1
|
Duan X, Wang P, He L, He Z, Wang S, Yang F, Gao C, Ren W, Lin J, Chen T, Xu C, Li J, Wu A. Peptide-Functionalized Inorganic Oxide Nanomaterials for Solid Cancer Imaging and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311548. [PMID: 38333964 DOI: 10.1002/adma.202311548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Indexed: 02/10/2024]
Abstract
The diagnosis and treatment of solid tumors have undergone significant advancements marked by a trend toward increased specificity and integration of imaging and therapeutic functions. The multifaceted nature of inorganic oxide nanomaterials (IONs), which boast optical, magnetic, ultrasonic, and biochemical modulatory properties, makes them ideal building blocks for developing multifunctional nanoplatforms. A promising class of materials that have emerged in this context are peptide-functionalized inorganic oxide nanomaterials (PFIONs), which have demonstrated excellent performance in multifunctional imaging and therapy, making them potential candidates for advancing solid tumor diagnosis and treatment. Owing to the functionalities of peptides in tumor targeting, penetration, responsiveness, and therapy, well-designed PFIONs can specifically accumulate and release therapeutic or imaging agents at the solid tumor sites, enabling precise imaging and effective treatment. This review provides an overview of the recent advances in the use of PFIONs for the imaging and treatment of solid tumors, highlighting the superiority of imaging and therapeutic integration as well as synergistic treatment. Moreover, the review discusses the challenges and prospects of PFIONs in depth, aiming to promote the intersection of the interdisciplinary to facilitate their clinical translation and the development of personalized diagnostic and therapeutic systems by optimizing the material systems.
Collapse
Affiliation(s)
- Xiaolin Duan
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pin Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Zhen He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwei Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Yang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Changyong Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Wenzhi Ren
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Tianxiang Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Chen Xu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi, 315300, China
| |
Collapse
|
2
|
Zhu T, Zhou H, Chen X, Zhu Y. Recent advances of responsive scaffolds in bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1296881. [PMID: 38047283 PMCID: PMC10691504 DOI: 10.3389/fbioe.2023.1296881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
The investigation of bone defect repair has been a significant focus in clinical research. The gradual progress and utilization of different scaffolds for bone repair have been facilitated by advancements in material science and tissue engineering. In recent times, the attainment of precise regulation and targeted drug release has emerged as a crucial concern in bone tissue engineering. As a result, we present a comprehensive review of recent developments in responsive scaffolds pertaining to the field of bone defect repair. The objective of this review is to provide a comprehensive summary and forecast of prospects, thereby contributing novel insights to the field of bone defect repair.
Collapse
Affiliation(s)
| | | | | | - Yuanjing Zhu
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Garima, Sharma D, Kumar A, Mostafavi E. Extracellular vesicle-based biovectors in chronic wound healing: Biogenesis and delivery approaches. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:822-840. [PMID: 37273778 PMCID: PMC10238601 DOI: 10.1016/j.omtn.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Chronic wounds remain an unresolved medical issue because of major social and therapeutic repercussions that require extensive focus. Recent related theragnostic focuses only on wound management and is not effectively promoting chronic wound healing. The rising number of patients with either under-healing or over-healing wounds highlights the ineffectiveness of current wound-healing treatments, and thus, there is an unmet need to focus on alternative treatments. To cover this gap, extracellular vesicles (EVs), for targeted delivery of therapeutics, are emerging as a potential therapy to treat both acute and persistent wounds. To address these issues, we explore the core biology of EVs, associated pharmacology, comprehension of immunogenic outcomes, and potential for long-term wound treatment with improved effectiveness and their nonacceptable side effects. Additionally, the therapeutic role of EVs in severe wound infections through biogenetic moderation, in combination with biomaterials (functional in nature), as well as drug carriers that can offer opportunities for the development of new treatments for this long-term condition, are also carefully elaborated, with an emphasis on biomaterial-based drug delivery systems. It is observed that exploring difficulties and potential outcomes of clinical translation of EV-based therapeutics for wound management has the potential to be adopted as a future therapy.
Collapse
Affiliation(s)
- Garima
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana 133207, India
| | - Deepika Sharma
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun, India
| | - Arun Kumar
- Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya 824209, India
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Wu H, Zhang Z, Zhang Y, Zhao Z, Zhu H, Yue C. Extracellular vesicle: A magic lamp to treat skin aging, refractory wound, and pigmented dermatosis? Front Bioeng Biotechnol 2022; 10:1043320. [PMID: 36420445 PMCID: PMC9676268 DOI: 10.3389/fbioe.2022.1043320] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 09/19/2023] Open
Abstract
Exposure of the skin to an external stimulus may lead to a series of irreversible dysfunctions, such as skin aging, refractory wounds, and pigmented dermatosis. Nowadays, many cutaneous treatments have failed to strike a balance between cosmetic needs and medical recovery. Extracellular vesicles (EVs) are one of the most promising therapeutic tools. EVs are cell-derived nanoparticles that can carry a variety of cargoes, such as nucleic acids, lipids, and proteins. They also have the ability to communicate with neighboring or distant cells. A growing body of evidence suggests that EVs play a significant role in skin repair. We summarize the current findings of EV therapy in skin aging, refractory wound, and pigmented dermatosis and also describe the novel engineering strategies for optimizing EV function and therapeutic outcomes.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhenchun Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuemeng Zhang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| | - Zhenlin Zhao
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Hongming Zhu
- Institute for Regenerative Medicine & Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan’an, School of Basic Medicine, Yan’an University, Yan’an, China
| |
Collapse
|
5
|
Tailored Extracellular Vesicles: Novel Tool for Tissue Regeneration. Stem Cells Int 2022; 2022:7695078. [PMID: 35915850 PMCID: PMC9338735 DOI: 10.1155/2022/7695078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Extracellular vesicles (EVs) play an essential part in multiple pathophysiological processes including tissue injury and regeneration because of their inherent characteristics of small size, low immunogenicity and toxicity, and capability of carrying a variety of bioactive molecules and mediating intercellular communication. Nevertheless, accumulating studies have shown that the application of EVs faces many challenges such as insufficient therapeutic efficacy, a lack of targeting capability, low yield, and rapid clearance from the body. It is known that EVs can be engineered, modified, and designed to encapsulate therapeutic cargos like proteins, peptides, nucleic acids, and drugs to improve their therapeutic efficacy. Targeted peptides, antibodies, aptamers, magnetic nanoparticles, and proteins are introduced to modify various cell-derived EVs for increasing targeting ability. In addition, extracellular vesicle mimetics (EMs) and self-assembly EV-mimicking nanocomplex are applied to improve production and simplify EV purification process. The combination of EVs with biomaterials like hydrogel, and scaffolds dressing endows EVs with long-term therapeutic efficacy and synergistically enhanced regenerative outcome. Thus, we will summarize recent developments of EV modification strategies for more extraordinary regenerative effect in various tissue injury repair. Subsequently, opportunities and challenges of promoting the clinical application of engineered EVs will be discussed.
