relevant articles using the following keywords silicone breast implants, foreign body response, cell adhesion, protein adsorption, and cell-surface interaction. Properties of silicone breast implants impacting cell-material interactions including surface roughness, wettability, and stiffness, are discussed. Recent studies highlighting both silicone implant surface activation strategies and modifications to enhance biocompatibility in order to prevent capsular contracture formation and development of anaplastic large cell lymphoma are presented. Overall, breast implant surface modifications are being extensively investigated in order to improve implant biocompatibility to cater for increased demand for both cosmetic and oncologic surgeries.
Collapse
Affiliation(s)
- Fatemeh Tavakoli Foroushani
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | - Nonhlanhla P Khumalo
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa
| | | | | | - Ardeshir Bayat
- Wound and Keloid Scarring Research Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, The South African Medical Research Council, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Honeycomb-Structured Porous Films from Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Physicochemical Characterization and Mesenchymal Stem Cells Behavior. Polymers (Basel) 2022; 14:polym14132671. [PMID: 35808716 PMCID: PMC9268957 DOI: 10.3390/polym14132671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films—water-assisted self-assembly (“breath figure”) and spin-coating techniques. The water-assisted technique made it possible to obtain porous films with a self-assembled pore structure, which is dependent on the monomer composition of a polymer along with its molecular weight and the technique parameters (distance from the nozzle, volume, and polymer concentration in working solution). Their pore morphologies were evaluated and their hydrophobicity was examined. Mesenchymal stem cells (MSCs) isolated from bone marrow were cultivated on a porous film surface. MSCs’ attachment differed markedly depending on surface morphology. On strip-formed stamp films, MSCs elongated along the structure, however, they interacted with a larger area of film surface. The honeycomb films and column type films did not set the direction of extrusion, but cell flattening depended on structure topography. Thus, stem cells can “feel” the various surface morphologies of self-assembled honeycomb films and change their behavior depending on it.
Collapse
|
3
|
Zhang X, Li Y, Luo X, Ding Y. Enhancing antibacterial property of porous titanium surfaces with silver nanoparticles coatings via electron-beam evaporation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:57. [PMID: 35737197 PMCID: PMC9226093 DOI: 10.1007/s10856-022-06679-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Antibacterial activity is one of the most vital characteristics for Titanium (Ti) dental implants. Coating antibacterial material onto Ti surfaces is an effective approach to enhance their intrinsic antibacterial ability. However, a cost-effective but efficient coating strategy for realizing this objective still remains challenging. In this study, we proposed a novel implant surface modification strategy for coating silver nanoparticles onto the porous Ti surface via a facile electron beam evaporation (EBE) approach. Porous Ti surfaces were firstly prepared by sand-blasting large grit acid-etching (SLA) process. Then, the silver nanoparticles coating thickness on the porous Ti surface was adjusted and optimized by altering the duration of EBE process. Consequently, composite porous Ti surfaces with different silver thicknesses were synthesized. Polished Ti (PT) surface without SLA or EBE process was also prepared as the controlled blank group. The surface characterizations were analyzed by SEM, AFM, and XPS. After that, the antibacterial properties of all groups were tested with bacteria counting method, bacterial viability test, live/dead bacterial staining, and SEM examination. Results show that silver nanoparticles were uniformly distributed on the porous Ti surfaces after the SLA and EBE processes. After being incorporated with silver nanoparticles, the composite surfaces successfully inhibited the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The antibacterial ratio (AR) values of SLA-Ag groups increased with the increasing silver thickness and are significantly higher than those of PT and SLA groups. Therefore, by the SLA and EBE processes, the composite porous Ti surfaces modified with silver nanoparticles coatings demonstrate superior antibacterial property compared with pure Ti surfaces, which is highly promising for enhancing the antibacterial functions of dental implants. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yaoxu Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Xiaobing Luo
- School of Energy and Power Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| |
Collapse
|
4
|
Ermis M, Antmen E, Kuren O, Demirci U, Hasirci V. A Cell Culture Chip with Transparent, Micropillar-Decorated Bottom for Live Cell Imaging and Screening of Breast Cancer Cells. MICROMACHINES 2022; 13:mi13010093. [PMID: 35056257 PMCID: PMC8779566 DOI: 10.3390/mi13010093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
In the recent years, microfabrication technologies have been widely used in cell biology, tissue engineering, and regenerative medicine studies. Today, the implementation of microfabricated devices in cancer research is frequent and advantageous because it enables the study of cancer cells in controlled microenvironments provided by the microchips. Breast cancer is one of the most common cancers in women, and the way breast cancer cells interact with their physical microenvironment is still under investigation. In this study, we developed a transparent cell culture chip (Ch-Pattern) with a micropillar-decorated bottom that makes live imaging and monitoring of the metabolic, proliferative, apoptotic, and morphological behavior of breast cancer cells possible. The reason for the use of micropatterned surfaces is because cancer cells deform and lose their shape and acto-myosin integrity on micropatterned substrates, and this allows the quantification of the changes in morphology and through that identification of the cancerous cells. In the last decade, cancer cells were studied on micropatterned substrates of varying sizes and with a variety of biomaterials. These studies were conducted using conventional cell culture plates carrying patterned films. In the present study, cell culture protocols were conducted in the clear-bottom micropatterned chip. This approach adds significantly to the current knowledge and applications by enabling low-volume and high-throughput processing of the cell behavior, especially the cell–micropattern interactions. In this study, two different breast cancer cell lines, MDA-MB-231 and MCF-7, were used. MDA-MB-231 cells are invasive and metastatic, while MCF-7 cells are not metastatic. The nuclei of these two cell types deformed to distinctly different levels on the micropatterns, had different metabolic and proliferation rates, and their cell cycles were affected. The Ch-Pattern chips developed in this study proved to have significant advantages when used in the biological analysis of live cells and highly beneficial in the study of screening breast cancer cell–substrate interactions in vitro.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Ezgi Antmen
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Ozgur Kuren
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
| | - Utkan Demirci
- Canary Center for Cancer Early Detection, Department of Radiology, Electrical Engineering Department, Stanford University, Palo Alto, CA 94305, USA;
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey; (M.E.); (E.A.); (O.K.)
