1
|
Monteiro N, Fangueiro J, Reis R, Neves N. Replication of natural surface topographies to generate advanced cell culture substrates. Bioact Mater 2023; 28:337-347. [PMID: 37519922 PMCID: PMC10382971 DOI: 10.1016/j.bioactmat.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 08/01/2023] Open
Abstract
Surface topographies of cell culture substrates can be used to generate in vitro cell culture environments similar to the in vivo cell niches. In vivo, the physical properties of the extracellular matrix (ECM), such as its topography, provide physical cues that play an important role in modulating cell function. Mimicking these properties remains a challenge to provide in vitro realistic environments for cells. Artificially generated substrates' topographies were used extensively to explore this important surface cue. More recently, the replication of natural surface topographies has been enabling to exploration of characteristics such as hierarchy and size scales relevant for cells as advanced biomimetic substrates. These substrates offer more realistic and mimetic environments regarding the topographies found in vivo. This review will highlight the use of natural surface topographies as a template to generate substrates for in-vitro cell culture. This review starts with an analysis of the main cell functions that can be regulated by the substrate's surface topography through cell-substrate interactions. Then, we will discuss research works wherein substrates for cell biology decorated with natural surface topographies were used and investigated regarding their influence on cellular performance. At the end of this review, we will highlight the advantages and challenges of the use of natural surface topographies as a template for the generation of advanced substrates for cell culture.
Collapse
Affiliation(s)
- N.O. Monteiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J.F. Fangueiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R.L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - N.M. Neves
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Zhang Q, Zhang Q, Yan X, Wang L, Yuan X. Wrinkled topography regulates osteogenesis via autophagy-mediated Wnt/β-catenin signaling pathway in MC3T3-E1 cells. Arch Oral Biol 2023; 151:105700. [PMID: 37094411 DOI: 10.1016/j.archoralbio.2023.105700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE In this study, we aimed to evaluate the effects of different dimensional wrinkled in topography on the osteogenic differentiation of MC3T3-E1 cells and explored the underlying mechanisms. DESIGN Polydimethylsiloxane (PDMS) with a wrinkled topography was synthesized using an elastomer base and crosslinking while observing by atomic force microscopy. MC3T3-E1 proliferation was detected by Cell Counting Kit-8(CCK-8) assays and the cell morphology was determined by phalloidin staining. Osteogenetic genes expression levels were measured by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. In addition, Autophagy-related genes expression levels were evaluated by immunostaining and western blotting in MC3T3-E1 in order to assess the induction of autophagy. RESULTS In this experiment, the 0.7 µm amplitude and 3 µm wavelength (W3) group increased the expression of osteogenic markers, whereas the 4.3 µm amplitude and 27 µm wavelength (W27) group showed inhibition. Both the cytoplasm and the nucleus of β-catenin, compared with those of the Flat, W3 increased, whereas W27 decreased. At the same time, the autophagy was consistent with the influence of the topography on osteogenic differentiation. Moreover, using CQ or RAPA significantly inhibited or promoted autophagy, as well as partially decreasing or increasing osteogenesis, respectively. Infecting siRNA-β-catenin decreased the expression of RUNX2 and OSX in MC3T3-E1 cells both treated with CQ and RAPA. CONCLUSIONS Wrinkled topographies activated the autophagy-mediated Wnt/β-catenin signaling pathway and affected the osteogenic differentiation of MC3T3-E1 cells. The introduction of aligned topographies on biomaterial scaffolds could provide physical cues with which modulate MC3T3-E1 responses for bone engineering constructs.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qi Zhang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing 401174, China
| | - Xiao Yan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Liping Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266003, China.
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
3
|
Wang Y, He J, Zhang J, Zhang N, Zhou Y, Wu F. Cell migration induces apoptosis in osteosarcoma cell via inhibition of Wnt-β-catenin signaling pathway. Colloids Surf B Biointerfaces 2023; 223:113142. [PMID: 36669438 DOI: 10.1016/j.colsurfb.2023.113142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The current design scheme on anti-cancer materials is mainly through tuning the mechanical properties of the materials to induce apoptosis in cancer cells, with the involvement of Rho/ROCK signaling pathway. We hypothesize that tuning the motility is another potential important approach to modifying the tumor microenvironment and inducing tumor apoptosis. To this aim, we have prepared RGD-modified substrates to regulate cell motility through modification of RGD with different concentrations, and systematically examined the effect of motility on the apoptosis of tumor cells, and the potential involvement of Wnt signaling pathway. Our studies indicated that RGD modification could be readily used to tune the motility of cancer cells. High RGD concentration significantly suppressed the migration of cancer cells, leading to significantly increased apoptosis rate, about three times of that of the unmodified samples. Western-blot analysis also showed that cell with low motility expressed more caspase-3 and PARP proteins. Further RNA sequence study strongly suggested that low motility inhibited the canonical Wnt signaling pathway, which in turn led to the activation of the mitochondria-associated caspase signaling pathway, and ultimately to the apoptosis of osteosarcoma cells. Activation of the Wnt-β-catenin pathway through HLY78 significantly suppressed the apoptosis of MG-63 cells, further suggesting the critical role of Wnt pathway in motility-regulated-apoptosis of tumor cells. Our findings shed insights to understand the underlying mechanisms that induced the tumor cell apoptosis, and might provide new strategy for designing the novel anti-tumor materials.
Collapse
Affiliation(s)
- Yao Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Junwei Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Nihui Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Yong Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610064, PR China.
| | - Fang Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
4
|
Guan G, Cannon RD, Coates DE, Mei L. Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel) 2023; 14:272. [PMID: 36833199 PMCID: PMC9957420 DOI: 10.3390/genes14020272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The mechanical properties of cells are important in tissue homeostasis and enable cell growth, division, migration and the epithelial-mesenchymal transition. Mechanical properties are determined to a large extent by the cytoskeleton. The cytoskeleton is a complex and dynamic network composed of microfilaments, intermediate filaments and microtubules. These cellular structures confer both cell shape and mechanical properties. The architecture of the networks formed by the cytoskeleton is regulated by several pathways, a key one being the Rho-kinase/ROCK signaling pathway. This review describes the role of ROCK (Rho-associated coiled-coil forming kinase) and how it mediates effects on the key components of the cytoskeleton that are critical for cell behaviour.
Collapse
Affiliation(s)
- Guangzhao Guan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Dawn E. Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Li Mei
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
5
|
García-Padilla C, Muñoz-Gallardo MDM, Lozano-Velasco E, Castillo-Casas JM, Caño-Carrillo S, García-López V, Aránega A, Franco D, García-Martínez V, López-Sánchez C. New Insights into the Roles of lncRNAs as Modulators of Cytoskeleton Architecture and Their Implications in Cellular Homeostasis and in Tumorigenesis. Noncoding RNA 2022; 8:ncrna8020028. [PMID: 35447891 PMCID: PMC9033079 DOI: 10.3390/ncrna8020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 11/20/2022] Open
Abstract
The importance of the cytoskeleton not only in cell architecture but also as a pivotal element in the transduction of signals that mediate multiple biological processes has recently been highlighted. Broadly, the cytoskeleton consists of three types of structural proteins: (1) actin filaments, involved in establishing and maintaining cell shape and movement; (2) microtubules, necessary to support the different organelles and distribution of chromosomes during cell cycle; and (3) intermediate filaments, which have a mainly structural function showing specificity for the cell type where they are expressed. Interaction between these protein structures is essential for the cytoskeletal mesh to be functional. Furthermore, the cytoskeleton is subject to intense spatio-temporal regulation mediated by the assembly and disassembly of its components. Loss of cytoskeleton homeostasis and integrity of cell focal adhesion are hallmarks of several cancer types. Recently, many reports have pointed out that lncRNAs could be critical mediators in cellular homeostasis controlling dynamic structure and stability of the network formed by cytoskeletal structures, specifically in different types of carcinomas. In this review, we summarize current information available about the roles of lncRNAs as modulators of actin dependent cytoskeleton and their impact on cancer pathogenesis. Finally, we explore other examples of cytoskeletal lncRNAs currently unrelated to tumorigenesis, to illustrate knowledge about them.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Correspondence: (C.G.-P.); (C.L.-S.)
| | - María del Mar Muñoz-Gallardo
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Estefanía Lozano-Velasco
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Juan Manuel Castillo-Casas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Sheila Caño-Carrillo
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
| | - Virginio García-López
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (M.d.M.M.-G.); (J.M.C.-C.); (S.C.-C.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio García-Martínez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (E.L.-V.); (V.G.-L.); (V.G.-M.)