Collapse
|
6
|
Zanette RDSS, Fayer L, de Oliveira ER, Almeida CG, Oliveira CR, de Oliveira LFC, Maranduba CMC, Alvarenga ÉC, Brandão HM, Munk M. Cytocompatibility and osteogenic differentiation of stem cells from human exfoliated deciduous teeth with cotton cellulose nanofibers for tissue engineering and regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:627-650. [PMID: 34807809 DOI: 10.1080/09205063.2021.2008787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulose nanofibers (CNFs) are natural polymers with physical-chemical properties that make them very attractive for modulating stem cell differentiation, a crucial step in tissue engineering and regenerative medicine. Although cellulose is cytocompatible, when materials are in nanoscale, they become more reactive, needing to evaluate its potential toxic effect to ensure safe application. This study aimed to investigate the cytocompatibility of cotton CNF and its differentiation capacity induction on stem cells from human exfoliated deciduous teeth. First, the cotton CNF was characterized. Then, the cytocompatibility and the osteogenic differentiation induced by cotton CNF were examined. The results revealed that cotton CNFs have about 6-18 nm diameters, and the zeta potential was -10 mV. Despite gene expression alteration, the cotton CNF shows good cytocompatibility. The cotton CNF induced an increase in phosphatase alkaline activity and extracellular matrix mineralization. The results indicate that cotton CNF has good cytocompatibility and can promote cell differentiation without using chemical inducers, showing great potential as a new differentiation inductor for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Rafaella de S S Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eduarda R de Oliveira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Camila G Almeida
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Cauê R Oliveira
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, São Carlos, Brazil
| | - Luiz F C de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carlos M C Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Érika C Alvarenga
- Department of Natural Sciences, Federal University of São João Del Rei, São João del Rei, Brazil
| | - Humberto M Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
7
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Li Z, Zu X, Du Z, Hu Z. Research on magnetic bead motion characteristics based on magnetic beads preset technology. Sci Rep 2021; 11:19995. [PMID: 34620919 PMCID: PMC8497522 DOI: 10.1038/s41598-021-99331-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
In order to improve the detection efficiency and accuracy of microfluidic chip, a magnetic beads preset technology were designed by using double permanent magnets as external magnetic field and the motion characteristics of preset magnetic beads were studied. The control principle of magnetic beads preset technology was introduced in detail, and the control structure was designed. The coupled field characteristics for magnetic beads in microchannels were analyzed, and the motion models of magnetic beads were established based on the magnetic beads preset technology, including capture motion and mixing motion. The relationship between the magnetic field force and the flow velocity for capturing magnetic bead, and the mixing time under the influence of flow field and magnetic field were derived. The magnetic beads preset technology effect was verified by experiments and numerical simulations were developed to analyze the influence of aspect ratio of permanent magnet on magnetic field. The study showed that the accuracy and efficiency of the magnetic bead control in the microchannel could be better realized by the magnetic beads preset technology. The derivation of the magnetic bead motion model can understand the motion characteristics of the magnetic bead more clearly, facilitate accurate control of the magnetic bead, and improve the success rate of the microfluidic detection.
Collapse
Affiliation(s)
- Zhao Li
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Xiangyang Zu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhe Du
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
9
|
Pardo A, Gómez-Florit M, Barbosa S, Taboada P, Domingues RMA, Gomes ME. Magnetic Nanocomposite Hydrogels for Tissue Engineering: Design Concepts and Remote Actuation Strategies to Control Cell Fate. ACS NANO 2021; 15:175-209. [PMID: 33406360 DOI: 10.1021/acsnano.0c08253] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most tissues of the human body are characterized by highly anisotropic physical properties and biological organization. Hydrogels have been proposed as scaffolding materials to construct artificial tissues due to their water-rich composition, biocompatibility, and tunable properties. However, unmodified hydrogels are typically composed of randomly oriented polymer networks, resulting in homogeneous structures with isotropic properties different from those observed in biological systems. Magnetic materials have been proposed as potential agents to provide hydrogels with the anisotropy required for their use on tissue engineering. Moreover, the intrinsic properties of magnetic nanoparticles enable their use as magnetomechanic remote actuators to control the behavior of the cells encapsulated within the hydrogels under the application of external magnetic fields. In this review, we combine a detailed summary of the main strategies to prepare magnetic nanoparticles showing controlled properties with an analysis of the different approaches available to their incorporation into hydrogels. The application of magnetically responsive nanocomposite hydrogels in the engineering of different tissues is also reviewed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco-Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Karvelas EG, Lampropoulos NK, Benos LT, Karakasidis T, Sarris IE. On the magnetic aggregation of Fe 3O 4 nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 198:105778. [PMID: 33039920 DOI: 10.1016/j.cmpb.2020.105778] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Background and objective In-vivo MRI-guided drug delivery concept is a personalized technique towards cancer treatment. A major bottleneck of this method, is the weak magnetic response of nanoparticles. A crucial improvement is the usage of paramagnetic nanoparticles aggregates since they can easier manipulated in human arteries than isolated particles. However its significance, not a comprehensive study to estimate the mean length and time to aggregate exists. Methods The present detailed numerical study includes all major discrete and continues forces and moments of the nanoscale in a global model. The effort is given in summarizing the effects of particle diameter and concentration, and magnetic field magnitude to comprehensive relations. Therefore, several cases with nanoparticles having various diameters and concentrations are simulated as magnetic field increases. Results It is found that aggregations with maximum length equal to 2000nm can be formed. In addition, the increase of the concentration leads to a decrease in the amount of the isolated particles. Consequently, 33% of the particles are isolated for the concentration of 2.25mg/ml while 13% for the concentration of 10mg/ml. Moreover, the increase of the permanent magnetic field and diameter of particles gives rise to an asymptotic behavior in the number of isolated particles. Furthermore, the mean length of aggregates scales linear with diameter and magnetic field, however, concentration increase results in a weaker effect. The larger aggregation that is formed is composed by 21 particles. Smaller time is needed for the completion of the aggregation process with larger particles. Additionally, the increase of the magnitude of the magnetic field leads to a decrease in the aggregation time process. Therefore, 8.5ms are needed for the completion of the aggregation process for particles of 100nm at B0=0.1T while 7ms at B0=0.9T. Surprisedly, the mean time to aggregate is of the same order as in microparticles, although, with an opposite trend. Conclusions In this study, the evolution of the mean length of aggregations as well as the completion time of the aggregation process in the nano and micro range is evaluated. The present results could be useful to improve the magnetic nanoparticles assisted drug delivery method in order to minimize the side effects from the convectional cancer treatments like radiation and chemotherapy.
Collapse
Affiliation(s)
- E G Karvelas
- Department of Mechanical Engineering, University of West Attica, Aigaleo, Greece
| | | | - L T Benos
- Institute for Bio-Economy and Agri-Technology (iBO), Centre for Research and Technology, Hellas (CERTH), Thessaloniki, Greece
| | - T Karakasidis
- Department of Civil Engineering, University of Thessaly, Volos, Greece; Department of Physics, University of Thessaly, Lamia, Greece
| | - I E Sarris
- Department of Mechanical Engineering, University of West Attica, Aigaleo, Greece.
| |
Collapse
|
11
|
Magnetic targeting enhances the cutaneous wound healing effects of human mesenchymal stem cell-derived iron oxide exosomes. J Nanobiotechnology 2020; 18:113. [PMID: 32799868 PMCID: PMC7429707 DOI: 10.1186/s12951-020-00670-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Human mesenchymal stem cell (MSC)-derived exosomes (Exos) are a promising therapeutic agent for cell-free regenerative medicine. However, their poor organ-targeting ability and therapeutic efficacy have been found to critically limit their clinical applications. In the present study, we fabricated iron oxide nanoparticle (NP)-labeled exosomes (Exo + NPs) from NP-treated MSCs and evaluated their therapeutic efficacy in a clinically relevant model of skin injury. We found that the Exos could be readily internalized by human umbilical vein endothelial cells (HUVECs), and could significantly promote their proliferation, migration, and angiogenesis both in vitro and in vivo. Moreover, the protein expression of proliferative markers (Cyclin D1 and Cyclin A2), growth factors (VEGFA), and migration-related chemokines (CXCL12) was significantly upregulated after Exo treatment. Unlike the Exos prepared from untreated MSCs, the Exo + NPs contained NPs that acted as a magnet-guided navigation tool. The in vivo systemic injection of Exo + NPs with magnetic guidance significantly increased the number of Exo + NPs that accumulated at the injury site. Furthermore, these accumulated Exo + NPs significantly enhanced endothelial cell proliferation, migration, and angiogenic tubule formation in vivo; moreover, they reduced scar formation and increased CK19, PCNA, and collagen expression in vivo. Collectively, these findings confirm the development of therapeutically efficacious extracellular nanovesicles and demonstrate their feasibility in cutaneous wound repair.