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- ACU Biomaterials Center, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey
- Correspondence:
| |
Collapse
|
5
|
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han DW. Potential of Carbon-Based Nanocomposites for Dental Tissue Engineering and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5104. [PMID: 34501203 PMCID: PMC8434078 DOI: 10.3390/ma14175104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
While conventional dental implants focus on mechanical properties, recent advances in functional carbon nanomaterials (CNMs) accelerated the facilitation of functionalities including osteoinduction, osteoconduction, and osseointegration. The surface functionalization with CNMs in dental implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for mechanical reinforcing, osseointegration, and antimicrobial properties. Numerous developments in the fabrication and biological studies of CNMs have provided various opportunities to expand their application to dental regeneration and restoration. In this review, we discuss the advances in novel dental implants with CNMs in terms of tissue engineering, including material combination, coating strategies, and biofunctionalities. We present a brief overview of recent findings and progression in the research to show the promising aspect of CNMs for dental implant application. In conclusion, it is shown that further development of surface functionalization with CNMs may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | | | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| |
Collapse
|
6
|
Lin Z, Wu S, Liu X, Qian S, Chu PK, Zheng Y, Cheung KMC, Zhao Y, Yeung KWK. A surface-engineered multifunctional TiO 2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomater 2019; 99:495-513. [PMID: 31518705 DOI: 10.1016/j.actbio.2019.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/12/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
Abstract
Magnesium biometals exhibit great potentials for orthopeadic applications owing to their biodegradability, bioactive effects and satisfactory mechanical properties. However, rapid corrosion of Mg implants in vivo combined with large amount of hydrogen gas evolution is harmful to bone healing process which seriously confines their clinical applications. Enlightened by the superior biocompatibility and corrosion resistance of passive titanium oxide layer automatically formed on titanium alloy, we employ the Ti and O dual plasma ion immersion implantation (PIII) technique to construct a multifunctional TiO2 based nano-layer on ZK60 magnesium substrates for enhanced corrosion resistance, osteoconductivity and antimicrobial activity. The constructed nano-layer (TiO2/MgO) can effectively suppress degradation rate of ZK60 substrates in vitro and still maintain 94% implant volume after post-surgery eight weeks. In animal study, a large amount of bony tissue with increased bone mineral density and trabecular thickness is formed around the PIII treated group in post-operation eight weeks. Moreover, the newly formed bone in the PIII treated group is well mineralized and its mechanical property almost restores to the level of that of surrounding mature bone. Surprisingly, a remarkable killing ratio of 99.31% against S. aureus can be found on the PIII treated sample under ultra-violet (UV) irradiation which mainly attributes to the oxidative stress induced by the reactive oxygen species (ROS). We believe that this multifunctional TiO2 based nano-layer not only controls the degradation of magnesium implant, but also regulates its implant-to-bone integration effectively. STATEMENT OF SIGNIFICANCE: Rapid corrosion of magnesium implants is the major issue for orthopaedic applications. Inspired by the biocompatibility and corrosion resistance of passive titanium oxide layer automatically formed on titanium alloy, we construct a multifunctional TiO2/MgO nanolayer on magnesium substrates to simultaneously achieve superior corrosion resistance, satisfactory osteoconductivity in rat intramedullary bone defect model and excellent antimicrobial activity against S. aureus under UV irradiation. The current findings suggest that the specific TiO2/MgO nano-layer on magnesium surface can achieve the three objectives aforementioned and we believe this study can demonstrate the potential of biodegradable metals for future clinical applications.
Collapse
Affiliation(s)
- Zhengjie Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, PR China; Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| | - Shuilin Wu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shi Qian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; Cixi Center of Biomaterials Surface Engineering, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Ningbo, PR China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kenneth M C Cheung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Ying Zhao
- Centre for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China.
| |
Collapse
|
7
|
Li M, Fu X, Gao H, Ji Y, Li J, Wang Y. Regulation of an osteon-like concentric microgrooved surface on osteogenesis and osteoclastogenesis. Biomaterials 2019; 216:119269. [DOI: 10.1016/j.biomaterials.2019.119269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/04/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
|
8
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
9
|
Wang D, Liu M, Gu S, Zhou Y, Li S. Microtopography Attenuates Endothelial Cell Proliferation by Regulating MicroRNAs. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbnb.2017.83013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Alves SA, Ribeiro AR, Gemini-Piperni S, Silva RC, Saraiva AM, Leite PE, Perez G, Oliveira SM, Araujo JR, Archanjo BS, Rodrigues ME, Henriques M, Celis JP, Shokuhfar T, Borojevic R, Granjeiro JM, Rocha LA. TiO2nanotubes enriched with calcium, phosphorous and zinc: promising bio-selective functional surfaces for osseointegrated titanium implants. RSC Adv 2017. [DOI: 10.1039/c7ra08263k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
TiO2nanotubes enriched with Ca, P, and Zn by reverse polarization anodization, are promising bio-selective functional structures for osseointegrated titanium implants.
