1
|
Wu D, Zheng K, Yin W, Hu B, Yu M, Yu Q, Wei X, Deng J, Zhang C. Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioact Mater 2024; 36:317-329. [PMID: 38496032 PMCID: PMC10940945 DOI: 10.1016/j.bioactmat.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Wenjing Yin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Mingzhao Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Qingxiao Yu
- Shanghai Uniorlechnology Corporation, No. 258 Xinzhuan Road, Shanghai, 201612, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Jue Deng
- Academy for Engineering & Technology, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
2
|
Agten H, Van Hoven I, Van Hoorick J, Van Vlierberghe S, Luyten FP, Bloemen V. In vitro and in vivo evaluation of periosteum-derived cells and iPSC-derived chondrocytes encapsulated in GelMA for osteochondral tissue engineering. Front Bioeng Biotechnol 2024; 12:1386692. [PMID: 38665810 PMCID: PMC11043557 DOI: 10.3389/fbioe.2024.1386692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.
Collapse
Affiliation(s)
- Hannah Agten
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Inge Van Hoven
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | | | - Sandra Van Vlierberghe
- BIO INX BV, Zwijnaarde, Belgium
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Frank P. Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Veerle Bloemen
- Department of Materials Engineering, Surface and Interface Engineered Materials (SIEM), Group T Leuven Campus, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Nhan J, Strebel N, Virah Sawmy K, Yin J, St-Pierre JP. Characterization of Calcium- and Strontium-Polyphosphate Particles Toward Drug Delivery into Articular Cartilage. Macromol Biosci 2024; 24:e2300345. [PMID: 37777870 DOI: 10.1002/mabi.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Indexed: 10/02/2023]
Abstract
Drug delivery into articular cartilage poses many challenges due in part to its lack of vasculature. While intra-articular injections are effective for the local administration of drugs, small molecules are rapidly cleared from the synovial fluid. As such, there is a need to develop effective drug delivery strategies to improve the residence times of bioactive molecules in the joint and elicit a sustained therapeutic effect. In this study, calcium- and strontium-polyphosphate particles are synthesized and characterized as potential drug carriers into articular cartilage. Physicochemical characterization reveals that the particles exhibit a spherical morphology, have a negative zeta potential, and are nanoscale in size. Biological characterization in chondrocytes confirms cellular uptake of the particles and demonstrates both size and concentration-dependent cytotoxicity at high concentrations. Furthermore, treatment of chondrocytes with these particles results in a reduction in cell proliferation and metabolic activity, confirming biological effects. Finally, incubation with cartilage tissue explants suggests successful uptake, despite the particles exhibiting a negative surface charge. Therefore, from the results of this study, these polyphosphate-based particles have potential as a drug carrier into articular cartilage and warrant further development.
Collapse
Affiliation(s)
- Jordan Nhan
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Nicolas Strebel
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Khushnouma Virah Sawmy
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jordan Yin
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, Faculty of Engineering, University of Ottawa, 161 Louis-Pasteur Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
4
|
Hammersen T, Buchert J, Zietzschmann S, Diederichs S, Richter W. Inverse Regulation of Cartilage Neogenesis at Physiologically Relevant Calcium Conditions by Human Articular Chondrocytes and Mesenchymal Stromal Cells. Cells 2023; 12:1659. [PMID: 37371129 DOI: 10.3390/cells12121659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Elaborate bioreactor cultivation or expensive growth factor supplementation can enhance extracellular matrix production in engineered neocartilage to provide sufficient mechanical resistance. We here investigated whether raising extracellular calcium levels in chondrogenic cultures to physiologically relevant levels would provide a simple and inexpensive alternative to enhance cartilage neogenesis from human articular chondrocytes (AC) or bone marrow-derived mesenchymal stromal cells (BMSC). Interestingly, AC and BMSC-derived chondrocytes showed an opposite response to a calcium increase from 1.8 mM to 8 mM by which glycosaminoglycan (GAG) and collagen type II production were elevated during BMSC chondrogenesis but depressed in AC, leading to two-fold higher GAG/DNA values in BMSC-based neocartilage compared to the AC group. According to control treatments with Mg2+ or sucrose, these effects were specific for CaCl2 rather than divalent cations or osmolarity. Importantly, undesired pro-hypertrophic traits were not stimulated by calcium treatment. Specific induction of PTHrP mRNA and protein by 8.0mM calcium only in AC, along with negative effects of recombinant PTHrP1-34 on cartilage matrix production, suggested that the PTHrP pathway contributed to the detrimental effects in AC-based neocartilage. Altogether, raising extracellular calcium levels was discovered as a novel, simple and inexpensive stimulator for BMSC-based cartilage neogenesis without the need for special bioreactors, whereas such conditions should be avoided for AC.