Collapse
|
12
|
Popescu Din IM, Balas M, Hermenean A, Vander Elst L, Laurent S, Burtea C, Cinteza LO, Dinischiotu A. Novel Polymeric Micelles-Coated Magnetic Nanoparticles for In Vivo Bioimaging of Liver: Toxicological Profile and Contrast Enhancement. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2722. [PMID: 32549296 PMCID: PMC7345181 DOI: 10.3390/ma13122722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles are intensively studied for magnetic resonance imaging (MRI) as contrast agents but yet there remained some gaps regarding their toxicity potential and clinical implications of their biodistribution in organs. This study presents the effects induced by magnetite nanoparticles encapsulated in polymeric micelles (MNP-DSPE-PEG) on biochemical markers, metabolic functions, and MRI signal in CD1 mice liver. Three groups of animals, one control and the other ones injected with a suspension of five, respectively, 15 mg Fe/kg bw nanoparticles, were monitored up to 14 days. The results indicated the presence of MNP-DSPE-PEG in the liver in the first two days of the experiment. The most significant biochemical changes also occurred in the first 3 days after exposure when the most severe histological changes were observed. The change of the MRI signal intensity on the T2-weighted images and increased transverse relaxation rates R2 in the liver were observed after the first minutes from the nanoparticle administration. The study shows that the alterations of biomarkers level resulting from exposure to MNP-DSPE-PEG are restored in time in mice liver. This was associated with a significant contrast on T2-weighted images and made us conclude that these nanoparticles might be potential candidates for use as a contrast agent in liver medical imaging.
Collapse
Affiliation(s)
- Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului street, 310396 Arad, Romania
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| |
Collapse
|
13
|
Joshi A, Naatz H, Faber K, Pokhrel S, Dringen R. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells. Neurochem Res 2020; 45:809-824. [PMID: 31997104 PMCID: PMC7078150 DOI: 10.1007/s11064-020-02954-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 01/02/2020] [Indexed: 01/27/2023]
Abstract
Copper oxide nanoparticles (CuO-NPs) are well known for their cytotoxicity which in part has been attributed to the release of copper ions from CuO-NPs. As iron-doping has been reported to reduce the susceptibility of CuO-NPs to dissolution, we have compared pure CuO-NPs and CuO-NPs that had been doped with 10% iron (CuO-Fe-NPs) for copper release and for their toxic potential on C6 glioma cells. Physicochemical characterization revealed that dimercaptosuccinate (DMSA)-coated CuO-NPs and CuO-Fe-NPs did not differ in their size or zeta potential. However, the redox activity and liberation of copper ions from CuO-Fe-NPs was substantially slower compared to that from CuO-NPs, as demonstrated by cyclic voltammetry and by the photometric quantification of the copper ion-bathocuproine complex, respectively. Exposure of C6 cells to these NPs caused an almost identical cellular copper accumulation and each of the two types of NPs induced ROS production and cell toxicity. However, the time- and concentration-dependent loss in cell viability was more severe for cells that had been treated with CuO-NPs compared to cells exposed to CuO-Fe-NPs. Copper accumulation and toxicity after exposure to either CuO-NPs or CuO-Fe-NPs was prevented in the presence of copper chelators, while neutralization of the lysosomal pH by bafilomycin A1 prevented toxicity without affecting cellular copper accumulation or ROS production. These data demonstrate that iron-doping does not affect cellular accumulation of CuO-NPs and suggests that the intracellular liberation of copper ions from CuO-NPs is slowed by the iron doping, which in turn lowers the cell toxic potential of iron-doped CuO-NPs.
Collapse
Affiliation(s)
- Arundhati Joshi
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany
| | - Hendrik Naatz
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359, Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Kathrin Faber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany
| | - Suman Pokhrel
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359, Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany.
| |
Collapse
|
14
|
Fahmy HM, Aly EM, Mohamed FF, Noor NA, Elsayed AA. Neurotoxicity of green- synthesized magnetic iron oxide nanoparticles in different brain areas of wistar rats. Neurotoxicology 2019; 77:80-93. [PMID: 31899250 DOI: 10.1016/j.neuro.2019.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
AIMS The aim of the present study was to evaluate the toxicity of magnetic iron oxide nanoparticles (MIONs) which were synthesized using carob leaf extract on various brain areas of Wistar rats. MAIN METHODS Carob leaf synthesized-MIONs were characterized using different techniques: Dynamic Light Scattering (DLS), Transmission Electron Microscope (TEM), UV-vis spectrophotometer, Fourier Transform infrared (FTIR), X-Ray Diffraction (XRD) and Atomic Force Microscope (AFM). The toxicity of MIONs in vivo was evaluated by: monitoring rat's body weight, measuring iron content in different brain areas, evaluating some oxidative stress parameters, estimating acetylcholinesterase (AChE) in addition to histopathological investigations. KEY FINDINGS The present study demonstrated no body weight changes of MIONs- treated rats. According to the conditions of the present study, the hippocampus and striatum were the most affected areas and demonstrated neuronal degeneration due to MIONs exposure. MIONs treatment of Wistar rats, also affected the iron homeostasis in both striatum and midbrain by decreasing iron content in these areas. The least affected areas were thalamus and cerebellum. The histopathological examination of brain areas demonstrated moderate neuronal degeneration in hippocampus and striatum, mild neuronal degeneration in cortex and slight degeneration in hypothalamus and pons-medulla areas were detected. SIGNIFICANCE The results suggested that MIONs have a toxic impact on different brain areas and the effect varies according to the brain area.
Collapse
Affiliation(s)
- Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Esraa M Aly
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Faten F Mohamed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12613, Giza, Egypt
| | - Neveen A Noor
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Anwar A Elsayed
- Biophysics Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
15
|
Askri D, Cunin V, Béal D, Berthier S, Chovelon B, Arnaud J, Rachidi W, Sakly M, Amara S, Sève M, Lehmann SG. Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Nanotoxicology 2019; 13:1021-1040. [PMID: 31132913 DOI: 10.1080/17435390.2019.1621399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nanomaterials have gained much attention for their use and benefit in several fields. Iron Oxide Nanoparticles (IONPs) have been used in Biomedicine as contrast agents for imaging cancer cells. However, several studies reported the potential toxicity of those nanoparticles in different models, especially in cells. Therefore, in our present study, we investigated the effects of IONPs on the SH-SY5Y neuroblastoma cell line. We carried out cytotoxic and genotoxic studies to evaluate the phenotypic effects, and proteomic investigation to evaluate the molecular effects and the mechanisms by which this kind of NPs could induce toxicity. Our results showed that the use of three different sizes of IONPs (14, 22 and 30 nm) induced cell detachment, cell morphological changes, size, and concentration-dependent IONP internalization and cell mortality. IONPs induced slight genotoxic damage assayed by modified comet assay without affecting cell cycle, mitochondrial function, membrane integrity, intracellular calcium level, and without inducing ROS generation. All the studies were performed to compare also the effects of IONPs to the ferric iron by incubating cells with equivalent concentration of FeCl3. In all tests, the NPs exhibited more toxicity than the ferric iron. The proteomic analysis followed by gene ontology and pathway analysis evidenced the effects of IONPs on cytoskeleton, cell apoptosis, and cancer development. Our findings provided more information about IONP effects on human cells and especially on cancer cell line.