Collapse
|
11
|
Hong H, Park SJ, Han SJ, Lim J, Kim DS. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies. Biomed Microdevices 2016; 18:3. [PMID: 26683462 DOI: 10.1007/s10544-015-0026-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.
Collapse
Affiliation(s)
- Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Sung Jea Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Seon Jin Han
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Jiwon Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 790-784, South Korea.
| |
Collapse
|
12
|
Carvalho A, Pelaez-Vargas A, Hansford DJ, Fernandes MH, Monteiro FJ. Effects of Line and Pillar Array Microengineered SiO2 Thin Films on the Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1091-100. [PMID: 26771563 DOI: 10.1021/acs.langmuir.5b03955] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A primary goal in bone tissue engineering is the design of implants that induce controlled, guided, and rapid healing. The events that normally lead to the integration of an implant into bone and determine the performance of the device occur mainly at the tissue-implant interface. Topographical surface modification of a biomaterial might be an efficient tool for inducing stem cell osteogenic differentiation and replace the use of biochemical stimuli. The main goal of this work was to develop micropatterned bioactive silica thin films to induce the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs) only through topographical stimuli. Line and pillar micropatterns were developed by a combination of sol-gel/soft lithography and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. hMSCs were cultured onto the microfabricated thin films and flat control for up to 21 days under basal conditions. The micropatterned groups induced levels of osteogenic differentiation and expression of osteoblast-associated markers higher than those of the flat controls. Via comparison of the micropatterns, the pillars caused a stronger response of the osteogenic differentiation of hMSCs with a higher level of expression of osteoblast-associated markers, ALP activity, and extracellular matrix mineralization after the cells had been cultured for 21 days. These findings suggest that specific microtopographic cues can direct hMSCs toward osteogenic differentiation.
Collapse
Affiliation(s)
- Angela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Rua Alfredo Allen, 208 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Rua Alfredo Allen, 208 4200-135 Porto, Portugal
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto , Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Alejandro Pelaez-Vargas
- Universidad Cooperativa de Colombia , Faculty of Dentistry, Carrera 47 # 37sur-18, Medellín, Colombia
| | - Derek J Hansford
- Department of Biomedical Engineering, The Ohio State University , 1080 Carmack Road, Columbus, Ohio 43210, United States
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculdade de Medicina Dentária, Universidade do Porto , Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | - Fernando J Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Rua Alfredo Allen, 208 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto , Rua Alfredo Allen, 208 4200-135 Porto, Portugal
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto , Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
13
|
Li Y, Jiao Y, Li X, Guo Z. Improving the osteointegration of Ti6Al4V by zeolite MFI coating. Biochem Biophys Res Commun 2015; 460:151-6. [PMID: 25757911 DOI: 10.1016/j.bbrc.2015.02.157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
Osteointegration is crucial for success in orthopedic implantation. In recent decades, there have been numerous studies aiming to modify titanium alloys, which are the most widely used materials in orthopedics. Zeolites are solid aluminosilicates whose application in the biomedical field has recently been explored. To this end, MFI zeolites have been developed as titanium alloy coatings and tested in vitro. Nevertheless, the effect of the MFI coating of biomaterials in vivo has not yet been addressed. The aim of the present work is to evaluate the effects of MFI-coated Ti6Al4V implants in vitro and in vivo. After surface modification, the surface was investigated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). No difference was observed regarding the proliferation of MC3T3-E1 cells on the Ti6Al4V (Ti) and MFI-coated Ti6Al4V (M-Ti) (p > 0.05). However, the attachment of MC3T3-E1 cells was found to be better in the M-Ti group. Additionally, ALP staining and activity assays and quantitative real-time RT-PCR indicated that MC3T3-E1 cells grown on the M-Ti displayed high levels of osteogenic differentiation markers. Moreover, Van-Gieson staining of histological sections demonstrated that the MFI coating on Ti6Al4V scaffolds significantly enhanced osteointegration and promoted bone regeneration after implantation in rabbit femoral condylar defects at 4 and 12 weeks. Therefore, this study provides a method for modifying Ti6Al4V to achieve improved osteointegration and osteogenesis.
Collapse
Affiliation(s)
- Yong Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Yilai Jiao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Xiaokang Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Zheng Guo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China.