Collapse
Affiliation(s)
- Tim Hammersen
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Justyna Buchert
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Severin Zietzschmann
- Orthopaedic Hospital, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Solvig Diederichs
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, 69118 Heidelberg, Germany
| |
Collapse
|
5
|
Gao C, Fu L, Yu Y, Zhang X, Yang X, Cai Q. Strategy of a cell-derived extracellular matrix for the construction of an osteochondral interlayer. Biomater Sci 2022; 10:6472-6485. [PMID: 36173310 DOI: 10.1039/d2bm01230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Osteochondral defects pose an enormous challenge due to the lack of an effective repair strategy. To tackle this issue, the importance of a calcified cartilage interlayer (CCL) in modulating osteochondral regeneration should be valued. Herein, we proposed that an extracellular matrix (ECM) derived from a suitable cell source might efficiently promote the formation of calcified cartilage. To the end, cell sheets from four kinds of cells, including bone marrow mesenchymal stem cells (BMSCs), pre-osteoblasts (MC3T3), chondrocytes (Cho), and artificially induced hypertrophic chondrocytes (HCho), were obtained by seeding the cells on electrospun fibrous meshes, followed by decellularization to prepare decellularized ECMs (D-ECMs) for BMSC re-seeding and differentiation studies. For cell proliferation, the BMSC-derived D-ECM exhibited the strongest promotion effect. For inducing the hypertrophic phenotype of re-seeded BMSCs, both the BMSC-derived and HCho-derived D-ECMs demonstrated stronger capacity in up-regulating the depositions of related proteins and the expressions of marker genes, as compared to the MC3T3-derived and Cho-derived D-ECMs. Accordingly, from the histological results of their subcutaneous implantation in rats, both the BMSC-derived and HCho-derived D-ECMs displayed obvious Masson's trichrome and Safranin-O/Fast-Green staining colors simultaneously, representing the characteristics related to osteogenesis and chondrogenesis. Differently, MC3T3-derived and Cho-derived D-ECMs were mainly detected during the osteogenic or chondrogenic expression, respectively. These findings confirmed that the BMSC-derived D-ECM could induce hypertrophic chondrocytes, though being a little inferior to the HCho-derived D-ECM. Overall, the BMSC-derived D-ECM could be a potential material in constructing the interlayer for osteochondral tissue engineering scaffolds to improve the regeneration efficiency.
Collapse
Affiliation(s)
- Chenyuan Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lei Fu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, People's Republic of China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. .,Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
6
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
7
|
Chen T, Brial C, McCarthy M, Warren RF, Maher SA. Synthetic PVA Osteochondral Implants for the Knee Joint: Mechanical Characteristics During Simulated Gait. Am J Sports Med 2021; 49:2933-2941. [PMID: 34347534 PMCID: PMC9092221 DOI: 10.1177/03635465211028566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Although polyvinyl alcohol (PVA) implants have been developed and used for the treatment of femoral osteochondral defects, their effect on joint contact mechanics during gait has not been assessed. PURPOSE/HYPOTHESIS The purpose was to quantify the contact mechanics during simulated gait of focal osteochondral femoral defects and synthetic PVA implants (10% and 20% by volume of PVA), with and without porous titanium (pTi) bases. It was hypothesized that PVA implants with a higher polymer content (and thus a higher modulus) combined with a pTi base would significantly improve defect-related knee joint contact mechanics. STUDY DESIGN Controlled laboratory study. METHODS Four cylindrical implants were manufactured: 10% PVA, 20% PVA, and 10% and 20% PVA disks mounted on a pTi base. Devices were implanted into 8 mm-diameter osteochondral defects created on the medial femoral condyles of 7 human cadaveric knees. Knees underwent simulated gait and contact stresses across the tibial plateau were recorded. Contact area, peak contact stress, the sum of stress in 3 regions of interest across the tibial plateau, and the distribution of stresses, as quantified by tracking the weighted center of contact stress throughout gait, were computed for all conditions. RESULTS An osteochondral defect caused a redistribution of contact stress across the plateau during simulated gait. Solid PVA implants did not improve contact mechanics, while the addition of a porous metal base led to significantly improved joint contact mechanics. Implants consisting of a 20% PVA disk mounted on a pTi base significantly improved the majority of contact mechanics parameters relative to the empty defect condition. CONCLUSION The information obtained using our cadaveric test system demonstrated the mechanical consequences of femoral focal osteochondral defects and provides biomechanical support to further pursue the efficacy of high-polymer-content PVA disks attached to a pTi base to improve contact mechanics. CLINICAL RELEVANCE As a range of solutions are explored for the treatment of osteochondral defects, our preclinical cadaveric testing model provides unique biomechanical evidence for the continued investigation of novel solutions for osteochondral defects.
Collapse
Affiliation(s)
- Tony Chen
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Moira McCarthy
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Russell F. Warren
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York, USA
| | - Suzanne A. Maher
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
8
|
Engineering large, anatomically shaped osteochondral constructs with robust interfacial shear properties. NPJ Regen Med 2021; 6:42. [PMID: 34362933 PMCID: PMC8346478 DOI: 10.1038/s41536-021-00152-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Despite the prevalence of large (>5 cm2) articular cartilage defects involving underlying bone, current tissue-engineered therapies only address small defects. Tissue-engineered, anatomically shaped, native-like implants may address the need for off-the-shelf, tissue-repairing therapies for large cartilage lesions. This study fabricated an osteochondral construct of translationally relevant geometry with robust functional properties. Scaffold-free, self-assembled neocartilage served as the chondral phase, and porous hydroxyapatite served as the osseous phase of the osteochondral constructs. Constructs in the shape and size of an ovine femoral condyle (31 × 14 mm) were assembled at day 4 (early) or day 10 (late) of neocartilage maturation. Early osteochondral assembly increased the interfacial interdigitation depth by 244%, interdigitation frequency by 438%, interfacial shear modulus by 243-fold, and ultimate interfacial shear strength by 4.9-fold, compared to late assembly. Toward the development of a bioprosthesis for the repair of cartilage lesions encompassing up to an entire condylar surface, this study generated a large, anatomically shaped osteochondral construct with robust interfacial mechanical properties and native-like neocartilage interdigitation.