Collapse
Affiliation(s)
- Dalel Askri
- PROMETHEE Proteomic Platform, BEeSy, Grenoble Alpes University , Grenoble , France.,LBFA Inserm U1055, PROMETHEE Proteomic Platform , Grenoble , France.,CHU de Grenoble Alpes, Institut de Biologie et Pathologie , Grenoble, France.,Unit of Research in Integrated Physiology, College of Sciences of Bizerte, Carthage University , Bizerte , Tunisia
| | - Valérie Cunin
- PROMETHEE Proteomic Platform, BEeSy, Grenoble Alpes University , Grenoble , France.,LBFA Inserm U1055, PROMETHEE Proteomic Platform , Grenoble , France.,CHU de Grenoble Alpes, Institut de Biologie et Pathologie , Grenoble, France
| | - David Béal
- SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, University Grenoble Alpes , Grenoble , France
| | - Sylvie Berthier
- Cytometry Platform, Pole Biology, University Grenoble Alpes , Grenoble , France
| | - Benoit Chovelon
- CHU de Grenoble Alpes, Institut de Biologie et Pathologie , Grenoble, France.,DPM UMR 5063, University Grenoble Alpes , Grenoble , France
| | - Josiane Arnaud
- LBFA Inserm U1055, PROMETHEE Proteomic Platform , Grenoble , France.,CHU de Grenoble Alpes, Institut de Biologie et Pathologie , Grenoble, France
| | - Walid Rachidi
- SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, University Grenoble Alpes , Grenoble , France
| | - Mohsen Sakly
- Unit of Research in Integrated Physiology, College of Sciences of Bizerte, Carthage University , Bizerte , Tunisia
| | - Salem Amara
- Unit of Research in Integrated Physiology, College of Sciences of Bizerte, Carthage University , Bizerte , Tunisia
| | - Michel Sève
- PROMETHEE Proteomic Platform, BEeSy, Grenoble Alpes University , Grenoble , France.,LBFA Inserm U1055, PROMETHEE Proteomic Platform , Grenoble , France.,CHU de Grenoble Alpes, Institut de Biologie et Pathologie , Grenoble, France
| | - Sylvia G Lehmann
- PROMETHEE Proteomic Platform, BEeSy, Grenoble Alpes University , Grenoble , France.,LBFA Inserm U1055, PROMETHEE Proteomic Platform , Grenoble , France.,CHU de Grenoble Alpes, Institut de Biologie et Pathologie , Grenoble, France.,CNRS, IRD, IFSTTAR, ISTerre, University Grenoble Alpes , Grenoble , France.,CNRS, IRD, IFSTTAR, ISTerre, University Savoie Mont Blanc , Grenoble , France
| |
Collapse
|
16
|
Steinmeier J, Dringen R. Exposure of Cultured Astrocytes to Menadione Triggers Rapid Radical Formation, Glutathione Oxidation and Mrp1-Mediated Export of Glutathione Disulfide. Neurochem Res 2019; 44:1167-1181. [PMID: 30806880 DOI: 10.1007/s11064-019-02760-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Menadione (2-methyl-1,4-naphthoquinone) is a synthetic derivative of vitamin K that allows rapid redox cycling in cells and thereby generates reactive oxygen species (ROS). To test for the consequences of a treatment of brain astrocytes with menadione, we incubated primary astrocyte cultures with this compound. Incubation with menadione in concentrations of up to 30 µM did not affect cell viability. In contrast, exposure of astrocytes to 100 µM menadione caused a time-dependent impairment of cellular metabolism and cell functions as demonstrated by impaired glycolytic lactate production and strong increases in the activity of extracellular lactate dehydrogenase and in the number of propidium iodide-positive cells within 4 h of incubation. In addition, already 5 min after exposure of astrocytes to menadione a concentration-dependent increase in the number of ROS-positive cells as well as a concentration-dependent and transient accumulation of cellular glutathione disulfide (GSSG) were observed. The rapid intracellular GSSG accumulation was followed by an export of GSSG that was prevented in the presence of MK571, an inhibitor of the multidrug resistance protein 1 (Mrp1). Menadione-induced glutathione (GSH) oxidation and ROS formation were found accelerated after glucose-deprivation, while the presence of dicoumarol, an inhibitor of the menadione-reducing enzyme NQO1, did not affect the menadione-dependent GSSG accumulation. Our study demonstrates that menadione rapidly depletes cultured astrocytes of GSH via ROS-induced oxidation to GSSG that is subsequently exported via Mrp1.
Collapse
Affiliation(s)
- Johann Steinmeier
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany.
| |
Collapse
|
17
|
Sruthi S, Maurizi L, Nury T, Sallem F, Boudon J, Riedinger J, Millot N, Bouyer F, Lizard G. Cellular interactions of functionalized superparamagnetic iron oxide nanoparticles on oligodendrocytes without detrimental side effects: Cell death induction, oxidative stress and inflammation. Colloids Surf B Biointerfaces 2018; 170:454-462. [DOI: 10.1016/j.colsurfb.2018.06.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/02/2023]
|
18
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
19
|
Jia G, Han Y, An Y, Ding Y, He C, Wang X, Tang Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials 2018; 178:302-316. [PMID: 29982104 DOI: 10.1016/j.biomaterials.2018.06.029] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
Currently, glioma treatment is limited by two main factors: timely detection at onset or relapse and restriction of drugs by the blood-brain barrier (BBB) from entering the brain and influencing tumor growth. However, a safe BBB-traversing drug delivery system has brought new hope to glioma treatment. Exosomes have strong cargo-loading capacity and have the ability to cross the BBB. They can also be conferred with the ability for targeted delivery. Therefore, exosomes have great promise to be a targeted drug delivery vehicles. In this study, we firstly loaded superparamagnetic iron oxide nanoparticles (SPIONs) and curcumin (Cur) into exosomes and then conjugated the exosome membrane with neuropilin-1-targeted peptide (RGERPPR, RGE) by click chemistry to obtain glioma-targeting exosomes with imaging and therapeutic functions. When administered to glioma cells and orthotopic glioma models, we found that these engineered exosomes could cross the BBB smoothly and provided good results for targeted imaging and therapy of glioma. Furthermore, SPION-mediated magnetic flow hyperthermia (MFH) and Cur-mediated therapy also showed a potent synergistic antitumor effect. Therefore, the diagnostic and therapeutic effects on glioma were significantly improved, while reducing the side effects. We have designed a new type of glioma-targeting exosomes, which can carry nanomaterials and chemical agents for simultaneous diagnosis and treatment of glioma, thus providing a potential approach for improving the diagnosis and treatment effects of intracranial tumors.