| |
Collapse
|
14
|
Wu X, Wang S. Integration of photo-crosslinking and breath figures to fabricate biodegradable polymer substrates with tunable pores that regulate cellular behavior. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Stanton MM, Rankenberg JM, Park BW, McGimpsey WG, Malcuit C, Lambert CR. Cell Behavior on Surface Modified Polydimethylsiloxane (PDMS). Macromol Biosci 2014; 14:953-64. [DOI: 10.1002/mabi.201300504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/17/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Morgan M. Stanton
- Worcester Polytechnic Institute; Department of Chemistry and Biochemistry; 100 Institute Road Worcester MA 01609 USA
| | - Johanna M. Rankenberg
- Kent State University; Department of Biological Sciences; 256 Cunningham Hall Kent OH 44242 USA
| | - Byung-Wook Park
- Kent State University; Department of Chemistry and Biochemistry; 214 Williams Hall Kent OH 44242 USA
| | - W. Grant McGimpsey
- Kent State University; Department of Chemistry and Biochemistry; 214 Williams Hall Kent OH 44242 USA
| | - Christopher Malcuit
- Kent State University; Department of Biological Sciences; 256 Cunningham Hall Kent OH 44242 USA
| | - Christopher R. Lambert
- Worcester Polytechnic Institute; Department of Chemistry and Biochemistry; 100 Institute Road Worcester MA 01609 USA
| |
Collapse
|
16
|
Li J, Wu M, Chu J, Sochol R, Patel S. Engineering micropatterned surfaces to modulate the function of vascular stem cells. Biochem Biophys Res Commun 2014; 444:562-7. [PMID: 24486489 DOI: 10.1016/j.bbrc.2014.01.100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 01/21/2014] [Indexed: 01/31/2023]
Abstract
Multipotent vascular stem cells have been implicated in vascular disease and in tissue remodeling post therapeutic intervention. Hyper-proliferation and calcified extracellular matrix deposition of VSC cause blood vessel narrowing and plaque hardening thereby increasing the risk of myocardial infarct. In this study, to optimize the surface design of vascular implants, we determined whether micropatterned polymer surfaces can modulate VSC differentiation and calcified matrix deposition. Undifferentiated rat VSC were cultured on microgrooved surfaces of varied groove widths, and on micropost surfaces. 10μm microgrooved surfaces elongated VSC and decreased cell proliferation. However, microgrooved surfaces did not attenuate calcified extracellular matrix deposition by VSC cultured in osteogenic media conditions. In contrast, VSC cultured on micropost surfaces assumed a dendritic morphology, were significantly less proliferative, and deposited minimal calcified extracellular matrix. These results have significant implications for optimizing the design of cardiovascular implant surfaces.
Collapse
Affiliation(s)
- Jennifer Li
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States
| | - Michelle Wu
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States
| | - Julia Chu
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States
| | - Ryan Sochol
- Berkeley Sensor and Actuator Center, University of California, Berkeley, 668 Sutardja Dai Hall, Berkeley, CA 94720, United States
| | - Shyam Patel
- Department of Bioengineering, University of California, Berkeley, 121 Stanley Hall, Berkeley, CA 94720, United States.
| |
Collapse
|
17
|
Response of bone marrow derived connective tissue progenitor cell morphology and proliferation on geometrically modulated microtextured substrates. Biomed Microdevices 2014; 15:385-96. [PMID: 23378044 DOI: 10.1007/s10544-012-9727-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Varying geometry and layout of microposts on a cell culture substrate provides an effective technique for applying mechanical stimuli to living cells. In the current study, the optimal geometry and arrangement of microposts on the polydimethylsiloxane (PDMS) surfaces to enhance cell growth behavior were investigated. Human bone marrow derived connective tissue progenitor cells were cultured on PDMS substrates comprising unpatterned smooth surfaces and cylindrical post microtextures that were 10 μm in diameter, 4 heights (5, 10, 20 and 40 μm) and 3 pitches (10, 20, and 40 μm). With the same 10 μm diameter, post heights ranging from 5 to 40 μm resulted in a more than 535 fold range of rigidity from 0.011 nNμm⁻¹ (40 μm height) up to 5.888 nNμm⁻¹(5 μm height). Even though shorter microposts result in higher effective stiffness, decreasing post heights below the optimal value, 5 μm height micropost in this study decreased cell growth behavior. The maximum number of cells was observed on the post microtextures with 20 μm height and 10 μm inter-space, which exhibited a 675 % increase relative to the smooth surfaces. The cells on all heights of post microtextures with 10 μm and 20 μm inter-spaces exhibited highly contoured morphology. Elucidating the cellular response to various external geometry cues enables us to better predict and control cellular behavior. In addition, knowledge of cell response to surface stimuli could lead to the incorporation of specific size post microtextures into surfaces of implants to achieve surface-textured scaffold materials for tissue engineering applications.
Collapse
|
18
|
Tejeda-Montes E, Smith KH, Rebollo E, Gómez R, Alonso M, Rodriguez-Cabello JC, Engel E, Mata A. Bioactive membranes for bone regeneration applications: effect of physical and biomolecular signals on mesenchymal stem cell behavior. Acta Biomater 2014; 10:134-41. [PMID: 24035887 DOI: 10.1016/j.actbio.2013.09.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 12/25/2022]
Abstract
This study focuses on the in vitro characterization of bioactive elastin-like recombinamer (ELR) membranes for bone regeneration applications. Four bioactive ELRs exhibiting epitopes designed to promote mesenchymal stem cell adhesion (RGDS), endothelial cell adhesion (REDV), mineralization (HAP), and both cell adhesion and mineralization (HAP-RGDS) were synthesized using standard recombinant protein techniques. The materials were then used to fabricate ELR membranes incorporating a variety of topographical micropatterns including channels, holes and posts. Primary rat mesenchymal stem cells (rMSCs) were cultured on the different membranes and the effects of biomolecular and physical signals on cell adhesion, morphology, proliferation, and differentiation were evaluated. All results were analyzed using a custom-made MATLAB program for high throughput image analysis. Effects on cell morphology were mostly dependent on surface topography, while cell proliferation and cell differentiation were largely dependent on the biomolecular signaling from the ELR membranes. In particular, osteogenic differentiation (evaluated by staining for the osteoblastic marker osterix) was significantly enhanced on cells cultured on HAP membranes. Remarkably, cells growing on membranes containing the HAP sequence in non-osteogenic differentiation media exhibited significant up-regulation of the osteogenic marker as early as day 5, while those growing on fibronectin-coated glass in osteogenic differentiation media did not. These results are part of our ongoing effort to develop an optimized molecularly designed periosteal graft.