Collapse
|
9
|
Wang Y, Guo Y, Wei Q, Li X, Ji K, Zhang K. Current researches on design and manufacture of biopolymer-based osteochondral biomimetic scaffolds. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00119-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Diloksumpan P, de Ruijter M, Castilho M, Gbureck U, Vermonden T, van Weeren PR, Malda J, Levato R. Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces. Biofabrication 2020; 12:025014. [PMID: 31918421 PMCID: PMC7116207 DOI: 10.1088/1758-5090/ab69d9] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multi-material 3D printing technologies that resolve features at different lengths down to the microscale open new avenues for regenerative medicine, particularly in the engineering of tissue interfaces. Herein, extrusion printing of a bone-biomimetic ceramic ink and melt electrowriting (MEW) of spatially organized polymeric microfibres are integrated for the biofabrication of an osteochondral plug, with a mechanically reinforced bone-to-cartilage interface. A printable physiological temperature-setting bioceramic, based on α-tricalcium phosphate, nanohydroxyapatite and a custom-synthesized biodegradable and crosslinkable poloxamer, was developed as bone support. The mild setting reaction of the bone ink enabled us to print directly within melt electrowritten polycaprolactone meshes, preserving their micro-architecture. Ceramic-integrated MEW meshes protruded into the cartilage region of the composite plug, and were embedded with mechanically soft gelatin-based hydrogels, laden with articular cartilage chondroprogenitor cells. Such interlocking design enhanced the hydrogel-to-ceramic adhesion strength >6.5-fold, compared with non-interlocking fibre architectures, enabling structural stability during handling and surgical implantation in osteochondral defects ex vivo. Furthermore, the MEW meshes endowed the chondral compartment with compressive properties approaching those of native cartilage (20-fold reinforcement versus pristine hydrogel). The osteal and chondral compartment supported osteogenesis and cartilage matrix deposition in vitro, and the neo-synthesized cartilage matrix further contributed to the mechanical reinforcement at the ceramic-hydrogel interface. This multi-material, multi-scale 3D printing approach provides a promising strategy for engineering advanced composite constructs for the regeneration of musculoskeletal and connective tissue interfaces.
Collapse
Affiliation(s)
- Paweena Diloksumpan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Progress and Applications of Polyphosphate in Bone and Cartilage Regeneration. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5141204. [PMID: 31346519 PMCID: PMC6620837 DOI: 10.1155/2019/5141204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/29/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Patients with bone and cartilage defects due to infection, tumors, and trauma are quite common. Repairing bone and cartilage defects is thus a major problem for clinicians. Autologous and artificial bone transplantations are associated with many challenges, such as limited materials and immune rejection. Bone and cartilage regeneration has become a popular research topic. Inorganic polyphosphate (polyP) is a widely occurring biopolymer with high-energy phosphoanhydride bonds that exists in organisms from bacteria to mammals. Much data indicate that polyP acts as a regulator of gene expression in bone and cartilage tissues and exerts morphogenetic effects on cells involved in bone and cartilage formation. Exposure of these cells to polyP leads to the increase of cytokines that promote the differentiation of mesenchymal stem cells into osteoblasts, accelerates the osteoblast mineralization process, and inhibits the differentiation of osteoclast precursors to functionally active osteoclasts. PolyP-based materials have been widely reported in in vivo and in vitro studies. This paper reviews the current cellular mechanisms and material applications of polyP in bone and cartilage regeneration.
Collapse
|
12
|
Kunisch E, Knauf AK, Hesse E, Freudenberg U, Werner C, Bothe F, Diederichs S, Richter W. StarPEG/heparin-hydrogel based in vivo engineering of stable bizonal cartilage with a calcified bottom layer. Biofabrication 2018; 11:015001. [PMID: 30376451 DOI: 10.1088/1758-5090/aae75a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Repaired cartilage tissue lacks the typical zonal structure of healthy native cartilage needed for appropriate function. Current grafts for treatment of full thickness cartilage defects focus primarily on a nonzonal design and this may be a reason why inferior nonzonal regeneration tissue developed in vivo. No biomaterial-based solutions have been developed so far to induce a proper zonal architecture into a non-mineralized and a calcified cartilage layer. The objective was to grow bizonal cartilage with a calcified cartilage bottom zone wherein main tissue development is occurring in vivo. We hypothesized that starPEG/heparin-hydrogel owing to the glycosaminoglycan heparin contained as a building-block would prevent mineralization of the upper cartilage zone and be beneficial in inhibiting long-term progression of calcified cartilage into bone. MSCs were pre-cultured as self-assembling non-mineralized cell discs before a chondrocyte-seeded fibrin- or starPEG/heparin-hydrogel layer was cast on top directly before ectopic implantation. Bizonal cartilage with a calcified bottom-layer developed in vivo showing stronger mineralization compared to in vitro samples, but the hydrogel strongly determined outcome. Zonal fibrin-constructs lost volume and allowed non-organized expansion of collagen type X, ALP-activity and mineralization from the bottom-layer into upper regions, whereas zonal starPEG/heparin-constructs were of stable architecture. While non-zonal MSCs-derived discs formed bone over 12 weeks, the starPEG/heparin-chondrocyte layer prevented further progression of calcified cartilage into bone tissue. Conclusively, starPEG/heparin-hydrogel-controlled and cell-type mediated spatiotemporal regulation allowed in vivo growth of bizonal cartilage with a stable calcified cartilage layer. Altogether our work is an important milestone encouraging direct in vivo growth of organized cartilage after biofabrication.
Collapse
Affiliation(s)
- Elke Kunisch
- Research Centre for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Brown WE, Huey DJ, Hu JC, Athanasiou KA. Functional self-assembled neocartilage as part of a biphasic osteochondral construct. PLoS One 2018; 13:e0195261. [PMID: 29634740 PMCID: PMC5892872 DOI: 10.1371/journal.pone.0195261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/19/2018] [Indexed: 11/29/2022] Open
Abstract
Bone-to-bone integration can be obtained by osteoconductive ceramics such as hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP), but cartilage-to-cartilage integration is notoriously difficult. Many cartilage repair therapies, including microfracture and mosaicplasty, capitalize on the reparative aspects of subchondral bone due to its resident population of stem cells and vascularity. A strategy of incorporating tissue engineered neocartilage into a ceramic to form an osteochondral construct may serve as a suitable alternative to achieve cartilage graft fixation. The use of a tissue engineered osteochondral construct to repair cartilage defects may also benefit from the ceramic’s proximity to underlying bone and abundant supply of progenitor cells and nutrients. The objective of the first study was to compare HAp and β-TCP ceramics, two widely used ceramics in bone regeneration, in terms of their ability to influence neocartilage interdigitation at an engineered osteochondral interface. Additional assays quantified ceramic pore size, porosity, and compressive strength. The compressive strength of HAp was six times higher than that of β-TCP due to differences in porosity and pore size, and HAp was thus carried forward in the second study as the composition with which to engineer an osteochondral construct. Importantly, it was shown that incorporation of the HAp ceramic in conjunction with the self-assembling process resulted in functionally viable neocartilage. For example, only collagen/dry weight and ultimate tensile strength of the chondral control constructs remained significantly greater than the neocartilage cut off the osteochondral constructs. By demonstrating that the functional properties of engineered neocartilage are not negatively affected by the inclusion of an HAp ceramic in culture, neocartilage engineering strategies may be directly applied to the formation of an osteochondral construct.