- Correspondence: (C.G.-P.); (C.L.-S.)
| |
Collapse
|
6
|
Pour M, Kumar AS, Farag N, Bolondi A, Kretzmer H, Walther M, Wittler L, Meissner A, Nachman I. Emergence and patterning dynamics of mouse-definitive endoderm. iScience 2022; 25:103556. [PMID: 34988400 PMCID: PMC8693470 DOI: 10.1016/j.isci.2021.103556] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
The segregation of definitive endoderm (DE) from bipotent mesendoderm progenitors leads to the formation of two distinct germ layers. Dissecting DE commitment and onset has been challenging as it occurs within a narrow spatiotemporal window in the embryo. Here, we employ a dual Bra/Sox17 reporter cell line to study DE onset dynamics. We find Sox17 expression initiates in vivo in isolated cells within a temporally restricted window. In 2D and 3D in vitro models, DE cells emerge from mesendoderm progenitors at a temporally regular, but spatially stochastic pattern, which is subsequently arranged by self-sorting of Sox17 + cells. A subpopulation of Bra-high cells commits to a Sox17+ fate independent of external Wnt signal. Self-sorting coincides with upregulation of E-cadherin but is not necessary for DE differentiation or proliferation. Our in vivo and in vitro results highlight basic rules governing DE onset and patterning through the commonalities and differences between these systems. Sox17 onsets in a few isolated cells within Bra-expressing population Sox17 onset followed by expansion and self-sorting Final number of Sox17+ cells does not depend on self-sorting or cell movement The DE segregation pattern is similar in in vivo and in 2D, 3D in vitro systems
Collapse
Affiliation(s)
- Maayan Pour
- School of Neurobiology, Biochemistry and Biophysics, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Naama Farag
- School of Neurobiology, Biochemistry and Biophysics, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Maria Walther
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Iftach Nachman
- School of Neurobiology, Biochemistry and Biophysics, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Liu F, Wang X, Li S, Liao Y, Zhan X, Tao A, Zheng F, Li H, Su Y, Jiang J, Li C. Strontium-Loaded Nanotubes of Ti-24Nb-4Zr-8Sn Alloys for Biomedical Implantation. J Biomed Nanotechnol 2021; 17:1812-1823. [PMID: 34688326 DOI: 10.1166/jbn.2021.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloys, with a relatively low elastic modulus and unique mechanical properties, are desirable materials for oral implantation. In the current study, a multifaceted strontium-incorporating nanotube coating was fabricated on a Ti2448 alloy (Ti2-NTSr) through anodization and hydrothermal procedures. In vitro, the Ti2-NTSr specimens demonstrated better osteogenic properties and more favorable osteoimmunomodulatory abilities. Moreover, macrophages on Ti2-NTSr specimens could improve the recruitment and osteogenic differentiation of osteoblasts. In vivo, dense clots with highly branched, thin fibrins and small pores existed on the Ti2-NTSr implant in the early stage after surgery. Analysis of the deposition of Ca and P elements, hard tissue slices and the bone-implant contact rate (BIC%) of the Ti2-NTSr implants also showed superior osseointegration. Taken together, these results demonstrate that the Ti2-NTSr coating may maximize the clinical outcomes of Ti2448 alloys for implantation applications.
Collapse
Affiliation(s)
- Fei Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinyu Wang
- Jiamusi University Affiliated Stomatological Hospital, Heilongjiang Key Laboratory of Oral Biomedical Materials and Clinical Application, Jiamusi, 154000, China
| | - Shujun Li
- Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yiheng Liao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xinxin Zhan
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Anqi Tao
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yucheng Su
- Dental Implant Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
8
|
MACF1 promotes osteoblast differentiation by sequestering repressors in cytoplasm. Cell Death Differ 2021; 28:2160-2178. [PMID: 33664480 PMCID: PMC8257666 DOI: 10.1038/s41418-021-00744-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoblast differentiation leading to bone formation requires a coordinated transcriptional program. Osteoblastic cells with low level of microtubule actin crosslinking factor 1 (MACF1) show reduced osteoblast differentiation ability, however, the comprehensive mechanism of MACF1's action remains unexplored. In the current study, we found that MACF1 knockdown suppressed osteoblast differentiation by altering the transcriptome dynamics. We further identified two MACF1-interacted proteins, cyclin-dependent kinase 12 (CDK12) and MYST/Esa1-associated factor 6 (MEAF6), and two MACF1-interacted transcription factors (TFs), transcription factor 12 (TCF12) and E2F transcription factor 6 (E2F6), which repress osteoblast differentiation by altering the expression of osteogenic TFs and genes. Moreover, we found that MACF1 regulated cytoplasmic-nuclear localization of itself, TCF12 and E2F6 in a concentration-dependent manner. MACF1 oppositely regulates the expression of TCF12 and transcription factor 7 (TCF7), two TFs that drive osteoblast differentiation to opposite directions. This study reveals that MACF1, a cytoskeletal protein, acts as a sponge for repressors of osteoblast differentiation to promote osteoblast differentiation and contributes to a novel mechanistic insight of osteoblast differentiation and transcription dynamics.
Collapse
|
9
|
Gao Q, Hou Y, Li Z, Hu J, Huo D, Zheng H, Zhang J, Yao X, Gao R, Wu X, Sui L. mTORC2 regulates hierarchical micro/nano topography-induced osteogenic differentiation via promoting cell adhesion and cytoskeletal polymerization. J Cell Mol Med 2021; 25:6695-6708. [PMID: 34114337 PMCID: PMC8278073 DOI: 10.1111/jcmm.16672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Surface topography acts as an irreplaceable role in the long‐term success of intraosseous implants. In this study, we prepared the hierarchical micro/nano topography using selective laser melting combined with alkali heat treatment (SLM‐AHT) and explored the underlying mechanism of SLM‐AHT surface‐elicited osteogenesis. Our results show that cells cultured on SLM‐AHT surface possess the largest number of mature FAs and exhibit a cytoskeleton reorganization compared with control groups. SLM‐AHT surface could also significantly upregulate the expression of the cell adhesion‐related molecule p‐FAK, the osteogenic differentiation‐related molecules RUNX2 and OCN as well as the mTORC2 signalling pathway key molecule Rictor. Notably, after the knocked‐down of Rictor, there were no longer significant differences in the gene expression levels of the cell adhesion‐related molecules and osteogenic differentiation‐related molecules among the three titanium surfaces, and the cells on SLM‐AHT surface failed to trigger cytoskeleton reorganization. In conclusion, the results suggest that mTORC2 can regulate the hierarchical micro/nano topography‐mediated osteogenesis via cell adhesion and cytoskeletal reorganization.
Collapse
Affiliation(s)
- Qian Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuying Hou
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Zhe Li
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Jinyang Hu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Huo
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Huimin Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Xiaoyu Yao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Rui Gao
- International Education College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xudong Wu
- Tianjin Key Laboratory of Medical Epigenetics, Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
10
|
Huang Q, Chai H, Wang S, Sun Y, Xu W. 0.5‑Gy X‑ray irradiation induces reorganization of cytoskeleton and differentiation of osteoblasts. Mol Med Rep 2021; 23:379. [PMID: 33760136 PMCID: PMC7986016 DOI: 10.3892/mmr.2021.12018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/29/2021] [Indexed: 12/02/2022] Open
Abstract
Osteoblasts are sensitive to ionizing radiation. The small GTPase RhoA and its effector Rho‑associated protein kinase (ROCK) are critical to several cellular functions, including cytoskeleton reorganization, cell survival, and cell differentiation. However, whether the RhoA/ROCK signaling pathway is involved in the regulation of osteoblast cytoskeleton reorganization and differentiation induced by low‑dose X‑ray irradiation remains to be determined. The aim of the present study was to investigate the role of the RhoA/ROCK signaling pathway in mediating differentiation of osteoblasts and reorganization of the cytoskeleton under low‑dose X‑ray irradiation. Osteoblasts were pretreated with the ROCK kinase‑specific inhibitor (Y‑27632) before exposure to low‑dose X‑ray irradiation. The changes of F‑actin in MC3T3 cells were observed at different time points following X‑ray irradiation. Cell Counting Kit‑8 assay, alkaline phosphatase activity, Alizarin red staining and western blotting were used to detect the proliferation and differentiation of osteoblasts after 0.5‑Gy X‑ray irradiation. In the present study, low‑dose X‑ray irradiation promoted the expression of genes associated with the cytoskeleton reorganization. Indeed, the results showed that, 0.5‑Gy X‑ray irradiation can induce reorganization of cytoskeleton and promote differentiation of osteoblasts through the RhoA/ROCK signaling pathway. Additionally, inhibiting ROCK activity blocked low‑dose X‑ray irradiation‑induced LIMK2 phosphorylation, stress fiber formation and cell differentiation. Thus, these results demonstrated the excitatory effects of low‑dose X‑ray irradiation on MC3T3‑E1 cells, including reorganization of the cytoskeleton and differentiation of osteoblasts.