Collapse
|
19
|
Micropatterned film with nano-porous sodium titanate structure fabricated via template-free direct laser irradiation technology: Characteristics and set-selective apatite deposition ability. SURFACE & COATINGS TECHNOLOGY 2013. [DOI: 10.1016/j.surfcoat.2013.07.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials 2013; 34:7616-25. [PMID: 23863454 DOI: 10.1016/j.biomaterials.2013.06.059] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 06/26/2013] [Indexed: 12/13/2022]
Abstract
The physiological microenvironment of the stem cell niche, including the three factors of stiffness, topography, and dimension, is crucial to stem cell proliferation and differentiation. Although a growing body of evidence is present to elucidate the importance of these factors individually, the interaction of the biophysical parameters of the factors remains insufficiently characterized, particularly for stem cells. To address this issue fully, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities, two topographies, and three dimensions to systematically test proliferation, morphology and spreading, differentiation, and cytoskeletal re-organization of rat bone marrow mesenchymal stem cells (rBMSCs) on twelve cases. An isolated but not combinatory impact of the factors was found regarding the specific functions. Substrate stiffness or dimension is predominant in regulating cell proliferation by fostering cell growth on stiff, unevenly dimensioned substrate. Topography is a key factor for manipulating cell morphology and spreading via the formation of a large spherical shape in a pillar substrate but not in a grooved substrate. Although stiffness leads to osteogenic or neuronal differentiation of rBMSCs on a stiff or soft substrate, respectively, topography or dimension also plays a lesser role in directing cell differentiation. Neither an isolated effect nor a combinatory effect was found for actin or tubulin expression, whereas a seemingly combinatory effect of topography and dimension was found in manipulating vimentin expression. These results further the understandings of stem cell proliferation, morphology, and differentiation in a physiologically mimicking microenvironment.
Collapse
|
21
|
López-Bosque MJ, Tejeda-Montes E, Cazorla M, Linacero J, Atienza Y, Smith KH, Lladó A, Colombelli J, Engel E, Mata A. Fabrication of hierarchical micro-nanotopographies for cell attachment studies. NANOTECHNOLOGY 2013; 24:255305. [PMID: 23727615 DOI: 10.1088/0957-4484/24/25/255305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We report on the development of micro/nanofabrication processes to create hierarchical surface topographies that expand from 50 nm to microns in size on different materials. Three different approaches (named FIB1, FIB2, and EBL) that combine a variety of techniques such as photolithography, reactive ion etching, focused ion beam lithography, electron beam lithography, and soft lithography were developed, each one providing different advantages and disadvantages. The EBL approach was employed to fabricate substrates comprising channels with features between 200 nm and 10 μm in size on polymethylmethacrylate (PMMA), which were then used to investigate the independent or competitive effects of micro- and nanotopographies on cell adhesion and morphology. Rat mesenchymal stem cells (rMSCs) were cultured on four different substrates including 10 μm wide and 500 nm deep channels separated by 10 μm distances (MICRO), 200 nm wide and 100 nm deep nanochannels separated by 200 nm distances (NANO), their combination in parallel (PARAL), and in a perpendicular direction (PERP). Rat MSCs behaved differently on all tested substrates with a high degree of alignment (as measured by both number of aligned cells and average angle) on both NANO and MICRO. Furthermore, cells exhibited the highest level of alignment on PARAL, suggesting a synergetic effect of the two scales of topographies. On the other hand, cells on PERP exhibited the lowest alignment and a consistent change in morphology over time that seemed to be the result of interactions with both micro- and nanochannels positioned in the perpendicular direction, also suggesting a competitive effect of the topographies.
Collapse
Affiliation(s)
- M J López-Bosque
- The Nanotechnology Platform, Parc Científic Barcelona, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Particle-collision and porogen-leaching technique to fabricate polymeric porous scaffolds with microscale roughness of interior surfaces. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1264-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Pelaez-Vargas A, Gallego-Perez D, Carvalho A, Fernandes MH, Hansford DJ, Monteiro FJ. Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration-In vitrostudy. J Biomed Mater Res B Appl Biomater 2013; 101:762-9. [DOI: 10.1002/jbm.b.32879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/23/2012] [Accepted: 11/25/2012] [Indexed: 11/09/2022]
|
24
|
Zankovych S, Diefenbeck M, Bossert J, Mückley T, Schrader C, Schmidt J, Schubert H, Bischoff S, Faucon M, Finger U, Jandt KD. The effect of polyelectrolyte multilayer coated titanium alloy surfaces on implant anchorage in rats. Acta Biomater 2013; 9:4926-34. [PMID: 22902814 DOI: 10.1016/j.actbio.2012.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/11/2012] [Accepted: 08/08/2012] [Indexed: 02/04/2023]
Abstract
Advances have been achieved in the design and biomechanical performance of orthopedic implants in the last decades. These include anatomically shaped and angle-stable implants for fracture fixation or improved biomaterials (e.g. ultra-high-molecular-weight polyethylene) in total joint arthroplasty. Future modifications need to address the biological function of implant surfaces. Functionalized surfaces can promote or reduce osseointegration, avoid implant-related infections or reduce osteoporotic bone loss. To this end, polyelectrolyte multilayer structures have been developed as functional coatings and intensively tested in vitro previously. Nevertheless, only a few studies address the effect of polyelectrolyte multilayer coatings of biomaterials in vivo. The aim of the present work is to evaluate the effect of polyelectrolyte coatings of titanium alloy implants on implant anchorage in an animal model. We test the hypotheses that (1) polyelectrolyte multilayers have an effect on osseointegration in vivo; (2) multilayers of chitosan/hyaluronic acid decrease osteoblast proliferation compared to native titanium alloy, and hence reduce osseointegration; (3) multilayers of chitosan/gelatine increase osteoblast proliferation compared to native titanium alloy, hence enhance osseointegration. Polyelectrolyte multilayers on titanium alloy implants were fabricated by a layer-by-layer self-assembly process. Titanium alloy (Ti) implants were alternately dipped into gelatine (Gel), hyaluronic acid (HA) and chitosan (Chi) solutions, thus assembling a Chi/Gel and a Chi/HA coating with a terminating layer of Gel or HA, respectively. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bones' response to polyelectrolyte surfaces in vivo. 48 rats were randomly assigned to three groups of implants: (1) native titanium alloy (control), (2) Chi/Gel and (3) Chi/HA coating. Mechanical fixation, peri-implant bone area and bone contact were evaluated by pull-out tests and histology at 3 and 8 weeks. Shear strength at 8 weeks was statistically significantly increased (p<0.05) in both Chi/Gel and Chi/HA groups compared to the titanium alloy control. No statistically significant difference (p>0.05) in bone contact or bone area was found between all groups. No decrease of osseointegration of Chi/HA-coated implants compared to non-coated implants was found. The results of polyelectrolyte coatings in a rat model showed that the Chi/Gel and Chi/HA coatings have a positive effect on mechanical implant anchorage in normal bone.