Collapse
Affiliation(s)
- Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Daniel J Huey
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
14
|
Pereira DR, Reis RL, Oliveira JM. Layered Scaffolds for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:193-218. [DOI: 10.1007/978-3-319-76711-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Lee WD, Gawri R, Pilliar RM, Stanford WL, Kandel RA. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater 2017; 62:352-361. [PMID: 28818689 DOI: 10.1016/j.actbio.2017.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/26/2022]
Abstract
Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. STATEMENT OF SIGNIFICANCE Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this organization using isolated deep zone cartilage cells and a sol-gel hydroxyapatite coated bone substitute material composed of calcium polyphosphate (CPP). Developing a layer of calcified cartilage at the interface should contribute to enhancing the success of this "osteochondral-like" construct following implantation to repair cartilage defects.
Collapse
Affiliation(s)
- Whitaik David Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada
| | - Robert M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | - William L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
16
|
Groen WM, Diloksumpan P, van Weeren PR, Levato R, Malda J. From intricate to integrated: Biofabrication of articulating joints. J Orthop Res 2017; 35:2089-2097. [PMID: 28621834 PMCID: PMC5655743 DOI: 10.1002/jor.23602] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/28/2017] [Indexed: 02/04/2023]
Abstract
Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually resulting in failure of the joint as an organ. Although in its infancy, biofabrication has emerged as a promising technology to reproduce the intricate organization of the joint, thus enabling the introduction of novel surgical treatments, regenerative therapies, and new sets of tools to enhance our understanding of joint physiology and pathology. Herein, we address the current challenges to recapitulate the complexity of articulating joints and how biofabrication could overcome them. The combination of multiple materials, biological cues and cells in a layer-by-layer fashion, can assist in reproducing both the zonal organization of cartilage and the gradual transition from resilient cartilage toward the subchondral bone in biofabricated osteochondral grafts. In this way, optimal integration of engineered constructs with the natural surrounding tissues can be obtained. Mechanical characteristics, including the smoothness and low friction that are hallmarks of the articular surface, can be tuned with multi-head or hybrid printers by controlling the spatial patterning of printed structures. Moreover, biofabrication can use digital medical images as blueprints for printing patient-specific implants. Finally, the current rapid advances in biofabrication hold significant potential for developing joint-on-a-chip models for personalized medicine and drug testing or even for the creation of implants that may be used to treat larger parts of the articulating joint. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:2089-2097, 2017.
Collapse
Affiliation(s)
| | - Paweena Diloksumpan
- Faculty of Veterinary MedicineDepartment of Equine SciencesUtrechtThe Netherlands
| | - Paul René van Weeren
- Faculty of Veterinary MedicineDepartment of Equine SciencesUtrechtThe Netherlands
| | - Riccardo Levato
- Department of OrthopaedicsUniversity Medical Centre UtrechtPO Box 85500, 3508 GAUtrechtThe Netherlands
| | - Jos Malda
- Department of OrthopaedicsUniversity Medical Centre UtrechtPO Box 85500, 3508 GAUtrechtThe Netherlands
- Faculty of Veterinary MedicineDepartment of Equine SciencesUtrechtThe Netherlands
| |
Collapse
|
17
|
Abstract
Osteoarthritis (OA) is a degenerative joint condition characterized by painful cartilage lesions that impair joint mobility. Current treatments such as lavage, microfracture, and osteochondral implantation fail to integrate newly formed tissue with host tissues and establish a stable transition to subchondral bone. Similarly, tissue-engineered grafts that facilitate cartilage and bone regeneration are challenged by how to integrate the graft seamlessly with surrounding host cartilage and/or bone. This review centers on current approaches to promote cartilage graft integration. It begins with an overview of articular cartilage structure and function, as well as degenerative changes to this relationship attributed to aging, disease, and trauma. A discussion of the current progress in integrative cartilage repair follows, focusing on graft or scaffold design strategies targeting cartilage-cartilage and/or cartilage-bone integration. It is emphasized that integrative repair is required to ensure long-term success of the cartilage graft and preserve the integrity of the newly engineered articular cartilage. Studies involving the use of enzymes, choice of cell source, biomaterial selection, growth factor incorporation, and stratified versus gradient scaffolds are therefore highlighted. Moreover, models that accurately evaluate the ability of cartilage grafts to enhance tissue integrity and prevent ectopic calcification are also discussed. A summary and future directions section concludes the review.