Collapse
Affiliation(s)
- Qun Huang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Yongming Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
11
|
Liu Y, Wang Y, Cheng X, Zheng Y, Lyu M, Di P, Lin Y. MiR-181d-5p regulates implant surface roughness-induced osteogenic differentiation of bone marrow stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111801. [PMID: 33579448 DOI: 10.1016/j.msec.2020.111801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/25/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Constructing moderate surface roughness is a widely used, non-toxic, cost-effective, and outcome-predictable approach to accelerate implant osteointegration in clinical settings. MicroRNAs (miRNAs) play vital regulatory roles in the osteogenic differentiation of bone marrow stem cells (BMSCs). However, their specific contribution to the influence of surface roughness on osteoblastic behavior remains unknown. Therefore, applying the smooth titanium surface as a control, a typical titanium surface with moderate roughness was prepared here to reveal the mechanism through which surface roughness regulates cell osteogenic behavior by altering miRNA expression. First, the morphology and roughness of two surfaces were characterized, and the enhanced osteogenic differentiation of BMSCs on rough surfaces was verified. Then, twenty-nine differentially expressed miRNAs in BMSCs cultured on different surfaces were selected via miRNA chip and corresponding functional prediction. After verifying the expression of these miRNAs using quantitative real-time polymerase chain reaction, four were considered eligible candidates. Among these, only miR-181d-5p significantly affected RUNX2 gene expression based on overexpression and knockdown experiments. From the osteogenesis-related gene and protein expression, as well as alkaline phosphatase and alizarin red experiments, we further confirmed that the downregulation of miR-181d-5p promoted osteogenic differentiation of BMSCs, and vice versa. In addition, rescue assays showed that the knockdown of miR-181d-5p improved the inferior osteogenesis observed on smooth surfaces, whereas the overexpression of miR-181d-5p suppressed the superior osteogenesis observed on rough surfaces. These results indicate that the moderate surface roughness of the implant stimulates the osteogenic differentiation of BMSCs by remarkably downregulating miR-181d-5p. These findings provide helpful information and a theoretical basis for the development of advanced implant materials for fast osteointegration.
Collapse
Affiliation(s)
- Yanping Liu
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Yixiang Wang
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Xian Cheng
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, the Netherlands
| | - Yan Zheng
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Mingyue Lyu
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China
| | - Ping Di
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| | - Ye Lin
- Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing 100081, PR China.
| |
Collapse
|
12
|
Hu P, Gao Q, Zheng H, Tian Y, Zheng G, Yao X, Zhang J, Wu X, Sui L. The Role and Activation Mechanism of TAZ in Hierarchical Microgroove/Nanopore Topography-Mediated Regulation of Stem Cell Differentiation. Int J Nanomedicine 2021; 16:1021-1036. [PMID: 33603366 PMCID: PMC7887154 DOI: 10.2147/ijn.s283406] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/25/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose To investigate the role and activation mechanism of TAZ in periodontal ligament stem cells (PDLSCs) perceiving hierarchical microgroove/nanopore topography. Materials and Methods Titanium surface with hierarchical microgroove/nanopore topography fabricated by selective laser melting combined with alkali heat treatment (SLM-AHT) was used as experimental group, smooth titanium surface (Ti) and sandblasted, large-grit, acid-etched (SLA) titanium surface were employed as control groups. Alkaline phosphatase (ALP) activity assays, qRT-PCR, Western blotting, and immunofluorescence were carried out to evaluate the effect of SLM-AHT surface on PDLSC differentiation. Moreover, TAZ activation was investigated from the perspective of nuclear localization to transcriptional activity. TAZ knockdown PDLSCs were seeded on three titanium surfaces to detect osteogenesis- and adipogenesis-related gene expression levels. Immunofluorescence and Western blotting were employed to investigate the effect of the SLM-AHT surface on actin cytoskeletal polymerization and MAPK signaling pathway. Cytochalasin D and MAPK signaling pathway inhibitors were used to determine whether actin cytoskeletal polymerization and the MAPK signaling pathway were indispensable for TAZ activation. Results Our results showed that SLM-AHT surface had a greater potential to promote PDLSC osteogenic differentiation while inhibiting adipogenic differentiation than the other two groups. The nuclear localization and transcriptional activity of TAZ were strongly enhanced on the SLM-AHT surface. Moreover, after TAZ knockdown, the enhanced osteogenesis and decreased adipogenesis in SLM-AHT group could not be observed. In addition, SLM-AHT surface could promote actin cytoskeletal polymerization and upregulate p-ERK and p-p38 protein levels. After treatment with cytochalasin D and MAPK signaling pathway inhibitors, differences in the TAZ subcellular localization and transcriptional activity were no longer observed among the different titanium surfaces. Conclusion Our results demonstrated that actin cytoskeletal polymerization and MAPK signaling pathway activation triggered by SLM-AHT surface were essential for TAZ activation, which played a dominant role in SLM-AHT surface-induced stem cell fate decision.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China.,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, People's Republic of China
| | - Qian Gao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China.,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, People's Republic of China
| | - Huimin Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China.,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yujuan Tian
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China.,Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guoying Zheng
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China
| | - Xiaoyu Yao
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China
| | - Junjiang Zhang
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China
| | - Xudong Wu
- Department of Cell Biology, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lei Sui
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Juhl OJ, Merife AB, Zhang Y, Lemmon CA, Donahue HJ. Hydroxyapatite Particle Density Regulates Osteoblastic Differentiation Through β-Catenin Translocation. Front Bioeng Biotechnol 2021; 8:591084. [PMID: 33490047 PMCID: PMC7820766 DOI: 10.3389/fbioe.2020.591084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Substrate surface characteristics such as roughness, wettability and particle density are well-known contributors of a substrate's overall osteogenic potential. These characteristics are known to regulate cell mechanics as well as induce changes in cell stiffness, cell adhesions, and cytoskeletal structure. Pro-osteogenic particles, such as hydroxyapatite, are often incorporated into a substrate to enhance the substrates osteogenic potential. However, it is unknown which substrate characteristic is the key regulator of osteogenesis. This is partly due to the lack of understanding of how these substrate surface characteristics are transduced by cells. In this study substrates composed of polycaprolactone (PCL) and carbonated hydroxyapatite particles (HAp) were synthesized. HAp concentration was varied, and a range of surface characteristics created. The effect of each substrate characteristic on osteoblastic differentiation was then examined. We found that, of the characteristics examined, only HAp density, and indeed a specific density (85 particles/cm2), significantly increased osteoblastic differentiation. Further, an increase in focal adhesion maturation and turnover was observed in cells cultured on this substrate. Moreover, β-catenin translocation from the membrane bound cell fraction to the nucleus was more rapid in cells on the 85 particle/cm2 substrate compared to cells on tissue culture polystyrene. Together, these data suggest that particle density is one pivotal factor in determining a substrates overall osteogenic potential. Additionally, the observed increase in osteoblastic differentiation is a at least partly the result of β-catenin translocation and transcriptional activity suggesting a β-catenin mediated mechanism by which substrate surface characteristics are transduced.