Collapse
|
25
|
Wu X, Wang S. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4966-4975. [PMID: 22889037 DOI: 10.1021/am301334s] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Honeycomb poly(ε-caprolactone) (PCL) films with tunable pore diameters of 3.5, 6.0, and 10 μm were fabricated directly from solutions in water-miscible, relatively nontoxic tetrahydrofuran using the breath-figure method without assistance of a surfactant. These honeycomb PCL films were characterized in terms of structures and enhanced hydrophobicity. Aiming at fostering bone tissue engineering outcomes, we cultured mouse preosteoblastic MC3T3-E1 cells on these honeycomb films as well as on the flat control, and evaluated their adhesion, spreading, proliferation, alkaline phosphatase (ALP) activity, and calcium content. These cell behaviors were further correlated with the expression levels of integrin subunits of α(1), α(2), β(1), and bone-specific gene markers of ALP, collagen type I (COL I), osteocalcin (OCN), and osteopontin (OPN). Honeycomb PCL films remarkably promoted MC3T3-E1 cell adhesion, spreading, proliferation, differentiation, and gene expression. This effect was more prominent when the pore diameter was smaller in the studied range. In addition, honeycomb PCL films were stretched into groove-like structures, on which MC3T3-E1 cells were aligned with a smaller cell area, a higher percentage of aligned cells, and a higher cell elongation ratio when the pores were smaller.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
26
|
Horst OV, Chavez MG, Jheon AH, Desai T, Klein OD. Stem cell and biomaterials research in dental tissue engineering and regeneration. Dent Clin North Am 2012; 56:495-520. [PMID: 22835534 PMCID: PMC3494412 DOI: 10.1016/j.cden.2012.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
This review summarizes approaches used in tissue engineering and regenerative medicine, with a focus on dental applications. Dental caries and periodontal disease are the most common diseases resulting in tissue loss. To replace or regenerate new tissues, various sources of stem cells have been identified such as somatic stem cells from teeth and peridontium. Advances in biomaterial sciences including microfabrication, self-assembled biomimetic peptides, and 3-dimensional printing hold great promise for whole-organ or partial tissue regeneration to replace teeth and periodontium.
Collapse
Affiliation(s)
- Orapin V. Horst
- Division of Endodontics, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, Box 0758, 521 Parnassus Avenue, Clinical Science Building 627, San Francisco, CA 94143-0758, USA
| | - Miquella G. Chavez
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Andrew H. Jheon
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
| | - Tejal Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Box 2330, 1700 4th Street, San Francisco, CA 94158-2330, USA
- Department of Physiology, University of California, San Francisco, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA 94158-2330, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Department of Pediatrics, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442, USA
- Corresponding author. Department of Orofacial Sciences, University of California, San Francisco, Box 0442, 513 Parnassus Avenue, San Francisco, CA 94143-0442.