Collapse
Affiliation(s)
- Margaret K Boushell
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| | - Clark T Hung
- b Cellular Engineering Laboratory , Department of Biomedical Engineering Columbia University , New York , NY , USA
| | - Ernst B Hunziker
- c Department of Orthopaedic Surgery & Department of Clinical Research, Center of Regenerative Medicine for Skeletal Tissues , University of Bern , Bern , Switzerland
| | - Eric J Strauss
- d Department of Orthopaedic Surgery, Langone Medical Center , New York University , New York , NY , USA
| | - Helen H Lu
- a Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering , Columbia University , New York , NY , USA
| |
Collapse
|
18
|
Merlin Rajesh Lal LP, Suraishkumar GK, Nair PD. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton's Jelly mesenchymal stem cells. J Biomed Mater Res A 2017; 105:1845-1855. [DOI: 10.1002/jbm.a.36054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 11/11/2022]
Affiliation(s)
- L. P. Merlin Rajesh Lal
- Department of Biotechnology; IIT Madras; Chennai Tamil Nadu 600036 India
- Division of Tissue Engineering and Regeneration Technologies; Sree Chitra Tirunal Institute for Medical Sciences and Technology; BMT Wing Trivandrum Kerala 695012 India
| | - G. K. Suraishkumar
- Division of Tissue Engineering and Regeneration Technologies; Sree Chitra Tirunal Institute for Medical Sciences and Technology; BMT Wing Trivandrum Kerala 695012 India
| | - Prabha D. Nair
- Division of Tissue Engineering and Regeneration Technologies; Sree Chitra Tirunal Institute for Medical Sciences and Technology; BMT Wing Trivandrum Kerala 695012 India
| |
Collapse
|
19
|
Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 2017; 51:75-88. [PMID: 28087486 PMCID: PMC5360098 DOI: 10.1016/j.actbio.2017.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. Statement of Significance Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A Parmar
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Christopher D Spicer
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M Stevens
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
20
|
Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 2016; 99:56-71. [PMID: 27214650 PMCID: PMC4910873 DOI: 10.1016/j.biomaterials.2016.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis. hMSCs encapsulated within the hydrogels cross-linked with both degradable peptides exhibited enhanced chondrogenic characteristics as demonstrated by gene expression and extracellular matrix deposition compared to the hydrogels cross-linked with a single peptide. Additionally, these combined peptide hydrogels displayed increased MMP7 and ADAMTS4 activities and yet increased compression moduli after 6 weeks, suggesting a positive correlation between the degradation of the hydrogels and the accumulation of matrix by hMSCs undergoing chondrogenesis. Our results suggest that including dual degradation motifs designed to respond to enzymatic activity of hMSCs going through chondrogenic differentiation led to improvements in chondrogenesis. Our hydrogel system demonstrates a bimodal enzymatically degradable biological platform that can mimic native cellular processes in a temporal manner. As such, this novel collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A Parmar
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Stacey C Skaalure
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M Stevens
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
21
|
Parmar PA, St-Pierre JP, Chow LW, Puetzer JL, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. Adv Healthc Mater 2016; 5:1656-66. [PMID: 27219220 PMCID: PMC5405340 DOI: 10.1002/adhm.201600136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A. Parmar
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London SW7 2AZ, UK; The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Jean-Philippe St-Pierre
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Lesley W. Chow
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Jennifer L. Puetzer
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Violet Stoichevska
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Yong Y. Peng
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Jerome A. Werkmeister
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - John A. M. Ramshaw
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M. Stevens
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| |
Collapse
|
22
|
Chen L, Song W, Markel DC, Shi T, Muzik O, Matthew H, Ren W. Flow perfusion culture of MC3T3-E1 osteogenic cells on gradient calcium polyphosphate scaffolds with different pore sizes. J Biomater Appl 2015; 30:908-18. [DOI: 10.1177/0885328215608335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Calcium polyphosphate is a biodegradable bone substitute. It remains a challenge to prepare porous calcium polyphosphate with desired gradient porous structures. In this study, a modified one-step gravity sintering method was used to prepare calcium polyphosphate scaffolds with desired-gradient-pore-size distribution. The differences of porous structure, mechanical strength, and degradation rate between gradient and homogenous calcium polyphosphate scaffolds were evaluated by micro-computed tomography, scanning electron microscopy, and mechanical testing. Preosteoblastic MC3T3-E1 cells were seeded onto gradient and homogenous calcium polyphosphate scaffolds and cultured in a flow perfusion bioreactor. The distribution, proliferation, and differentiation of the MC3T3-E1 cells were compared to that of homogenous calcium polyphosphate scaffolds. Though no significant difference of cell proliferation was found between the gradient and the homogenous calcium polyphosphate scaffolds, a much higher cell differentiation and mineralization were observed in the gradient calcium polyphosphate scaffolds than that of the homogenous calcium polyphosphate scaffolds, as manifested by increased alkaline phosphatase activity ( p < 0.05). The improved distribution and differentiation of cultured cells within gradient scaffolds were further supported by both 18F-fluorine micro-positron emission tomography scanning and in vitro tetracycline labeling. We conclude that the calcium polyphosphate scaffold with gradient pore sizes enhances osteogenic cell differentiation as well as mineralization. The in vivo performance of gradient calcium polyphosphate scaffolds warrants further investigation in animal bone defect models.
Collapse
Affiliation(s)
- Liang Chen
- Department of Biomedical Engineering, Wayne State University, USA
| | - Wei Song
- Department of Biomedical Engineering, Wayne State University, USA
| | - David C Markel
- Detroit Medical Center & Providence Hospital Orthopaedic Residency, USA
- Department of Orthopaedic Surgery, Providence Hospital and Medical Centers, USA
| | - Tong Shi
- Department of Biomedical Engineering, Wayne State University, USA
| | | | - Howard Matthew
- Department of Biomedical Engineering, Wayne State University, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, USA
- Department of Orthopaedic Surgery, Providence Hospital and Medical Centers, USA
| |
Collapse
|
23
|
Mohan N, Wilson J, Joseph D, Vaikkath D, Nair PD. Biomimetic fiber assembled gradient hydrogel to engineer glycosaminoglycan enriched and mineralized cartilage: Anin vitrostudy. J Biomed Mater Res A 2015; 103:3896-906. [DOI: 10.1002/jbm.a.35506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Neethu Mohan
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Jijo Wilson
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Dexy Joseph
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Dhanesh Vaikkath
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| | - Prabha D. Nair
- Division of Tissue Engineering and Regeneration Technologies; Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology; Trivandrum Kerala India
| |
Collapse
|
24
|
Lee WD, Hurtig MB, Pilliar RM, Stanford WL, Kandel RA. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells. Osteoarthritis Cartilage 2015; 23:1307-15. [PMID: 25891750 DOI: 10.1016/j.joca.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/19/2015] [Accepted: 04/08/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. DESIGN BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. RESULTS This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. CONCLUSION This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies.