Collapse
Affiliation(s)
- Otto J Juhl
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Anna-Blessing Merife
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Yue Zhang
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Christopher A Lemmon
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering and Institute for Engineering and Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
15
|
Ghezzi B, Lagonegro P, Attolini G, Rotonda PM, Cornelissen C, Ponraj JS, Parisi L, Passeri G, Rossi F, Macaluso GM. Hydrogen plasma treatment confers enhanced bioactivity to silicon carbide-based nanowires promoting osteoblast adhesion. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111772. [PMID: 33579438 DOI: 10.1016/j.msec.2020.111772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022]
Abstract
Nanomaterials play a pivotal role in modern regenerative medicine and tissue engineering, due to their peculiar physical, optical and biological properties once they are used in the nanometric size. Many evidences are showing the importance of biomaterial micro- and nano-topography on cellular adhesion, proliferation and differentiation, and hence, tissue regeneration. It is well known that nanowires (NWs) can mimic many different tissues as a result of their shape and their surface characteristics, and that surface hydrophilicity affects early protein adsorption and cellular adhesion. Therefore a material able to induce bone regeneration might be obtained by combining optimal surface topography and hydrophilicity. Based on these evidence, we designed silicon carbide (SiC) and core/shell silicon carbide/silicon dioxide (SiC/SiOx) nanowires with modified wettability in order to analyze cell behavior, using an in-vitro osteoblastic model. First, we synthetized SiC NWs and SiC/SiOx NWs through a chemical-vapour-deposition (CVD) process, and then we used hydrogen plasma to modify their hydrophilicity. Subsequently we evaluated the four types of NWs in terms of their morphology and contact angle, and we studied their behavior in the presence of MC3T3-E1 murine osteoblasts. Cell metabolic activity, viability, morphology and focal adhesions formation were considered. Morphological data showed different dimensions between SiC and SiC/SiOx NWs. SiC NWs before the hydrogen plasma treatment showed a very low contact angle, that was absent after the treatment. Osteoblastic cells appeared healthy on all of the samples. Interestingly, both hydrophilic SiC NWs and SiC/SiOx NWs generated a favorable distribution of focal adhesions around the cell body confirmed also by scanning electron microscopy images. Moreover, osteoblasts grown on hydrogen plasma treated SiC/SiOx NWs showed an increased metabolic activity testified by a significantly higher cell number. In conclusion, we are here demonstrating that hydrogen plasma treatment of SiC and SiC/SiOx NWs induce a better osteoblastic cellular adhesion by increasing NWs wettability. We are therefore suggesting that hydrogen plasma treatment of SiC/SiOx can offer a suitable method to develop scaffolds for bone tissue engineering applications.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy
| | - Paola Lagonegro
- SCITEC-CNR, Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via Corti, 12, 20133 Milano, Italy.
| | - Giovanni Attolini
- IMEM-CNR Institute, Parco Area delle Scienze 37A, 43124 Parma, Italy
| | | | | | - Joice Sophia Ponraj
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga. Portugal
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy; Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010, Bern, Switzerland
| | - Giovanni Passeri
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy
| | - Francesca Rossi
- IMEM-CNR Institute, Parco Area delle Scienze 37A, 43124 Parma, Italy
| | - Guido Maria Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, via Gramsci 14, 43126 Parma, Italy; IMEM-CNR Institute, Parco Area delle Scienze 37A, 43124 Parma, Italy
| |
Collapse
|
16
|
Huang Q, Zhou Z, Yan F, Dong Q, Wang L, Sha W, Xu Q, Zhu X, Zhao L. Low-dose X-ray irradiation induces morphological changes and cytoskeleton reorganization in osteoblasts. Exp Ther Med 2020; 20:283. [PMID: 33209127 PMCID: PMC7668146 DOI: 10.3892/etm.2020.9413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 05/15/2020] [Indexed: 01/22/2023] Open
Abstract
Recently, research into the biological effects of low dose X-ray irradiation (LDI) has been a focus of interest. Numerous studies have suggested that cells exhibit different responses and biological effects to LDI compared with high doses. Preliminary studies have demonstrated that LDI may promote osteoblast proliferation and differentiation in vitro, thereby accelerating fracture healing in mice. However, the exact mechanism of action by which LDI exerts its effects remains unclear. Previous studies using microarrays revealed that LDI promoted the expression of genes associated with the cytoskeleton. In the current study, the effect of X-ray irradiation (0.5 and 5 Gy) on the morphology of MC3T3-E1 cells and fiber actin organization was investigated. Osteoblasts were treated with 0, 0.5 and 5 Gy X- ray irradiation, following which changes in the actin cytoskeleton were observed. The levels of RhoA, ROCK, cofilin and phosphorylated-cofilin were measured by reverse transcription-quantitative PCR and western blotting. Subsequently, osteoblasts were pretreated with ROCK specific inhibitor Y27632 to observe the changes of actin skeleton after X-ray irradiation. The results demonstrated that the cellular morphological changes were closely associated with radiation dose and exposure time. Furthermore, the gene expression levels of small GTPase RhoA and its effectors were increased following LDI. These results indicated that the RhoA/Rho-associated kinase pathway may serve a significant role in regulating LDI-induced osteoblast cytoskeleton reorganization.
Collapse
Affiliation(s)
- Qun Huang
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Zhiping Zhou
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Fei Yan
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Liming Wang
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Weiping Sha
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Qin Xu
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Xianwei Zhu
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| | - Lei Zhao
- Department of Orthopedics, The First People's Hospital of Zhangjiagang City, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
17
|
Wang C, Xu D, Li S, Yi C, Zhang X, He Y, Yu D. Effect of Pore Size on the Physicochemical Properties and Osteogenesis of Ti6Al4V Porous Scaffolds with Bionic Structure. ACS OMEGA 2020; 5:28684-28692. [PMID: 33195921 PMCID: PMC7658928 DOI: 10.1021/acsomega.0c03824] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/13/2020] [Indexed: 05/08/2023]
Abstract
Ti6Al4V is widely used in implants in the fields of orthopedics and dentistry due to its high compressive strength and good biocompatibility. Nevertheless, Ti6Al4V has a certain degree of biological inertness and the elastic modulus of Ti6Al4V is much higher than the cortex and trabecular bone. In this study, we designed and printed a new type of pore size Ti6Al4V with like-trabecular structure scaffold (the pore size is 800/900/1000 μm, named P8/P9/P10, respectively) with electron beam melting (EBM). Its elastic modulus, compressive strength, and other physical and chemical properties, as well as cell adhesion, proliferation, and differentiation ability and in vitro biological properties were studied. The physical and chemical performance test results showed that as the pore size increased, the surface wettability increased and the elastic modulus decreased. As the pore size increased, F-actin and alkaline phosphatase (ALP) increased significantly, and osteogenesis-related genes including BMP2, OCN, RUNX2, and ALP were upregulated significantly. The reason may be that the components on the Ti6Al4V pore size may have an influence on intracellular signal conversion and then change the mode of cell proliferation and diffusion. In summary, the like-trabecular porous structure can effectively reduce the elastic modulus of metal materials, thereby avoiding stress concentration and promoting the adhesion and proliferation of osteoblasts. Porous materials with larger pores are more conducive to the proliferation and differentiation of osteoblasts. The irregular porous Ti6Al4V scaffold prepared by the EBM technology has good mechanical properties and the potential to promote adhesion, proliferation, and differentiation of osteoblasts, and has the possibility of application in the field of implantation.
Collapse
Affiliation(s)
- Chao Wang
- Guanghua
School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, China
| | - Duoling Xu
- Guanghua
School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, China
| | - Shujun Li
- Institute
of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Chen Yi
- Guanghua
School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, China
| | - Xiliu Zhang
- Guanghua
School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, China
| | - Yi He
- Guanghua
School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, China
| | - Dongsheng Yu
- Guanghua
School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong 510050, China
| |
Collapse
|
18
|
Staehlke S, Haack F, Waldner AC, Koczan D, Moerke C, Mueller P, Uhrmacher AM, Nebe JB. ROS Dependent Wnt/β-Catenin Pathway and Its Regulation on Defined Micro-Pillars-A Combined In Vitro and In Silico Study. Cells 2020; 9:E1784. [PMID: 32726949 PMCID: PMC7464713 DOI: 10.3390/cells9081784] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
The physico-chemical surface design of implants influences the surrounding cells. Osteoblasts on sharp-edged micro-topographies revealed an impaired cell phenotype, function and Ca2+ mobilization. The influence of edges and ridges on the Wnt/β-catenin pathway in combination with the cells' stress response has not been clear. Therefore, MG-63 osteoblasts were studied on defined titanium-coated micro-pillars (5 × 5 × 5 µm) in vitro and in silico. MG-63s on micro-pillars indicated an activated state of the Wnt/β-catenin pathway. The β-catenin protein accumulated in the cytosol and translocated into the nucleus. Gene profiling indicated an antagonism mechanism of the transcriptional activity of β-catenin due to an increased expression of inhibitors like ICAT (inhibitor of β-catenin and transcription factor-4). Cells on pillars produced a significant reactive oxygen species (ROS) amount after 1 and 24 h. In silico analyses provided a detailed view on how transcriptional activity of Wnt signaling is coordinated in response to the oxidative stress induced by the micro-topography. Based on a coordinated expression of regulatory elements of the Wnt/β-catenin pathway, MG-63s are able to cope with an increased accumulation of β-catenin on micro-pillars and suppress an unintended target gene expression. Further, β-catenin may be diverted into other signaling pathways to support defense mechanisms against ROS.