| |
Collapse
|
27
|
Duan S, Yang X, Mao J, Qi B, Cai Q, Shen H, Yang F, Deng X, Wang S. Osteocompatibility evaluation of poly(glycine ethyl ester-co-alanine ethyl ester)phosphazene with honeycomb-patterned surface topography. J Biomed Mater Res A 2012; 101:307-17. [DOI: 10.1002/jbm.a.34282] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/02/2012] [Accepted: 05/17/2012] [Indexed: 11/06/2022]
|
28
|
Zhao L, Liu L, Wu Z, Zhang Y, Chu PK. Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. Biomaterials 2012; 33:2629-41. [PMID: 22204980 DOI: 10.1016/j.biomaterials.2011.12.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 12/10/2011] [Indexed: 01/14/2023]
Abstract
Micro/nanotopographical modification of biomaterials constitutes a promising approach to direct stem cell osteogenic differentiation to promote osseointegration. In this work, titania nanotubes (NTs) 25 and 80 nm in size with the acid-etched Ti topography (AcidTi) and hierarchical hybrid micropitted/nanotubular topographies (Micro/5VNT and Micro/20VNT) are produced to mimic the structure of the natural bone extracellular matrix (ECM). The effects on bone mesenchymal stem cell (MSC) osteogenic differentiation are studied systematically by various microscopic and biological characterization techniques. Cell adhesion is assayed by nucleus fluorescence staining and cell proliferation is studied by CCK-8 assay and flow cytometry. Osteogenic differentiation is assayed by alkaline phosphatase (ALP) expression, collagen secretion, matrix mineralization, and quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis on the osteogenesis related gene expression. All the topographies are observed to induce MSC osteogenic differentiation in the absence of osteogenic supplements. The nanotube surfaces significantly promote cell attachment and spread, collagen secretion and ECM mineralization, as well as osteogenesis-related gene expression. Among them, Micro/20VNT shows the best ability to simultaneously promote MSC proliferation and osteogenic differentiation. Our results unambiguously demonstrate their excellent ability to support MSC proliferation and induce MSC osteogenic differentiation, especially those with the micropitted topography.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Periodontology and Oral Medicine, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | | | | | | | | |
Collapse
|
29
|
Tejeda-Montes E, Smith KH, Poch M, López-Bosque MJ, Martín L, Alonso M, Engel E, Mata A. Engineering membrane scaffolds with both physical and biomolecular signaling. Acta Biomater 2012; 8:998-1009. [PMID: 21945830 DOI: 10.1016/j.actbio.2011.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/03/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023]
Abstract
We report on the combination of a top-down and bottom-up approach to develop thin bioactive membrane scaffolds based on functional elastin-like polymers (ELPs). Our strategy combines ELP cross-linking and assembly, and a variety of standard and novel micro/nanofabrication techniques to create self-supporting membranes down to ∼500 nm thick that incorporate both physical and biomolecular signals, which can be easily tailored for a specific application. In this study we used an ELP that included the cell-binding motif arginine-glycine-aspartic acid-serine (RGDS). Furthermore, fabrication processes were developed to create membranes that exhibited topographical patterns with features down to 200 nm in lateral dimensions and up to 10 μm in height on either one or both sides, uniform and well-defined pores, or multiple ELP layers. A variety of processing parameters were tested in order to optimize membrane fabrication, including ELP and cross-linker concentration, temperature, reaction time and ambient humidity. Membrane micro/nanopatterning, swelling and stiffness were characterized by atomic force microscopy, nanoindentation tests and scanning electron microscopy. Upon immersion in phosphate-buffered saline and an increase in temperature from 25 to 40°C, membranes exhibited a significant increase in surface stiffness, with the reduced Young's modulus increasing with temperature. Finally, rat mesenchymal stem cells were cultured on thin RGDS-containing membranes, which allowed cell adhesion, qualitatively enhanced spreading compared to membranes without RGDS epitopes and permitted proliferation. Furthermore, cell morphology was drastically affected by topographical patterns on the surface of the membranes.
Collapse
|
30
|
Sharma AK, Bury MI, Fuller NJ, Rozkiewicz DI, Hota PV, Kollhoff DM, Webber MJ, Tapaskar N, Meisner JW, Lariviere PJ, Destefano S, Wang D, Ameer GA, Cheng EY. Growth factor release from a chemically modified elastomeric poly(1,8-octanediol-co-citrate) thin film promotes angiogenesis in vivo. J Biomed Mater Res A 2011; 100:561-70. [PMID: 22162300 DOI: 10.1002/jbm.a.33306] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 01/13/2023]
Abstract
The ultimate success of in vivo organ formation utilizing ex vivo expanded "starter" tissues relies heavily upon the level of vascularization provided by either endogenous or artificial induction of angiogenic or vasculogenic events. To facilitate proangiogenic outcomes and promote tissue growth, an elastomeric scaffold previously shown to be instrumental in the urinary bladder regenerative process was modified to release proangiogenic growth factors. Carboxylic acid groups on poly(1,8-octanediol-co-citrate) films (POCfs) were modified with heparan sulfate creating a heparan binding POCf (HBPOCf). Release of proangiogenic growth factors vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), and insulin-like growth factor 1 (IGF-1) from HBPOCfs demonstrated an approximate threefold increase over controls during a 30-day time course in vitro. Atomic force microscopy demonstrated significant topological differences between films. Subcutaneous implantation of POCf alone, HBPOCf, POCf-VEGF, and HBPOCf-VEGF within the dorsa of nude rats yielded increased vascular growth in HBPOCf-VEGF constructs. Vessel quantification studies revealed that POCfs alone contained 41.1 ± 4.1 vessels/mm², while HBPOCf, POCf-VEGF, and HBPOCF-VEGF contained 41.7 ± 2.6, 76.3 ± 9.4, and 167.72 ± 15.3 vessels/mm², respectively. Presence of increased vessel growth was demonstrated by CD31 and vWF immunostaining in HBPOCf-VEGF implanted areas. Data demonstrate that elastomeric POCfs can be chemically modified and possess the ability to promote angiogenesis in vivo.
Collapse
Affiliation(s)
- Arun K Sharma
- Division of Pediatric Urology, Children's Memorial Hospital of Chicago, Chicago, Illinois 60614, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Control of cell nucleus shapes via micropillar patterns. Biomaterials 2011; 33:1730-5. [PMID: 22133552 DOI: 10.1016/j.biomaterials.2011.11.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/13/2011] [Indexed: 12/19/2022]
Abstract
We herein report a material technique to control the shapes of cell nuclei by the design of the microtopography of substrates to which the cells adhere. Poly(D,L-lactide-co-glycolide) (PLGA) micropillars or micropits of a series of height or depth were fabricated, and some surprising self deformation of the nuclei of bone marrow stromal cells (BMSCs) was found in the case of micropillars with a sufficient height. Despite severe nucleus deformation, BMSCs kept the ability of proliferation and differentiation. We further demonstrated that the shapes of cell nuclei could be regulated by the appropriate micropillar patterns. Besides circular and elliptoid shapes, some unusual nucleus shapes of BMSCs have been achieved, such as square, cross, dumbbell, and asymmetric sphere-protrusion.