Collapse
Affiliation(s)
- W D Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - M B Hurtig
- Ontario Veterinary College, University of Guelph, 50 McGilvray Street, Guelph, Ontario N1G 2W1, Canada
| | - R M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | - W L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, 501 Smyth Road, Box 511, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 501 Smyth Road, Box 511, Ottawa, Ontario K1H 8L6, Canada.
| | - R A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Ave., Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
25
|
Gadjanski I, Vunjak-Novakovic G. Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opin Biol Ther 2015; 15:1583-99. [PMID: 26195329 PMCID: PMC4628577 DOI: 10.1517/14712598.2015.1070825] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION A major hurdle in treating osteochondral (OC) defects is the different healing abilities of two types of tissues involved - articular cartilage and subchondral bone. Biomimetic approaches to OC-construct engineering, based on recapitulation of biological principles of tissue development and regeneration, have potential for providing new treatments and advancing fundamental studies of OC tissue repair. AREAS COVERED This review on state of the art in hierarchical OC tissue graft engineering is focused on tissue engineering approaches designed to recapitulate the native milieu of cartilage and bone development. These biomimetic systems are discussed with relevance to bioreactor cultivation of clinically sized, anatomically shaped human cartilage/bone constructs with physiologic stratification and mechanical properties. The utility of engineered OC tissue constructs is evaluated for their use as grafts in regenerative medicine, and as high-fidelity models in biological research. EXPERT OPINION A major challenge in engineering OC tissues is to generate a functionally integrated stratified cartilage-bone structure starting from one single population of mesenchymal cells, while incorporating perfusable vasculature into the bone, and in bone-cartilage interface. To this end, new generations of advanced scaffolds and bioreactors, implementation of mechanical loading regimens and harnessing of inflammatory responses of the host will likely drive the further progress.
Collapse
Affiliation(s)
- Ivana Gadjanski
- Belgrade Metropolitan University, Center for Bioengineering – BioIRC, Prvoslava Stojanovica 6, 34000 Kragujevac, Serbia, Tel: +381 64 083 58 62, Fax: +381 11 203 06 28,
| | - Gordana Vunjak-Novakovic
- Laboratory for Stem Cells and Tissue Engineering, Columbia University, 622 west 168th Street, VC12-234, New York NY 10032, USA, tel: +1-212-305-2304, fax: +1-212-305-4692,
| |
Collapse
|
26
|
Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials 2015; 54:213-25. [PMID: 25907054 PMCID: PMC4416732 DOI: 10.1016/j.biomaterials.2015.02.079] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 12/29/2022]
Abstract
Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications.
Collapse
|
27
|
Yan LP, Oliveira JM, Oliveira AL, Reis RL. Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine. ACS Biomater Sci Eng 2015; 1:183-200. [DOI: 10.1021/ab500038y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Le-Ping Yan
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana L. Oliveira
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
- CBQF−Center
for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, Porto 4200−072, Portugal
| | - Rui L. Reis
- 3B’s
Research Group−Biomaterials, Biodegradables and Biomimetics,
Headquarters of the European Institute of Excellence on Tissue Engineering
and Regenerative Medicine, University of Minho, AvePark, S. Cláudio
de Barco, 4806-909 Taipas, Guimarães, Portugal
- ICVS/3B’s−PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
28
|
Pan JF, Yuan L, Guo CA, Geng XH, Fei T, Fan WS, Li S, Yuan HF, Yan ZQ, Mo XM. Fabrication of modified dextran-gelatin in situ forming hydrogel and application in cartilage tissue engineering. J Mater Chem B 2014; 2:8346-8360. [PMID: 32262005 DOI: 10.1039/c4tb01221f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels play a very important role in cartilage tissue engineering. Here, we oxidized dextran (Odex) and modified gelatin (Mgel) to fabricate a fast forming hydrogel without the addition of a chemical crosslinking agent. The dynamic gelling process was measured through rheological measurements. The microstructure was examined by lyophilizing to get porous scaffolds. Biological assessment was performed through CCK-8 assays by using synovium-derived mesenchymal cells (SMSCs) at 1, 3, 7 and 14 days. In vivo evaluation for application in cartilage tissue engineering was performed 8 weeks after subcutaneous injection of SMSC-loaded Odex/Mgel hydrogels combined with TGF-β3 in the dorsa of nude mice. According to the results, a fast forming hydrogel was obtained by simply modifying dextran and gelatin. Moreover, the Odex/Mgel hydrogel exhibited good biocompatibility in cultures of SMSCs and a homogeneous distribution of live cells was achieved inside the hydrogels. After 8 weeks, newly formed cartilage was achieved in the dorsa of nude mice; no inflammatory reaction was observed and high production of GAGs was shown. The method provides a strategy for the design and fabrication of fast in situ forming hydrogels. The Odex/Mgel hydrogel could be used for the regeneration of cartilage in tissue engineering.