Collapse
Affiliation(s)
- Susanne Staehlke
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; (A.-C.W.); (C.M.); (P.M.); (J.B.N.)
| | - Fiete Haack
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, University of Rostock, Albert-Einstein-Str. 22, 18059 Rostock, Germany; (F.H.); (A.M.U.)
| | - Anna-Christin Waldner
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; (A.-C.W.); (C.M.); (P.M.); (J.B.N.)
| | - Dirk Koczan
- Institute for Immunology, Core Facility for Microarray Analysis, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany;
| | - Caroline Moerke
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; (A.-C.W.); (C.M.); (P.M.); (J.B.N.)
| | - Petra Mueller
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; (A.-C.W.); (C.M.); (P.M.); (J.B.N.)
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, University of Rostock, Albert-Einstein-Str. 22, 18059 Rostock, Germany; (F.H.); (A.M.U.)
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| | - J. Barbara Nebe
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany; (A.-C.W.); (C.M.); (P.M.); (J.B.N.)
- Department Science and Technology of Life, Light and Matter, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany
| |
Collapse
|
19
|
Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111018. [PMID: 32487417 DOI: 10.1016/j.msec.2020.111018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloy is a novel low elastic modulus β-titanium alloy without toxic elements. It also has the advantage of high strength, so it has potential application prospects for implantation. To develop its osteogenic effects, it can be modified by electrochemical, and physical processes. The main research aim of this study was to explore the bioactivity of Ti2448 alloy modified by sandblasted, large-grit, acid-etched (SLA), micro-arc oxidation (MAO) and anodic oxidation (AO), and to determine which of the three surface modifications is the best way for developing the osteogenesis of bone marrow mesenchymal stem cells (BMMSCs). In vitro studies, the cytoskeleton, focal adhesion and proliferation of BMMSCs showed that both pure titanium and Ti2448 alloy have good biocompatibility. The osteogenic differentiation of BMMSCs with the Ti2448 alloy were examined by detecting alkaline phosphatase (ALP), mineralization nodules and osteogenic proteins and were better than that with pure titanium. These results showed that the Ti2448 alloy treated by SLA has a better effect on osteogenesis than pure titanium, and AO is the best way of three surface treatments to improve osteogenesis in this study.
Collapse
|
20
|
Wu J, Chen T, Wang Z, Chen X, Qu S, Weng J, Zhi W, Wang J. Joint construction of micro-vibration stimulation and BCP scaffolds for enhanced bioactivity and self-adaptability tissue engineered bone grafts. J Mater Chem B 2020; 8:4278-4288. [PMID: 32309841 DOI: 10.1039/d0tb00223b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The bone defects caused by trauma and disease have become a major difficulty in the treatment of clinical bone defects, and bone tissue engineering has become a promising treatment strategy. It was found that mechanical stimulation regulated the development of bone constructs by affecting the distribution and differentiation of cells on them. In this study, tissue-engineered bone grafts with enhanced bioactivity and self-adaptability were constructed by BMSCs and biphasic calcium phosphate (BCP) scaffolds under periodic micro-vibration stimulation (MVS) with a frequency of 40 Hz and a magnitude of 0.3 g. The results of the material characterization indicated that the BCP scaffolds created a more favourable osteogenic micro-environment with promoted calcium ion release, protein adsorption and mineralization deposition under the micro-vibration stimulation. The in vitro results showed that the apoptosis of BMSCs increased significantly on day 1, but from day 3 on, the proliferation increased and apoptosis decreased. Cells were evenly distributed on the scaffolds, exhibiting tight adhesion in a flat-shape and distinct matrix mineralization. F-actin and ALP expression significantly increased and meanwhile osteogenesis-related genes including Runx2, Col-I, ALP, and OCN were significantly up-regulated. Western blotting results suggested that the ERK1/2 and Wnt/β-catenin signalling pathways were involved in the osteogenic behaviour of BMSCs induced by MVS. In vivo experiments showed that grafts had stronger osteoinduction and mechanical adaptability. Taken together, this study suggested that micro-vibration stimulation combined with BCP scaffolds with good osteoinduction could be a promising approach for constructing tissue engineered bone grafts with enhanced bioactivity, mechanical adaptability, and bone regeneration repair capability.
Collapse
Affiliation(s)
- Jinjie Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li L, Yang S, Xu L, Li Y, Fu Y, Zhang H, Song J. Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin. Acta Biomater 2019; 96:674-685. [PMID: 31284094 DOI: 10.1016/j.actbio.2019.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/17/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
Nanostructured titanium implants are recognized for inducing osteogenesis, but the cell signal transductions related to topography are not fully understood. Implant topography is associated with the functionality of osteogenic transcription factors directed by β-catenin in the nucleus, and autophagic flux in the cytoplasm; YAP (Yes-associated protein) is implicated in the destruction of β-catenin in the cytoplasm and is susceptible to autophagic flux. This study investigated whether surface topography of the titanium implant modulates autophagy-lysosome degradation of cytoplasmic YAP. Titanium surfaces were modified with smooth, micro, or nanotopographies. Compared with the smooth and micro surfaces, nanotopography was associated with higher β-catenin nuclear translocation, osteogenic differentiation, and autophagy, and less cytoplasmic YAP. Blockade of the autophagy-lysosome pathway resulted in YAP retention in MC3T3-E1 cells. Cytoplasmic YAP restricted β-catenin nuclear translocation. In the nano surface group, β-catenin accumulation in the nucleus and expression of osteogenesis genes was improved. However, in the absence of cell-cell (confluent) contact, manipulation of YAP and β-catenin localization associated with topography-induced autophagy was lost. In summary, the osteogenesis observed in response to titanium implants with nanotopography involves a signaling link between YAP and β-catenin. STATEMENT OF SIGNIFICANCE: Titanium with rough topographical surfaces is extensively applied in orthopedic and dental clinics. However, the cellular response to topographies that promotes osteogenesis and underlying mechanisms are not fully understood. In this study, we modified titanium surfaces to produce smooth, micro, or nano topographies. Experiments indicated that the nanotopography induced a stronger autophagic response, leading to degraded cytoplasmic YAP. With the lower levels of YAP, β-catenin transported and accumulated in the nucleus to activate TCF/LEF transcription factors, resulting in stronger osteogenesis. Additionally, cell-cell contact was essential in the autophagy-mediated signaling link between YAP and β-catenin. Consequently, our investigation revealed a novel signal transduction in nanotopography-regulated osteogenesis, and supports the modification of biomaterial surfaces to maximize osseointegration.