Collapse
|
32
|
Cha KJ, Park KS, Kang SW, Cha BH, Lee BK, Han IB, Shin DA, Kim DS, Lee SH. Effect of Replicated Polymeric Substrate with Lotus Surface Structure on Adipose-Derived Stem Cell Behaviors. Macromol Biosci 2011; 11:1357-63. [DOI: 10.1002/mabi.201100134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Indexed: 10/24/2022]
|
33
|
Pelaez-Vargas A, Gallego-Perez D, Magallanes-Perdomo M, Fernandes MH, Hansford DJ, De Aza AH, Pena P, Monteiro FJ. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent Mater 2011; 27:581-9. [PMID: 21459429 DOI: 10.1016/j.dental.2011.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/14/2011] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
UNLABELLED Titanium implants are the gold standard in dentistry; however, problems such as gingival tarnishing and peri-implantitis have been reported. For zirconia to become a competitive alternative dental implant material, surface modification techniques that induce guided tissue growth must be developed. OBJECTIVES To develop alternative surface modification techniques to promote guided tissue regeneration on zirconia materials, for applications in dental implantology. METHODS A methodology that combined soft lithography and sol-gel chemistry was used to obtain isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates. The materials were characterized via chemical, structural, surface morphology approaches. In vitro biological behavior was evaluated in terms of early adhesion and viability/metabolic activity of human osteoblast-like cells. Statistical analysis was conducted using one-way ANOVA/Tukey HSD post hoc test. RESULTS Isotropic micropatterned silica coatings on yttria-stabilized zirconia substrates were obtained using a combined approach based on sol-gel technology and soft lithography. Micropatterned silica surfaces exhibited a biocompatible behavior, and modulated cell responses (i.e. inducing early alignment of osteoblast-like cells). After 7d of culture, the cells fully covered the top surfaces of pillar microstructured silica films. SIGNIFICANCE The micropatterned silica films on zirconia showed a biocompatible response, and were capable of inducing guided osteoblastic cell adhesion, spreading and propagation. The results herein presented suggest that surface-modified ceramic implants via soft lithography and sol-gel chemistry could potentially be used to guide periodontal tissue regeneration, thus promoting tight tissue apposition, and avoiding gingival retraction and peri-implantitis.
Collapse
Affiliation(s)
- A Pelaez-Vargas
- Instituto de Engenharia Biomédica, Divisão de Biomateriais, Universidade do Porto, Rua do Campo Alegre 823, Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li X, Huang J, Edirisinghe M, Bonfield W. An electrically driven jetting technique for diverse high-resolution surface structures of nanometre hydroxyapatite crystals. Colloids Surf B Biointerfaces 2011; 82:562-70. [DOI: 10.1016/j.colsurfb.2010.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/07/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
|
35
|
Pelaez-Vargas A, Gallego-Perez D, Ferrell N, Fernandes MH, Hansford D, Monteiro FJ. Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:670-676. [PMID: 20964878 DOI: 10.1017/s1431927610094158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
While there has been rapid development of microfabrication techniques to produce high-resolution surface modifications on a variety of materials in the last decade, there is still a strong need to produce novel alternatives to induce guided tissue regeneration on dental implants. High-resolution microscopy provides qualitative and quantitative techniques to study cellular guidance in the first stages of cell-material interactions. The purposes of this work were (1) to produce and characterize the surface topography of isotropic and anisotropic microfabricated silica thin films obtained by sol-gel processing, and (2) to compare the in vitro biological behavior of human bone marrow stem cells on these surfaces at early stages of adhesion and propagation. The results confirmed that a microstamping technique can be used to produce isotropic and anisotropic micropatterned silica coatings. Atomic force microscopy analysis was an adequate methodology to study in the same specimen the sintering derived contraction of the microfabricated coatings, using images obtained before and after thermal cycle. Hard micropatterned coatings induced a modulation in the early and late adhesion stages of cell-material and cell-cell interactions in a geometry-dependent manner (i.e., isotropic versus anisotropic), as it was clearly determined, using scanning electron and fluorescence microscopies.
Collapse
Affiliation(s)
- A Pelaez-Vargas
- INEB - Instituto de Engenharia Biomédica and Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
36
|
Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. NANO TODAY 2010; 5:553-569. [PMID: 21383869 PMCID: PMC3048656 DOI: 10.1016/j.nantod.2010.10.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant effort continues to be exerted toward the improvement of transfection mediated by nonviral vectors. These endeavors are often focused on the design of particulate carriers with properties that encourage efficient accumulation at the membrane surface, particle uptake, and endosomal escape. Despite its demonstrated importance in successful nonviral transfection, relatively little investigation has been done to understand the pressures driving internalized vectors into favorable nondegradative endocytic pathways. Improvements in transfection efficiency have been noted for complexes delivered with a substrate-mediated approach, but the reasons behind such enhancements remain unclear. The phenotypic changes exhibited by cells interacting with nano- and micro-featured substrates offer hints that may explain these effects. This review describes nanoscale particulate and substrate parameters that influence both the uptake of nonviral gene carriers and the endocytic phenotype of interacting cells, and explores the molecular links that may mediate these interactions. Substrate-mediated control of endocytosis represents an exciting new design parameter that will guide the creation of efficient transgene carriers.
Collapse
Affiliation(s)
- Andrew F. Adler
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|