Collapse
Affiliation(s)
- Jian-Feng Pan
- Department of Orthopedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai 200032, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang W, Lian Q, Li D, Wang K, Hao D, Bian W, Jin Z. The effect of interface microstructure on interfacial shear strength for osteochondral scaffolds based on biomimetic design and 3D printing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 46:10-5. [PMID: 25491954 DOI: 10.1016/j.msec.2014.09.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/18/2014] [Accepted: 09/30/2014] [Indexed: 11/17/2022]
Abstract
Interface integration between chondral phase and osseous phase is crucial in engineered osteochondral scaffolds. However, the integration was poorly understood and commonly failed to meet the need of osteochondral scaffolds. In this paper, a biphasic polyethylene glycol (PEG)/β-tricalcium phosphate (β-TCP) scaffold with enhanced interfacial integration was developed. The chondral phase was a PEG hydrogel. The osseous phase was a β-TCP ceramic scaffold. The PEG hydrogel was directly cured on the ceramic interface layer by layer to fabricate osteochondral scaffolds by 3D printing technology. Meanwhile, a series of interface structure were designed with different interface pore area percentages (0/10/20/30/40/50/60%), and interfacial shear test was applied for interface structure optimization (n=6 samples/group). The interfacial shear strength of 30% pore area group was nearly three folds improved compared with that of 0% pore area percentage group, and more than fifty folds improved compared with that of traditional integration (5.91±0.59 kPa). In conclusion, the biomimetic PEG/β-TCP scaffolds with interface structure enhanced integration show promising potential application for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Weijie Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China; The First Department of Orthopaedics, The Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Department of Joint Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Qin Lian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Kunzheng Wang
- The First Department of Orthopaedics, The Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Weiguo Bian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China; Department of Orthopaedics, The First Affiliated Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China; Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
30
|
Abstract
The osteochondral junction is composed of numerous tissue components and serves important functions relating to structural stability and proper nutrition in joints such as the knee and spine. Conventional MR techniques have been inadequate at imaging the tissues of the osteochondral junction primarily because of the intrinsically short T2 nature of these tissues, rendering them "invisible" with the standard acquisitions. Ultrashort time to echo (UTE) MR techniques acquire sufficient MR signal of osteochondral tissues, thereby allowing direct evaluation. This article reviews the anatomy of the osteochondral junction of the knee and the spine, technical aspects of UTE MRI, and the application of UTE MRI for evaluation of the osteochondral junction.
Collapse
Affiliation(s)
- Won C Bae
- Department of Radiology, University of California, San Diego, 408 Dickinson St., San Diego, CA 92103-8226, USA
| | - Reni Biswas
- Department of Radiology, University of California, San Diego, 408 Dickinson St., San Diego, CA 92103-8226, USA
| | - Karen Chen
- Department of Radiology, University of California, San Diego, 408 Dickinson St., San Diego, CA 92103-8226, USA
| | - Eric Y Chang
- Department of Radiology, University of California, San Diego, 408 Dickinson St., San Diego, CA 92103-8226, USA
| | - Christine B Chung
- Department of Radiology, University of California, San Diego, 408 Dickinson St., San Diego, CA 92103-8226, USA
| |
Collapse
|
31
|
Dua R, Centeno J, Ramaswamy S. Augmentation of engineered cartilage to bone integration using hydroxyapatite. J Biomed Mater Res B Appl Biomater 2013; 102:922-32. [PMID: 24259264 DOI: 10.1002/jbm.b.33073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 01/10/2023]
Abstract
Articular cartilage injuries occur frequently in the knee joint. Photopolymerizable cartilage tissue engineering approaches appear promising; however, fundamentally, forming a stable interface between the subchondral bone and tissue engineered cartilage components remains a major challenge. We investigated the utility of hydroxyapatite (HA) nanoparticles to promote controlled bone-growth across the bone-cartilage interface in an in vitro engineered tissue model system using bone marrow derived stem cells. Samples incorporated with HA demonstrated significantly higher interfacial shear strength (at the junction between engineered cartilage and engineered bone) compared with the constructs without HA (p < 0.05), after 28 days of culture. Interestingly, this increased interfacial shear strength due to the presence of HA was observed as early as 7 days and appeared to have sustained itself for an additional three weeks without interacting with strength increases attributable to subsequent secretion of engineered tissue matrix. Histological evidence showed that there was ∼7.5% bone in-growth into the cartilage region from the bone side. The mechanism of enhanced engineered cartilage to bone integration with HA incorporation appeared to be facilitated by the deposition of calcium phosphate in the transition zone. These findings indicate that controlled bone in-growth using HA incorporation permits more stable anchorage of the injectable hydrogel-based engineered cartilage construct via augmented integration between bone and cartilage.
Collapse
Affiliation(s)
- Rupak Dua
- Department of Biomedical Engineering Tissue Engineered Mechanics Imaging and Materials Laboratory (TEMIM Lab), Florida International University, Miami, Florida
| | | | | |
Collapse
|
32
|
Hollenstein J, Terrier A, Cory E, Chen AC, Sah RL, Pioletti DP. Mechanical evaluation of a tissue-engineered zone of calcification in a bone-hydrogel osteochondral construct. Comput Methods Biomech Biomed Engin 2013; 18:332-7. [PMID: 23706035 DOI: 10.1080/10255842.2013.794898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The objective of this study was to test the hypothesis that mechanical properties of artificial osteochondral constructs can be improved by a tissue-engineered zone of calcification (teZCC) at the bone-hydrogel interface. Experimental push-off tests were performed on osteochondral constructs with or without a teZCC. In parallel, a numerical model of the osteochondral defect treatment was developed and validated against experimental results. Experimental results showed that the shear strength at the bone-hydrogel interface increased by 100% with the teZCC. Numerical predictions of the osteochondral defect treatment showed that the shear stress at the bone-hydrogel interface was reduced with the teZCC. We conclude that a teZCC in osteochondral constructs can provide two improvements. First, it increases the strength of the bone-hydrogel interface and second, it reduces the stress at this interface.