Collapse
Affiliation(s)
- Lingjie Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ling Xu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yiru Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - He Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
22
|
Dai Z, Dang M, Zhang W, Murugan S, Teh SW, Pan H. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1898-1907. [PMID: 31066314 DOI: 10.1080/21691401.2019.1573183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HAP) is a significant bone mineral that establishes bone strength. HAP composites in combination with biodegradable and bioactive polymer poly xylitol sebacic adipate (PXSA) would result in a constant release at target sites. Numerous studies have shown that vitamin K (VK) might possess a vital function in bone metabolism. The purpose of the present study was to inspect the synthesized composite HAP/PXSA/VK in developing polymeric biomaterials composite for the application of bone tissue regeneration. FTIR, X-ray diffraction, SEM and TEM techniques were applied to characterize the prepared composites. The release of VK from the HAP/PXSA/VK composite was evidenced through UV-Vis spectroscopy. In vitro studies proved that the HAP/PXSA/VK composite is appropriate for mesenchymal stem cell culture. Compared to pure HAP prepared following the same method, HAP/PXSA/VK composite provided favourable microstructures and good biodegradation distinctiveness for the application of tissue engineering, as well as tissue in-growth characteristics and improved scaffold cell penetration. This work reveals that the HAP/PXSA/VK composites have the potential for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Zhipeng Dai
- a Department of Orthopedics , Henan Provincial People's Hospital , Zhengzhou City , Henan Province , China
| | - Minyan Dang
- b Innoscience Research SdnBhd , Subang Jaya , Selangor , Malaysia
| | - Wenzhi Zhang
- b Innoscience Research SdnBhd , Subang Jaya , Selangor , Malaysia
| | - Sumathra Murugan
- c Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry , Madurai Kamaraj University , Madurai , Tamil Nadu , India
| | - Seoh Wei Teh
- d Department of Biomedical Science , University Putra Malaysia (UPM) , Serdang , Malaysia
| | - Haiyan Pan
- e Department of Orthopaedics , Ankang Hospital of Traditional Chinese Medicine , Ankang , Shaanxi Province , China
| |
Collapse
|
23
|
Wei T, Li J, Sun H, Jiang M, Yang Y, Luo X, Liu T. Verification of osteoblast differentiation on airborne-particle abrasion, large-grit, acid-etched surface of titanium implants regulated by yes-associated protein and transcriptional coactivator with PDZ-binding motif. J Oral Sci 2019; 61:431-440. [PMID: 31327805 DOI: 10.2334/josnusd.18-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Although airborne-particle abrasion, large-grit, acid-etched (SLA) surface technology can promote implant osseointegration; its mechanism remains unclear. By preparing the SLA titanium (Ti) plate (SLA Ti) and Polished Ti plate (Polished Ti), this experiment investigates the expression and distribution of the Yes-associated protein (YAP) and transcriptional coactivator with the PDZ-binding motif (TAZ) in MC3T3-E1 cells. In addition, gene YAP and TAZ silencing on the SLA Ti was conducted to observe changes in the osteoblast differentiation markers, runt-related transcription factor-2 (Runx2) and bone sialoprotein (BSP). The results demonstrated that SLA Ti surface microtopography could induce YAP/TAZ's transfer from the cytoplasm to the nuclei of MC3T3-E1 cells. The expression of YAP/TAZ increased in terms of mRNA and protein. After silencing the YAP/TAZ genes, Runx2 and BSP decreased, suggesting that YAP/TAZ plays an important regulatory role in this process. Meanwhile, the results also showed that SLA microtopography enhanced the expression of integrins α1, α2, and β1. After silencing the integrin α1, α2, and β1 genes, YAP and TAZ decreased in terms of mRNA and protein. Therefore, this experiment was the first to confirm that SLA surface microtopography facilitates osteoblast differentiation by regulating YAP/TAZ and confirms that the process can be related to integrins α1, α2, and β1.
Collapse
Affiliation(s)
- Ting Wei
- Department of Prosthodontics, School of Stomatology, Shandong University.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huiqiang Sun
- Department of Prosthodontics, School of Stomatology, Shandong University.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
| | - Mengyang Jiang
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Yun Yang
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Xiayan Luo
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Tingsong Liu
- Department of Prosthodontics, School of Stomatology, Shandong University
| |
Collapse
|
24
|
Atypical Mesenchymal Stromal Cell Responses to Topographic Modifications of Titanium Biomaterials Indicate Cytoskeletal- and Genetic Plasticity-Based Heterogeneity of Cells. Stem Cells Int 2019; 2019:5214501. [PMID: 31354840 PMCID: PMC6636474 DOI: 10.1155/2019/5214501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 05/03/2019] [Accepted: 05/20/2019] [Indexed: 01/03/2023] Open
Abstract
Titanium (Ti) is widely used as a biomaterial for endosseous implants due to its relatively inert surface oxide layer that enables implanted devices the ability of assembling tissue reparative components that culminate in osseointegration. Topographic modifications in the form of micro- and nanoscaled structures significantly promote osseointegration and enhance the osteogenic differentiation of adult mesenchymal stromal cells (MSCs). While the biological mechanisms central to the differential responses of tissues and cells to Ti surface modifications remain unknown, adhesion and morphological adaptation are amongst the earliest events at the cell-biomaterial interface that are highly influenced by surface topography and profoundly impact the regulation of stem cell fate determination. This study correlated the effects of Ti topographic modifications on adhesion and morphological adaptation of human MSCs with phenotypic change. The results showed that modified Ti topographies precluded the adhesion of a subset of MSCs while incurring distinct morphological constraints on adherent cells. These effects anomalously corresponded with a differential expression of stem cell pluripotency and Wnt signalling-associated markers on both modified surfaces while additionally differing between hydrophobic and hydrophilic surface modifications—though extent of osteogenic differentiation induced by both modified topographies yielded similarly significant higher levels of cellular mineralisation in contrast to polished Ti. These results suggest that in the absence of deposited proteins and soluble factors, both modified topographies incur the selective adhesion of a subpopulation of progenitors with relatively higher cytoskeletal plasticity. While the presence of deposited proteins and soluble factors does not significantly affect adherence of cells, nanotopographic modifications enhance expression of pluripotency markers in proliferative conditions, which are conversely overridden by both modified topographies in osteogenic inductive conditions. Further deciphering the mechanisms underlying cellular selectivity and Ti topographic responsiveness will improve our understanding of stem cell heterogeneity and advance the potential of MSCs in regenerative medicine.
Collapse
|
25
|
Shi P, Xu J, Zhao X, Shen P, Wen D, Yu Q, Deng Y, Shi D, Lu F. CK1 inhibitor affects in vitro maturation and developmental competence of bovine oocytes. Reprod Domest Anim 2019; 54:1104-1112. [PMID: 31155763 DOI: 10.1111/rda.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/17/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
The objectives of present study were to evaluate the effect of casein kinase 1 (CK1) inhibition D4476 on in vitro maturation (IVM) and developmental competence of bovine oocytes. The cumulus oocyte complexes (COCs) were cultured in maturation medium with D4476 (0, 2, 5, 10, 20 μM) for 24 hr. After IVM and in vitro fertilization, through expansion average scores of cumulus cells (CCs), oocyte maturation efficiency, cleavage rate and blastocyst rate of zygote, we found 5 μM D4476 could increase the development potential of oocytes. After the COCs were treated with 5 μM D4476, the results of quantitative real-time PCR analysis, Lichen red staining and PI staining showed that under without affecting germinal vesicle breakdown and nuclear morphology, D4476 could significantly decrease CK1 and upregulate TCF-4 in oocytes. Furthermore, without influencing the level of Bad and CTSB, D4476 could significantly increase the expression of β-catenin, TCF-4, Cx43, MAPK, PTGS-2, PTX-3, TGS-6, Bax and Bcl-2 in CCs. Western blot analysis revealed that the addition of 5 μM D4476 during the maturation of COCs resulted in a lower level of Cx43 protein at 12 hr and a higher expression of Cx43 protein at 24 hr compared to the group without D4476. These results indicate that adding optimum D4476 (5 μM) to maturation medium is beneficial to maturity efficiency and development competence of bovine oocytes.
Collapse
Affiliation(s)
- Pengfei Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Dongmei Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Ghezzi B, Lagonegro P, Pece R, Parisi L, Bianchi M, Tatti R, Verucchi R, Attolini G, Quaretti M, Macaluso GM. Osteoblast adhesion and response mediated by terminal -SH group charge surface of SiOxCy nanowires. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:43. [PMID: 30929122 DOI: 10.1007/s10856-019-6241-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Robust cell adhesion is known to be necessary to promote cell colonization of biomaterials and differentiation of progenitors. In this paper, we propose the functionalization of Silicon Oxycarbide (SiOxCy) nanowires (NWs) with 3-mercaptopropyltrimethoxysilane (MPTMS), a molecule containing a terminal -SH group. The aim of this functionalization was to develop a surface capable to adsorb proteins and promote cell adhesion, proliferation and a better deposition of extracellular matrix. This functionalization can be used to anchor other structures such as nanoparticles, proteins or aptamers. It was observed that surface functionalization markedly affected the pattern of protein adsorption, as well as the in vitro proliferation of murine osteoblastic cells MC3T3-E1, which was increased on functionalized nanowires (MPTMS-NWs) compared to bare NWs (control) (p < 0.0001) after 48 h. The cells showed a better adhesion on MPTMS-NWs than on bare NWs, as confirmed by immunofluorescence studies on the cytoskeleton, which showed a more homogeneous vinculin distribution. Gene expression analysis showed higher expression levels for alkaline phosphatase and collagen I, putative markers of the osteoblast initial differentiation stage. These results suggest that functionalization of SiOxCy nanowires with MPTMS enhances cell growth and the expression of an osteoblastic phenotype, providing a promising strategy to improve the biocompatibility of SiOxCy nanowires for biomedical applications.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Paola Lagonegro
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133, Milano, Italy.