Collapse
Affiliation(s)
- Gang Jia
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Yong Han
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Yanli An
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Yinan Ding
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Chen He
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Xihui Wang
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China
| | - Qiusha Tang
- Medical School of Southeast University, 87 Dingjiaqiao Road, Nanjing, 210009, China.
| |
Collapse
|
20
|
Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:199-213. [DOI: 10.1007/978-3-319-72041-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Shin JA, Kim YA, Kim HW, Kim HS, Lee KE, Kang JL, Park EM. Iron released from reactive microglia by noggin improves myelin repair in the ischemic brain. Neuropharmacology 2018; 133:202-215. [PMID: 29407213 DOI: 10.1016/j.neuropharm.2018.01.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/21/2018] [Accepted: 01/25/2018] [Indexed: 12/31/2022]
Abstract
We previously reported that the bone morphogenetic protein (BMP) antagonist, noggin, improved the repair process with an increase in the reactive microglia/macrophage population in the ischemic brain. Since BMP plays a role in intracellular iron homeostasis via the hepcidin/ferroportin axis, and iron is required for myelination, this study was aimed to determine whether noggin affected iron status and remyelination in the brain following ischemic stroke. We further examined the effect of blocking the BMP/hepcidin pathway on reactive microglia (BV2) and myelination of oligodendroglial cells (MO3.13) to define the link between microglial iron status and myelin formation. Following the noggin infusion into the ischemic brain of mice, the induction of hepcidin and ferritin protein levels decreased, and the number of myelinated axons and myelin thickness increased at 8 weeks after ischemic stroke. Noggin repressed the increase in hepcidin and ferritin levels in BV2 exposed to lipopolysaccharide (LPS) and oxygen/glucose deprivation and reperfusion (OGD/R). When MO3.13 were exposed to the conditioned media from noggin-treated BV2 (noggin CM) during reperfusion, OGD/R-induced MO3.13 cell death was reduced. Under normal conditions, noggin CM induced myelin production with an increase in ferritin levels in MO3.13, which was reversed by the iron chelator, deferoxamine. These results indicated that noggin altered the iron status in reactive microglia from the iron-storing to the iron-releasing phenotype, which contributed to myelin synthesis by providing iron. We suggest that the BMP/hepcidin pathway can be a target for the regulation of the iron status in microglia to enhance remyelination in the ischemic brain.
Collapse
Affiliation(s)
- Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Yul A Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Hye Won Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Hee-Sun Kim
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Kyung-Eun Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Jihee Lee Kang
- Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Department of Physiology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea; Tissue Injury Defense Research Center, College of Medicine, Ewha Womans University, Seoul, 07985, Republic of Korea.
| |
Collapse
|
22
|
Marín-Barba M, Gavilán H, Gutiérrez L, Lozano-Velasco E, Rodríguez-Ramiro I, Wheeler GN, Morris CJ, Morales MP, Ruiz A. Unravelling the mechanisms that determine the uptake and metabolism of magnetic single and multicore nanoparticles in a Xenopus laevis model. NANOSCALE 2018; 10:690-704. [PMID: 29242877 DOI: 10.1039/c7nr06020c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicore superparamagnetic nanoparticles have been proposed as ideal tools for some biomedical applications because of their high magnetic moment per particle, high specific surface area and long term colloidal stability. Through controlled aggregation and packing of magnetic cores it is possible to obtain not only single-core but also multicore and hollow spheres with internal voids. In this work, we compare toxicological properties of single and multicore nanoparticles. Both types of particles showed moderate in vitro toxicity (MTT assay) tested in Hep G2 (human hepatocellular carcinoma) and Caco-2 (human colorectal adenocarcinoma) cells. The influence of surface chemistry in their biological behavior was also studied after functionalization with O,O'-bis(2-aminoethyl) PEG (2000 Da). For the first time, these nanoparticles were evaluated in a Xenopus laevis model studying their whole organism toxicity and their impact upon iron metabolism. The degree of activation of the metabolic pathway depends on the size and surface charge of the nanoparticles which determine their uptake. The results also highlight the potential of Xenopus laevis model bridging the gap between in vitro cell-based assays and rodent models for toxicity assessment to develop effective nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- M Marín-Barba
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rojas JM, Gavilán H, Del Dedo V, Lorente-Sorolla E, Sanz-Ortega L, da Silva GB, Costo R, Perez-Yagüe S, Talelli M, Marciello M, Morales MP, Barber DF, Gutiérrez L. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater 2017; 58:181-195. [PMID: 28536061 DOI: 10.1016/j.actbio.2017.05.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. STATEMENT OF SIGNIFICANCE Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a biological milieu nanoparticles can aggregate and this can affect their magnetic properties and their degradation. In this work, we showed that iron oxide nanoparticles trigger the iron metabolism in macrophages, the main cell type involved in iron homeostasis in the organism. We also show that aggregation can affect nanoparticle magnetic properties when inoculated in animal models. This work confirms iron oxide nanoparticle biocompatibility and highlights the necessity to assess in vivo nanoparticle aggregation to successfully develop biomedical applications.
Collapse
Affiliation(s)
- José M Rojas
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación en Sanidad Animal (CISA-INIA), Ctra. de Algete a El Casar s/n, Valdeolmos, 28130 Madrid, Spain
| | - Helena Gavilán
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Vanesa Del Dedo
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Lorente-Sorolla
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Gustavo B da Silva
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; Department of Chemistry, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, Seropédica, 23897-000 RJ, Brazil
| | - Rocío Costo
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Perez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marina Talelli
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marzia Marciello
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucía Gutiérrez
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; Department of Analytical Chemistry, Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza and CIBER-BBN, C/ Mariano Esquillor, s/n, 50018 Zaragoza, Spain.
| |
Collapse
|
24
|
Rastedt W, Thiel K, Dringen R. Uptake of fluorescent iron oxide nanoparticles in C6 glioma cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa6c4d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Madhusudanan P, Reade S, Shankarappa SA. Neuroglia as targets for drug delivery systems: A review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:667-679. [DOI: 10.1016/j.nano.2016.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 12/13/2022]
|
26
|
Kostiv U, Patsula V, Šlouf M, Pongrac IM, Škokić S, Radmilović MD, Pavičić I, Vrček IV, Gajović S, Horák D. Physico-chemical characteristics, biocompatibility, and MRI applicability of novel monodisperse PEG-modified magnetic Fe3O4&SiO2 core–shell nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra00224f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Biocompatible monodisperse PEG-modified magnetic Fe3O4&SiO2 core–shell nanoparticles with controlled size provided sufficient contrast for magnetic resonance imaging (MRI).
Collapse
Affiliation(s)
- Uliana Kostiv
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Czech Republic
| | - Igor M. Pongrac
- University of Zagreb
- School of Medicine
- Croatian Institute for Brain Research
- 10000 Zagreb
- Croatia
| | - Siniša Škokić
- University of Zagreb
- School of Medicine
- Croatian Institute for Brain Research
- 10000 Zagreb
- Croatia
| | | | - Ivan Pavičić
- Institute for Medical Research and Occupational Health
- Analytical Toxicology and Mineral Metabolism Unit
- 10000 Zagreb
- Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health
- Analytical Toxicology and Mineral Metabolism Unit
- 10000 Zagreb
- Croatia
| | - Srećko Gajović
- University of Zagreb
- School of Medicine
- Croatian Institute for Brain Research
- 10000 Zagreb
- Croatia
| | - Daniel Horák
- Institute of Macromolecular Chemistry
- Academy of Sciences of the Czech Republic
- Czech Republic
| |
Collapse
|
27
|
Song B, Zhang Y, Liu J, Feng X, Zhou T, Shao L. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress? NANOSCALE RESEARCH LETTERS 2016; 11:291. [PMID: 27295259 PMCID: PMC4905860 DOI: 10.1186/s11671-016-1508-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/30/2016] [Indexed: 05/31/2023]
Abstract
With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.