Collapse
Affiliation(s)
- Jérôme Hollenstein
- a Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Athens AA, Makris EA, Hu JC. Induced collagen cross-links enhance cartilage integration. PLoS One 2013; 8:e60719. [PMID: 23593295 PMCID: PMC3617163 DOI: 10.1371/journal.pone.0060719] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
Articular cartilage does not integrate due primarily to a scarcity of cross-links and viable cells at the interface. The objective of this study was to test the hypothesis that lysyl-oxidase, a metalloenzyme that forms collagen cross-links, would be effective in improving integration between native-to-native, as well as tissue engineered-to-native cartilage surfaces. To examine these hypotheses, engineered cartilage constructs, synthesized via the self-assembling process, as well as native cartilage, were implanted into native cartilage rings and treated with lysyl-oxidase for varying amounts of time. For both groups, lysyl-oxidase application resulted in greater apparent stiffness across the cartilage interface 2–2.2 times greater than control. The construct-to-native lysyl-oxidase group also exhibited a statistically significant increase in the apparent strength, here defined as the highest observed peak stress during tensile testing. Histology indicated a narrowing gap at the cartilage interface in lysyl-oxidase treated groups, though this alone is not sufficient to indicate annealing. However, when the morphological and mechanical data are taken together, the longer the duration of lysyl-oxidase treatment, the more integrated the interface appeared. Though further data are needed to confirm the mechanism of action, the enhancement of integration may be due to lysyl-oxidase-induced pyridinoline cross-links. This study demonstrates that lysyl-oxidase is a potent agent for enhancing integration between both native-to-native and native-to-engineered cartilages. The fact that interfacial strength increased manifold suggests that cross-linking agents should play a significant role in solving the difficult problem of cartilage integration. Future studies must examine dose, dosing regimen, and cellular responses to lysyl-oxidase to optimize its application.
Collapse
Affiliation(s)
- Aristos A. Athens
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Davis Senior High School, Davis, California, United States of America
| | - Eleftherios A. Makris
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- Department of Orthopedic Surgery and Musculoskeletal Trauma, University of Thessaly (BIOMED), Larisa, Greece
| | - Jerry C. Hu
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ. Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 2013; 9:5484-92. [PMID: 23159563 DOI: 10.1016/j.actbio.2012.11.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 12/28/2022]
Abstract
Chondrogenically primed bone marrow-derived mesenchymal stem cells (MSCs) have been shown to become hypertrophic and undergo endochondral ossification when implanted in vivo. Modulating this endochondral phenotype may be an attractive approach to engineering the osseous phase of an osteochondral implant. The objective of this study was to engineer an osteochondral tissue by promoting endochondral ossification in one layer of a bilayered construct and stable cartilage in the other. The top half of bilayered agarose hydrogels were seeded with culture expanded chondrocytes (termed the chondral layer) and the bottom half of the bilayered agarose hydrogels with MSCs (termed the osseous layer). Constructs were cultured in chondrogenic medium for 21days and thereafter were either maintained in chondrogenic medium, transferred to hypertrophic medium, or implanted subcutaneously into nude mice. This structured chondrogenic bilayered co-culture was found to enhance chondrogenesis in the chondral layer, appearing to help re-establish the chondrogenic phenotype that is lost in chondrocytes during monolayer expansion. Furthermore, the bilayered co-culture appeared to suppress hypertrophy and mineralization in the osseous layer. The addition of hypertrophic factors to the media was found to induce mineralization of the osseous layer in vitro. A similar result was observed in vivo where endochondral ossification was restricted to the osseous layer of the construct, leading to the development of an osteochondral tissue. This novel approach represents a potential new treatment strategy for the repair of osteochondral defects.
Collapse
Affiliation(s)
- Eamon J Sheehy
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | | | | |
Collapse
|
35
|
Schuurman W, Klein TJ, Dhert WJA, van Weeren PR, Hutmacher DW, Malda J. Cartilage regeneration using zonal chondrocyte subpopulations: a promising approach or an overcomplicated strategy? J Tissue Eng Regen Med 2012; 9:669-78. [PMID: 23135870 DOI: 10.1002/term.1638] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/30/2012] [Accepted: 09/27/2012] [Indexed: 01/01/2023]
Abstract
Cartilage defects heal imperfectly and osteoarthritic changes develop frequently as a result. Although the existence of specific behaviours of chondrocytes derived from various depth-related zones in vitro has been known for over 20 years, only a relatively small body of in vitro studies has been performed with zonal chondrocytes and current clinical treatment strategies do not reflect these native depth-dependent (zonal) differences. This is surprising since mimicking the zonal organization of articular cartilage in neo-tissue by the use of zonal chondrocyte subpopulations could enhance the functionality of the graft. Although some research groups including our own have made considerable progress in tailoring culture conditions using specific growth factors and biomechanical loading protocols, we conclude that an optimal regime has not yet been determined. Other unmet challenges include the lack of specific zonal cell sorting protocols and limited amounts of cells harvested per zone. As a result, the engineering of functional tissue has not yet been realized and no long-term in vivo studies using zonal chondrocytes have been described. This paper critically reviews the research performed to date and outlines our view of the potential future significance of zonal chondrocyte populations in regenerative approaches for the treatment of cartilage defects. Secondly, we briefly discuss the capabilities of additive manufacturing technologies that can not only create patient-specific grafts directly from medical imaging data sets but could also more accurately reproduce the complex 3D zonal extracellular matrix architecture using techniques such as hydrogel-based cell printing.
Collapse
Affiliation(s)
- W Schuurman
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands.,Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, The Netherlands
| | - T J Klein
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - W J A Dhert
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands.,Faculty of Veterinary Sciences, University of Utrecht, The Netherlands
| | - P R van Weeren
- Department of Equine Sciences, Faculty of Veterinary Sciences, Utrecht University, The Netherlands
| | - D W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - J Malda
- Department of Orthopaedics, University Medical Center Utrecht, The Netherlands.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|