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124, Parma, Italy.
| | - Roberta Pece
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- School of Medicine, University of Genoa, DIMES, L.go R. Benzi 10, Genoa, 16131, Italy
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Massimiliano Bianchi
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Roberta Tatti
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Trento unit, Via alla Cascata, 56/C, 38123, Trento, Italy
| | - Roberto Verucchi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Trento unit, Via alla Cascata, 56/C, 38123, Trento, Italy
| | - Giovanni Attolini
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Martina Quaretti
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124, Parma, Italy
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126, Parma, Italy
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133, Milano, Italy
| |
Collapse
|
27
|
Yang Y, Wang X, Miron RJ, Zhang X. The interactions of dendritic cells with osteoblasts on titanium surfaces: an in vitro investigation. Clin Oral Investig 2019; 23:4133-4143. [PMID: 30850859 DOI: 10.1007/s00784-019-02852-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Osteoimmune interactions possess a critical part in the integration of materials and hosts. Dendritic cells (DCs) are the most common members of osteoimmune cells family. The titanium surfaces of dental implants tend to promote a mature dendritic cell phenotype with increased proinflammatory secretion. However, very little is known to the effects of this microenvironment on the behaviors of cells around implants, especially osteoblasts, and how the tissue integrations take place on such biomaterial surfaces. Therefore, the present study was to investigate the interactions of DCs with osteoblasts on titanium surfaces. DCs seeded on PT and SLA titanium surfaces were compared by assays for the proliferations, surface markers, and inflammatory genes expressions. MATERIALS AND METHODS DCs seeded on PT and SLA titanium surfaces were compared by assays for the proliferations, surface markers, and inflammatory genes expressions. Next, we harvested the dendritic cell-conditioned medium (CM) and investigated the effects of CM on MC3T3-E1. RESULTS The results showed an increase in CD86 and proinflammatory expressions of DCs seeded on PT and SLA surfaces, as well as a decrease in anti-inflammatory cytokines. The CM from titanium surfaces inhibited the osteoblast differentiation with reduced expression of osteogenic genes RUNX2, COL1, ALP, and OCN and decreased ALP activity as well as Alizarin red staining. CONCLUSION These findings suggested that titanium surfaces switch DCs toward maturation phenotypes and thus inhibit the differentiation and mineralization of osteoblasts. CLINICAL RELEVANCE Knowing the significant impact of immune cells on osteogenesis behaviors, some efforts to decrease the immune reaction might be of clinical significance. Favorable immune environments can increase the dental implants survival rate in patients.
Collapse
Affiliation(s)
- Yang Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Implantology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 510055, Guangzhou, People's Republic of China
| | - Xuzhu Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Richard J Miron
- Department of Periodontology, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33328, USA
| | - Xiaoxin Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Huang J, Chen Y, Tang C, Fei Y, Wu H, Ruan D, Paul ME, Chen X, Yin Z, Heng BC, Chen W, Shen W. The relationship between substrate topography and stem cell differentiation in the musculoskeletal system. Cell Mol Life Sci 2019; 76:505-521. [PMID: 30390116 PMCID: PMC11105278 DOI: 10.1007/s00018-018-2945-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/15/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
It is well known that biomaterial topography can exert a profound influence on various cellular functions such as migration, polarization, and adhesion. With the development and refinement of manufacturing technology, much research has recently been focused on substrate topography-induced cell differentiation, particularly in the field of tissue engineering. Even without biological and chemical stimuli, the differentiation of stem cells can also be initiated by various biomaterials with different topographic features. However, the underlying mechanisms of this biological phenomenon remain elusive. During the past few decades, many researchers have demonstrated that cells can sense the topography of materials through the assembly and polymerization of membrane proteins. Following the activation of RHO, TGF-b or FAK signaling pathways, cells can be induced into various differentiation states. But these signaling pathways often coincide with canonical mechanical transduction pathways, and no firm conclusion has been reached among researchers in this field on topography-specific signaling pathways. On the other hand, some substrate topographies are reported to have the ability to inhibit differentiation and maintain the 'stemness' of stem cells. In this review, we will summarize the role of topography in musculoskeletal system regeneration and explore possible topography-related signaling pathways involved in cell differentiation.
Collapse
Affiliation(s)
- Jiayun Huang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Haoyu Wu
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Maswikiti Ewetse Paul
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Xiao Chen
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Weishan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, China.
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Zhejiang, 310000, China.
- Orthopaedics Research Institute of Zhejiang University, Zhejiang, China.
- Department of Sports Medicine, School of Medicine, Zhejiang University, Zhejiang, 310000, China.
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
29
|
Alteration of mesenchymal stem cells polarity by laminar shear stimulation promoting β-catenin nuclear localization. Biomaterials 2019; 190-191:1-10. [DOI: 10.1016/j.biomaterials.2018.10.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 10/19/2018] [Indexed: 12/28/2022]
|
30
|
Kumari S, Vermeulen S, van der Veer B, Carlier A, de Boer J, Subramanyam D. Shaping Cell Fate: Influence of Topographical Substratum Properties on Embryonic Stem Cells. TISSUE ENGINEERING. PART B, REVIEWS 2018; 24:255-266. [PMID: 29455619 PMCID: PMC7116060 DOI: 10.1089/ten.teb.2017.0468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Development of multicellular organisms is a highly orchestrated process, with cells responding to factors and features present in the extracellular milieu. Changes in the surrounding environment help decide the fate of cells at various stages of development. This review highlights recent research that details the effects of mechanical properties of the surrounding environment and extracellular matrix and the underlying molecular mechanisms that regulate the behavior of embryonic stem cells (ESCs). In this study, we review the role of mechanical properties during embryogenesis and discuss the effect of engineered microtopographies on ESC pluripotency.
Collapse
Affiliation(s)
- Sarita Kumari
- National Center for Cell Science, SP Pune University, Pune, India
| | - Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Ben van der Veer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aurélie Carlier
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
31
|
Nanorod diameter modulated osteogenic activity of hierarchical micropore/nanorod-patterned coatings via a Wnt/β-catenin pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1719-1731. [DOI: 10.1016/j.nano.2018.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/27/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023]
|
32
|
Nishimura T, Ogino Y, Ayukawa Y, Koyano K. Influence of the wettability of different titanium surface topographies on initial cellular behavior. Dent Mater J 2018; 37:650-658. [PMID: 29669955 DOI: 10.4012/dmj.2017-334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study examined the influence of the time-dependent wettability of different surface topographies on initial cellular behavior. Titanium disks with smooth topography (SM) and three kinds of rough topography (sandblasted (SA), microtopography (M) and nanotopography (N)) were prepared. Time-dependent changes in surface wettability were observed in all surfaces as shown in previous studies. On SM surfaces, hydrophobic alteration influenced cell spreading and the activity of RhoA (a small GTPase protein of the Rho family), while no alterations were observed on rough surfaces except for the number of adherent cells. Serum adsorption could recover these functional deteriorations by hydrophobic alteration. These findings suggest that surface topography is a more potent regulator in initial cellular behaviors such as cell spreading and RhoA activation than surface wettability.