Collapse
Affiliation(s)
- Bin Song
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - YanLi Zhang
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - XiaoLi Feng
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Ting Zhou
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - LongQuan Shao
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
28
|
Valdiglesias V, Fernández-Bertólez N, Kiliç G, Costa C, Costa S, Fraga S, Bessa MJ, Pásaro E, Teixeira JP, Laffon B. Are iron oxide nanoparticles safe? Current knowledge and future perspectives. J Trace Elem Med Biol 2016; 38:53-63. [PMID: 27056797 DOI: 10.1016/j.jtemb.2016.03.017] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/14/2022]
Abstract
Due to their unique physicochemical properties, including superparamagnetism, iron oxide nanoparticles (ION) have a number of interesting applications, especially in the biomedical field, that make them one of the most fascinating nanomaterials. They are used as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Together with these valuable uses, concerns regarding the onset of unexpected adverse health effects following exposure have been also raised. Nevertheless, despite the numerous ION purposes being explored, currently available information on their potential toxicity is still scarce and controversial data have been reported. Although ION have traditionally been considered as biocompatible - mainly on the basis of viability tests results - influence of nanoparticle surface coating, size, or dose, and of other experimental factors such as treatment time or cell type, has been demonstrated to be important for ION in vitro toxicity manifestation. In vivo studies have shown distribution of ION to different tissues and organs, including brain after passing the blood-brain barrier; nevertheless results from acute toxicity, genotoxicity, immunotoxicity, neurotoxicity and reproductive toxicity investigations in different animal models do not provide a clear overview on ION safety yet, and epidemiological studies are almost inexistent. Much work has still to be done to fully understand how these nanomaterials interact with cellular systems and what, if any, potential adverse health consequences can derive from ION exposure.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - Natalia Fernández-Bertólez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain; Department of Cell and Molecular Biology, Universidade da Coruña, Facultad de Ciencias, Campus A Zapateira s/n, A Coruña 15071, Spain
| | - Gözde Kiliç
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Carla Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Solange Costa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Sonia Fraga
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Maria Joao Bessa
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, Porto 4000-055, Portugal; EPIUnit-Institute of Public Health, University of Porto, Rua das Taipas, 135, Porto 4050-600, Portugal
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Edificio de Servicios Centrales de Investigación, Campus Elviña s/n, A Coruña 15071, Spain.
| |
Collapse
|
29
|
Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, Desboeufs K, Michel A, Pellegrino T, Lalatonne Y, Wilhelm C. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS NANO 2016; 10:7627-38. [PMID: 27419260 DOI: 10.1021/acsnano.6b02876] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Quantitative studies of the long-term fate of iron oxide nanoparticles inside cells, a prerequisite for regenerative medicine applications, are hampered by the lack of suitable biological tissue models and analytical methods. Here, we propose stem-cell spheroids as a tissue model to track intracellular magnetic nanoparticle transformations during long-term tissue maturation. We show that global spheroid magnetism can serve as a fingerprint of the degradation process, and we evidence a near-complete nanoparticle degradation over a month of tissue maturation, as confirmed by electron microscopy. Remarkably, the same massive degradation was measured at the endosome level by single-endosome nanomagnetophoretic tracking in cell-free endosomal extract. Interestingly, this spectacular nanoparticle breakdown barely affected iron homeostasis: only the genes coding for ferritin light chain (iron loading) and ferroportin (iron export) were up-regulated 2-fold by the degradation process. Besides, the magnetic and tissular tools developed here allow screening of the biostability of magnetic nanomaterials, as demonstrated with iron oxide nanocubes and nanodimers. Hence, stem-cell spheroids and purified endosomes are suitable models needed to monitor nanoparticle degradation in conjunction with magnetic, chemical, and biological characterizations at the cellular scale, quantitatively, in the long term, in situ, and in real time.
Collapse
Affiliation(s)
- François Mazuel
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Ana Espinosa
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Nathalie Luciani
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Myriam Reffay
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| | - Rémi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France
| | - Laurence Motte
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
| | - Karine Desboeufs
- LISA, CNRS UMR 7583, Université Paris-Diderot and Université Paris-Est Créteil, 94400 Créteil, France
| | - Aude Michel
- Sorbonne Universités, Physicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), UMR 8234, Université Pierre et Marie Curie UPMC-CNRS, 75252 Cedex 05 Paris, France
| | | | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, UFR SMBH, Université Paris 13, Sorbonne Paris Cité, F-93017 Bobigny, France
- Service de Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057, CNRS and Université Paris Diderot , 75205 Cedex 05 Paris, France
| |
Collapse
|
30
|
Joshi A, Rastedt W, Faber K, Schultz AG, Bulcke F, Dringen R. Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells. Neurochem Res 2016; 41:3004-3019. [DOI: 10.1007/s11064-016-2020-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
|
31
|
Coccini T, Caloni F, Ramírez Cando LJ, De Simone U. Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. J Appl Toxicol 2016; 37:361-373. [DOI: 10.1002/jat.3367] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Teresa Coccini
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| | - Francesca Caloni
- Department of Veterinary Medicine (DIMEVET); Università degli Studi di Milano; Milano Italy
| | - Lenin Javier Ramírez Cando
- Centro de Investigación y Valoración de la Biodiversidad (CIVABI); Universidad Politécnica Salesiana; Quito Ecuador
| | - Uliana De Simone
- Laboratory of Experimental and Clinical Toxicology, Poison Control Centre and National Toxicology Information Centre, Toxicology Division, IRCCS Maugeri Foundation; Scientific Institute of Pavia; Pavia Italy
| |
Collapse
|
32
|
Mazdeh M, Rahiminejad ME, Nili-Ahmadabadi A, Ranjbar A. Neurological Disorders and Oxidative Toxic Stress: A Role of Metal Nanoparticles. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-27628] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
33
|
Kanwar JR, Kamalapuram SK, Krishnakumar S, Kanwar RK. Multimodal iron oxide (Fe3O4)-saturated lactoferrin nanocapsules as nanotheranostics for real-time imaging and breast cancer therapy of claudin-low, triple-negative (ER-/PR-/HER2-). Nanomedicine (Lond) 2016; 11:249-68. [DOI: 10.2217/nnm.15.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To unravel the multimodal nanotheranostic ability of Fe3O4-saturated bovine lactoferrin nanocapsules (FebLf NCs) in claudin-low, triple-negative breast cancer model. Materials & methods: Xenograft study was performed to examine biocompatibility, antitumor efficacy and multimodal nanotheranostic action in combination with near-infrared live mice imaging. Results: FebLf NCs exhibited a size range of 80 nm ± 5 nm with observed superparamagnetism. FebLf NCs successfully internalized into breast cancer cells through receptor-mediated endocytosis and induced apoptosis through the downregulation of inhibitor of apoptosis survivin and livin proteins. Investigations revealed a remarkable biocompatibility, anticancer efficacy of the FebLf NCs. Near-infrared imaging observations confirmed selective localization of multimodal FebLf NCs at the tumor site and lead to time-dependent reduction of tumor growth. Conclusion: FebLf NCs can be safe, biocompatible nanotheranostic approach for real-time imaging and monitoring the effect of drugs in real time and have potentials in future clinical trials.
Collapse
Affiliation(s)
- Jagat R Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Sishir K Kamalapuram
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Subramanian Krishnakumar
- L&T Ophthalmic Pathology Department, In charge Stem Cell Laboratory & Nano-biotechnology Laboratory Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Rupinder K Kanwar
- Nanomedicine-Laboratory of Immunology & Molecular Biomedical Research (LIMBR), Centre Molecular & Medical Research (C-MMR), School of Medicine (SoM), Faculty of Health, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
34
|
Bulcke F, Santofimia-Castaño P, Gonzalez-Mateos A, Dringen R. Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes. J Trace Elem Med Biol 2015; 32:168-76. [PMID: 26302925 DOI: 10.1016/j.jtemb.2015.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
Copper is essential for several important cellular processes, but an excess of copper can also lead to oxidative damage. In brain, astrocytes are considered to play a pivotal role in the copper homeostasis and antioxidative defence. To investigate whether antioxidants and copper chelators can modulate the uptake and the toxicity of copper ions in brain astrocytes, we used primary astrocytes as cell culture model. These cells accumulated substantial amounts of copper during exposure to copper chloride. Copper accumulation was accompanied by a time- and concentration-dependent loss in cell viability, as demonstrated by a lowering in cellular MTT reduction capacity and by an increase in membrane permeability for propidium iodide. During incubations in the presence of the antioxidants ascorbate, trolox or ebselen, the specific cellular copper content and the toxicity in copper chloride-treated astrocyte cultures were strongly increased. In contrast, the presence of the copper chelators bathocuproine disulfonate or tetrathiomolybdate lowered the cellular copper accumulation and the copper-induced as well as the ascorbate-accelerated copper toxicity was fully prevented. These data suggest that predominantly the cellular content of copper determines copper-induced toxicity in brain astrocytes.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Center for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany
| | - Patricia Santofimia-Castaño
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, E-10003 Caceres, Spain
| | - Antonio Gonzalez-Mateos
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, E-10003 Caceres, Spain
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO Box 330440, D-28334 Bremen, Germany; Center for Environmental Research and Sustainable Technology, Leobener Strasse, D-28359 Bremen, Germany.
| |
Collapse
|
35
|
Lakouraj MM, Maashsani A, Norouzian RS, Mohadjerani M. Immobilization of Pepsin on Chitosan Magnetic Nanoparticles and Its Application in Deacetylation of Amides. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2015.1009534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Valdiglesias V, Kiliç G, Costa C, Fernández-Bertólez N, Pásaro E, Teixeira JP, Laffon B. Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:125-48. [PMID: 25209650 DOI: 10.1002/em.21909] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 08/06/2014] [Indexed: 05/03/2023]
Abstract
Iron oxide nanoparticles (ION) with superparamagnetic properties hold great promise for use in various biomedical applications; specific examples include use as contrast agents for magnetic resonance imaging, in targeted drug delivery, and for induced hyperthermia cancer treatments. Increasing potential applications raise concerns over their potential effects on human health. Nevertheless, very little is currently known about the toxicity associated with exposure to these nanoparticles at different levels of biological organization. This article provides an overview of recent studies evaluating ION cytotoxicity, genotoxicity, developmental toxicity and neurotoxicity. Although the results of these studies are sometimes controversial, they generally indicate that surface coatings and particle size seem to be crucial for the observed ION-induced effects, as they are critical determinants of cellular responses and intensity of effects, and influence potential mechanisms of toxicity. The studies also suggest that some ION are safe for certain biomedical applications, while other uses need to be considered more carefully. Overall, the available studies provide insufficient evidence to fully assess the potential risks for human health related to ION exposure. Additional research in this area is required including studies on potential long-term effects.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 2015; 115:2109-35. [PMID: 25757742 DOI: 10.1021/cr400714j] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven , B3000 Leuven, Belgium
| | | | | | | |
Collapse
|
38
|
Petters C, Dringen R. Accumulation of iron oxide nanoparticles by cultured primary neurons. Neurochem Int 2015; 81:1-9. [DOI: 10.1016/j.neuint.2014.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 01/13/2023]
|
39
|
Superparamagnetic iron oxide nanoparticles impair endothelial integrity and inhibit nitric oxide production. Acta Biomater 2014; 10:4896-4911. [PMID: 25123083 DOI: 10.1016/j.actbio.2014.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 07/22/2014] [Indexed: 01/08/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) are widely used both clinically and experimentally for diverse in vivo applications, such as contrast enhancement in magnetic resonance imaging, hyperthermia and drug delivery. Biomedical applications require particles to have defined physical and chemical properties, and to be stable in biological media. Despite a suggested low cytotoxic action, adverse reactions of SPION in concentrations relevant for biomedical use have not yet been studied in sufficient detail. In the present work we employed Endorem®, dextran-stabilized SPION approved as an intravenous contrast agent, and compared its action to a set of other nanoparticles with potential for magnetic resonance imaging applications. SPION in concentrations relevant for in vivo applications were rapidly taken up by endothelial cells and exhibited no direct cytotoxicity. Electric cell impedance sensing measurements demonstrated that SPION, but not BaSO4/Gd nanoparticles, impaired endothelial integrity, as was confirmed by increased intercellular gap formation in endothelial monolayers. These structural changes induced the subcellular translocation and inhibition of the cytoprotective and anti-atherosclerotic enzyme endothelial NO-synthase and reduced NO production. Lipopolysaccharide-induced inflammatory NO production of macrophages was not affected by SPION. In conclusion, our data suggest that SPION might substantially alter endothelial integrity and function at therapeutically relevant doses, which are not cytotoxic.
Collapse
|
40
|
Hohnholt MC, Blumrich EM, Dringen R. Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. J Neurosci Res 2014; 93:1127-37. [PMID: 25354694 DOI: 10.1002/jnr.23502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/19/2014] [Accepted: 09/25/2014] [Indexed: 11/10/2022]
Abstract
To clarify discrepancies in the literature on the adverse effects of hydrogen peroxide on neurons, this study investigated the application of this peroxide to cultured cerebellar granule neurons with six assays frequently used to test for viability. Cultured neurons efficiently cleared exogenous H2O2. Although viability was not affected by exposure to 10 µM hydrogen peroxide, an exposure to the peroxide in higher concentrations rapidly lowered, within 15 min, the cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide (MTT) reduction capacity to 53% ± 1% (100 µM) and 31% ± 1% (1,000 µM) and the 3-amino-7-dimethylamino-2-methyl-phenazine hydrochloride (neutral red; NR) uptake to 84% ± 6% (100 µM) and 33% ± 1% (1,000 µM) of control cells. The release of glycolytically generated lactate was stopped within 30 min in neurons treated with 1,000 µM peroxide. In contrast, even hours after peroxide application, the cell morphology, the number of propidium iodide-positive cells, and the extracellular activity of the cytosolic enzyme lactate dehydrogenase (LDH) were not significantly altered. The rapid loss in MTT reduction and NR uptake after exposure of neurons to H2O2 for 5 or 15 min correlated well with a strongly compromised MTT reduction and a very high extracellular LDH activity observed after further incubation in peroxide-free medium for a total incubation period of 24 hr. These data demonstrate that cultured neurons do not recover from damage that is inflicted by a short exposure to H2O2 and that the rapid losses in the capacities of neurons for MTT reduction and NR uptake are good predictors of delayed cell damage.
Collapse
Affiliation(s)
- Michaela C Hohnholt
- Centre for Biomolecular Interactions Bremen and Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Eva M Blumrich
- Centre for Biomolecular Interactions Bremen and Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen and Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| |
Collapse
|
41
|
Copper Oxide Nanoparticles Stimulate Glycolytic Flux and Increase the Cellular Contents of Glutathione and Metallothioneins in Cultured Astrocytes. Neurochem Res 2014; 40:15-26. [DOI: 10.1007/s11064-014-1458-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
|
42
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 11/21/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- />School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
43
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053 DOI: 10.1186/2052-8426-2-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin – the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a ‘multifunctional nanoplatform’ that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive ‘magnetic cell targeting’ to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
44
|
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014; 39:1648-60. [PMID: 25011394 DOI: 10.1007/s11064-014-1380-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Petters
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | | | | | | |
Collapse
|
45
|
Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells. Biomaterials 2014; 35:5549-64. [PMID: 24726535 DOI: 10.1016/j.biomaterials.2014.03.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/21/2014] [Indexed: 12/31/2022]
Abstract
Stem cells prelabelled with iron oxide nanoparticles can be visualised using magnetic resonance imaging (MRI). This technique allows for noninvasive long-term monitoring of migration, integration and stem cell fate following transplantation into living animals. In order to determine biocompatibility, the present study investigated the biological impact of introducing ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) into primary human fetal neural precursor cells (hNPCs) in vitro. USPIOs with a mean diameter of 10-15 nm maghemite iron oxide core were sterically stabilised by 95% methoxy-poly(ethylene glycol) (MPEG) and either 5% cationic (NH2) end-functionalised, or 5% Rhodamine B end-functionalised, polyacrylamide. The stabilising polymer diblocks were synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation. Upon loading, cellular viability, total iron capacity, differentiation, average distance of migration and changes in intracellular calcium ion concentration were measured to determine optimal loading conditions. Taken together we demonstrate that prelabelling of hNPCs with USPIOs has no significant detrimental effect on cell biology and that USPIOs, when utilised at an optimised dosage, are an effective means of noninvasively tracking prelabelled hNPCs.
Collapse
|
46
|
Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R. Uptake of Fluorescent Iron Oxide Nanoparticles by Oligodendroglial OLN-93 Cells. Neurochem Res 2013; 39:372-83. [DOI: 10.1007/s11064-013-1234-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 12/30/2022]
|
47
|
Luther EM, Petters C, Bulcke F, Kaltz A, Thiel K, Bickmeyer U, Dringen R. Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 2013; 9:8454-65. [PMID: 23727247 DOI: 10.1016/j.actbio.2013.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022]
Abstract
Microglia are the phagocytotic cells of the brain that respond rapidly to alterations in brain homeostasis. Since iron oxide nanoparticles (IONPs) are used for diagnostic and therapeutic applications in the brain, the consequences of an exposure of microglial cells to IONPs are of particular interest. To address this topic we have synthesized and characterized fluorescent BODIPY®-labelled IONPs (BP-IONPs). The average hydrodynamic diameter and the ζ-potential of BP-IONPs in water were ∼65 nm and -49 mV, respectively. Both values increased after dispersion of the particles in serum containing incubation medium to ∼130 nm and -8 mV. Exposure of cultured rat microglial cells with BP-IONPs caused a time-, concentration- and temperature-dependent uptake of the particles, as demonstrated by strong increases in cellular iron contents and cellular fluorescence. Incubation for 3h with 150 and 450 μM iron as BP-IONPs increased the cellular iron content from a low basal level of ∼50 nmol iron mg(-1) to 219±52 and 481±28 nmol iron (mg protein)(-1), respectively. These conditions did not affect cell viability, but exposure to higher concentrations of BP-IONPs or for longer incubation periods severely compromised cell viability. The BP-IONP fluorescence in viable microglial cells was co-localized with lysosomes. In addition, BP-IONP accumulation was lowered by 60% in the presence of the endocytosis inhibitors 5-(N-ethyl-N-isopropyl)amiloride, tyrphostin23 and chlorpromazin. These results suggest that the rapid accumulation of BP-IONPs by microglial cells is predominantly mediated by macropinocytosis and clathrin-mediated endocytosis, which direct the accumulated particles into the lysosomal compartment.
Collapse
Affiliation(s)
- Eva M Luther
- Center for Biomolecular Interactions Bremen, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Bulcke F, Thiel K, Dringen R. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology 2013; 8:775-85. [PMID: 23889294 DOI: 10.3109/17435390.2013.829591] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To test for consequences of an exposure of brain cells to copper oxide nanoparticles (CuO-NPs), we synthesised and characterised dimercaptosuccinate-coated CuO-NPs. These particles had a diameter of around 5 nm as determined by transmission electron microscopy, while their average hydrodynamic diameter in aqueous dispersion was 136 ± 4 nm. Dispersion in cell-culture medium containing 10% fetal calf serum increased the hydrodynamic diameter to 178 ± 12 nm and shifted the zeta potential of the particles from -49 ± 7 mV (in water) to -10 ± 3 mV. Exposure of cultured primary brain astrocytes to CuO-NPs increased the cellular copper levels and compromised the cell viability in a time-, concentration- and temperature-dependent manner. Application of CuO-NPs in concentrations above 100 µM copper (6.4 µg/ml) severely compromised the viability of the cells, as demonstrated by a lowered 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction capacity, a lowered cellular lactate dehydrogenase activity and an increased membrane permeability for the fluorescent dye propidium iodide. Copper internalisation as well as cell toxicity of astrocytes exposed to CuO-NPs were similar to that observed for cells that had been incubated with copper salts. The CuO-NP-induced toxicity was accompanied by an increase in the generation of reactive oxygen species (ROS) in the cells. Both, ROS formation and cell toxicity in CuO-NP-treated astrocytes, were lowered in the presence of the cell-permeable copper chelator tetrathiomolybdate. These data demonstrate that CuO-NPs are taken up by cultured astrocytes and suggest that excess of internalised CuO-NPs cause cell toxicity by accelerating the formation of ROS.
Collapse
Affiliation(s)
- Felix Bulcke
- Center for Biomolecular Interactions Bremen, University of Bremen , Bremen , Germany
| | | | | |
Collapse
|
49
|
Filser J, Arndt D, Baumann J, Geppert M, Hackmann S, Luther EM, Pade C, Prenzel K, Wigger H, Arning J, Hohnholt MC, Köser J, Kück A, Lesnikov E, Neumann J, Schütrumpf S, Warrelmann J, Bäumer M, Dringen R, von Gleich A, Swiderek P, Thöming J. Intrinsically green iron oxide nanoparticles? From synthesis via (eco-)toxicology to scenario modelling. NANOSCALE 2013; 5:1034-1046. [PMID: 23255050 DOI: 10.1039/c2nr31652h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Iron oxide nanoparticles (IONP) are currently being studied as green magnet resonance imaging (MRI) contrast agents. They are also used in huge quantities for environmental remediation and water treatment purposes, although very little is known on the consequences of such applications for organisms and ecosystems. In order to address these questions, we synthesised polyvinylpyrrolidone-coated IONP, characterised the particle dispersion in various media and investigated the consequences of an IONP exposure using an array of biochemical and biological assays. Several theoretical approaches complemented the measurements. In aqueous dispersion IONP had an average hydrodynamic diameter of 25 nm and were stable over six days in most test media, which could also be predicted by stability modelling. The particles were tested in concentrations of up to 100 mg Fe per L. The activity of the enzymes glutathione reductase and acetylcholine esterase was not affected, nor were proliferation, morphology or vitality of mammalian OLN-93 cells although exposure of the cells to 100 mg Fe per L increased the cellular iron content substantially. Only at this concentration, acute toxicity tests with the freshwater flea Daphnia magna revealed slightly, yet insignificantly increased mortality. Two fundamentally different bacterial assays, anaerobic activated sludge bacteria inhibition and a modified sediment contact test with Arthrobacter globiformis, both rendered results contrary to the other assays: at the lowest test concentration (1 mg Fe per L), IONP caused a pronounced inhibition whereas higher concentrations were not effective or even stimulating. Preliminary and prospective risk assessment was exemplified by comparing the application of IONP with gadolinium-based nanoparticles as MRI contrast agents. Predicted environmental concentrations were modelled in two different scenarios, showing that IONP could reduce the environmental exposure of toxic Gd-based particles by more than 50%. Application of the Swiss "Precautionary Matrix for Synthetic Nanomaterials" rendered a low precautionary need for using our IONP as MRI agents and a higher one when using them for remediation or water treatment. Since IONP and (considerably more reactive) zerovalent iron nanoparticles are being used in huge quantities for environmental remediation purposes, it has to be ascertained that these particles pose no risk to either human health or to the environment.
Collapse
|
50
|
Promising iron oxide-based magnetic nanoparticles in biomedical engineering. Arch Pharm Res 2012; 35:2045-61. [PMID: 23263800 DOI: 10.1007/s12272-012-1203-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/11/2012] [Accepted: 08/21/2012] [Indexed: 12/28/2022]
Abstract
For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.
Collapse
|