Collapse
Affiliation(s)
- Tomoko Nishimura
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Yoichiro Ogino
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Yasunori Ayukawa
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| | - Kiyoshi Koyano
- Section of Implant and Rehabilitative Dentistry, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University
| |
Collapse
|
33
|
LAGONEGRO P, TREVISI G, NASI L, PARISI L, MANFREDI E, LUMETTI S, ROSSI F, MACALUSO GM, SALVIATI G, GALLI C. Osteoblasts preferentially adhere to peaks on micro-structured titanium. Dent Mater J 2018; 37:278-285. [DOI: 10.4012/dmj.2017-008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Carlo GALLI
- Department of Medicine and Surgery, University of Parma
| |
Collapse
|
34
|
Yu Z, Xiao C, Huang Y, Chen M, Wei W, Yang X, Zhou H, Bi X, Lu L, Ruan J, Fan X. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv 2018; 8:17860-17877. [PMID: 35542061 PMCID: PMC9080497 DOI: 10.1039/c8ra00383a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue engineering approaches combine a bioscaffold with stem cells to provide biological substitutes that can repair bone defects and eventually improve tissue functions. The prospective bioscaffold should have good osteoinductivity. Surface chemical and roughness modifications are regarded as valuable strategies for developing bioscaffolds because of their positive effects on enhancing osteogenic differentiation. However, the synergistic combination of the two strategies is currently poorly studied. In this work, a nanoengineered scaffold with surface chemistry (oxygen-containing groups) and roughness (Rq = 74.1 nm) modifications was fabricated by doping nanohydroxyapatite (nHA), chemically crosslinked graphene oxide (GO) and carboxymethyl chitosan (CMC). The biocompatibility and osteoinductivity of the nanoengineered CMC/nHA/GO scaffold was evaluated in vitro and in vivo, and the osteogenic differentiation mechanism of the nanoengineered scaffold was preliminarily investigated. Our data demonstrated that the enhanced osteoinductivity of CMC/nHA/GO may profit from the surface chemistry and roughness, which benefit the β1 integrin interactions with the extracellular matrix and activate the FAK–ERK signaling pathway to upregulate the expression of osteogenic special proteins. This study indicates that the nanocomposite scaffold with surface chemistry and roughness modifications could serve as a novel and promising bone substitute for tissue engineering. The CMC/nHA/GO scaffold with the surface chemistry and roughness dual effects and the release of phosphate and calcium ions synergistically assist the mineralization and facilitate the bone regeneration.![]()
Collapse
|
35
|
Velázquez-Cayón R, Castillo-Dalí G, Corcuera-Flores JR, Serrera-Figallo MA, Castillo-Oyagüe R, González-Martín M, Gutierrez-Pérez JL, Torres-Lagares D. Production of bone mineral material and BMP-2 in osteoblasts cultured on double acid-etched titanium. Med Oral Patol Oral Cir Bucal 2017; 22:e651-e659. [PMID: 28809380 PMCID: PMC5694190 DOI: 10.4317/medoral.22071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 11/30/2022] Open
Abstract
Background The study of osteoblasts and their osteogenic functions is essential in order to understand them and their applications in implantology. In this sense, this study try to study BMP-2 production and bone matrix deposition, in addition to other biological variables, in osteoblasts cultured on a rough double acid-etched titanium surface (Osseotite®, Biomet 3i, Palm Beach Garden, Florida, USA) in comparison to a smooth titanium surface (machined) and a control Petri dish. Material and Methods An in vitro prospective study. NHOst human osteoblasts from the femur were cultured on three different surfaces: Control group: 25-mm methacrylate dish (n = 6); Machined group: titanium discs with machined surface (n = 6) and Experimental group: titanium discs with a double acid-etched nitric and hydrofluoric Osseotite® acid surface (n = 6). A quantification of the mitochondrial membrane potential, and studies of apoptosis, mobility and adhesion, bone productivity (BMP-2) and cellular bone synthesis were carried out after culturing the three groups for forty-eight hours. Results A statistically significant difference was observed in the production of BMP-2 between the experimental group and the other two groups (22.33% ± 11.06 vs. 13.10% ± 5.51 in the machined group and 3.88% ± 3.43 in the control group). Differences in cellular bone synthesis were also observed between the groups (28.34% ± 14.4% in the experimental group vs. 20.03% ± 6.79 in the machined group and 19.34% ± 15.93% in the control group). Conclusions In comparison with machined surfaces, Osseotite® surfaces favor BMP-2 production and bone synthesis as a result of the osteoblasts in contact with it. Key words:BMP-2, Cytoskeleton, cell culture, bone matrix, apoptosis, cell viability.
Collapse
Affiliation(s)
- R Velázquez-Cayón
- School of Dentistry. University of Seville, C/Avicena s/n, 41009 Seville,
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Q, Lin S, Zhang T, Tian T, Ma Q, Xie X, Xue C, Lin Y, Zhu B, Cai X. Curved microstructures promote osteogenesis of mesenchymal stem cells via the RhoA/ROCK pathway. Cell Prolif 2017; 50:e12356. [PMID: 28714177 PMCID: PMC6529063 DOI: 10.1111/cpr.12356] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Cells in the osteon reside in a curved space, accordingly, the curvature of the microenvironment is an important geometric feature in bone formation. However, it is not clear how curved microstructures affect cellular behaviour in bone tissue. MATERIALS AND METHODS Rat primary bone marrow mesenchymal stem cells (BMSCs) on wavy microgrooves were exposed to PDMS substrates with various curvatures to investigate alterations in cellular morphology and osteogenic differentiation. Additionally, the expression levels of RhoA and its effectors were examined by immunofluorescence and quantitative PCR to determine the mechanisms of curvature-dependent osteogenic differentiation. RESULTS Wavy microgrooves caused dramatic nuclear distortion and cytoskeletal remodelling. We detected a noticeable increase in the expression of osteogenic-related genes in BMSCs in wavy microgroove groups, and the maximum expression was observed in the high curvature group. Moreover, immunofluorescent staining and quantitative RT-PCR results for RhoA and its effectors showed that the RhoA/ROCK signalling pathway is associated with curvature-dependent osteogenic differentiation. CONCLUSIONS Our results illustrated that curved microstructures could promote BMSC differentiation to the osteogenic lineage, and the osteogenic effects of higher curvature are more obvious. Wavy microstructures could also influence the RhoA/ROCK pathway. Accordingly, curved microstructures may be useful in bone tissue engineering.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shiyu Lin
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Tao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quanquan Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xueping Xie
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Changyue Xue
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Yunfeng Lin
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchCollege of StomatologyXi'an Jiaotong UniversityXianChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial DiseasesCollege of StomatologyXi'an Jiaotong UniversityXianChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
37
|
Lagonegro P, Rossi F, Galli C, Smerieri A, Alinovi R, Pinelli S, Rimoldi T, Attolini G, Macaluso G, Macaluso C, Saddow S, Salviati G. A cytotoxicity study of silicon oxycarbide nanowires as cell scaffold for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:465-471. [DOI: 10.1016/j.msec.2016.12.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/16/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
|
38
|
Li G, Song Y, Shi M, Du Y, Wang W, Zhang Y. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography. Acta Biomater 2017; 49:235-246. [PMID: 27890731 DOI: 10.1016/j.actbio.2016.11.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. STATEMENT OF SIGNIFICANCE Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro/nano-textured topography and the underlying mechanisms are not well understood. This study shows that the micropitted/nanotubular hierarchical topography produced by etching and anodic oxidation treatment drives fusiform cell morphology, cytoskeletal reorganization as well as better MSCs osteogenic differentiation. The cross-talk between Cdc42 pathway and Wnt/β-catenin pathway though GSK3β modulates the osteoinductive effect of the micro/nano-textured topography on MSCs. This finding sheds light on a novel mechanism involved in micro/nano-textured surface-mediated MSCs osteogenic differentiation and is a major step in the development of new surface modifications aiming to accelerate and enhance the process of osseointegration.
Collapse
|
39
|
Maino BG, Di Blasio A, Spadoni D, Ravanetti F, Galli C, Cacchioli A, Katsaros C, Gandolfini M. The integration of orthodontic miniscrews under mechanical loading: a pre-clinical study in rabbit. Eur J Orthod 2017; 39:519-527. [DOI: 10.1093/ejo/cjw069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Yin C, Zhang Y, Cai Q, Li B, Yang H, Wang H, Qi H, Zhou Y, Meng W. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast. J Biomed Mater Res A 2016; 105:757-769. [PMID: 27756111 DOI: 10.1002/jbm.a.35941] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/13/2016] [Accepted: 10/17/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Chengcheng Yin
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Yanjing Zhang
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Qing Cai
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Baosheng Li
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Hua Yang
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Heling Wang
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Hua Qi
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Yanmin Zhou
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| | - Weiyan Meng
- Department of Dental Implantology, School and Hospital of Stomatology; Jilin University, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling; Changchun 130021 People's Republic of China
| |
Collapse
|
41
|
Li X, Chen T, Hu J, Li S, Zou Q, Li Y, Jiang N, Li H, Li J. Modified surface morphology of a novel Ti–24Nb–4Zr–7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration. Colloids Surf B Biointerfaces 2016; 144:265-275. [DOI: 10.1016/j.colsurfb.2016.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/28/2016] [Accepted: 04/09/2016] [Indexed: 01/15/2023]
|
42
|
Hoon JL, Tan MH, Koh CG. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells 2016; 5:cells5020017. [PMID: 27058559 PMCID: PMC4931666 DOI: 10.3390/cells5020017] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/21/2022] Open
Abstract
The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli.
Collapse
Affiliation(s)
- Jing Ling Hoon
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Mei Hua Tan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
- Mechanobiology Institute, Singapore 117411, Singapore.
| |
Collapse
|
43
|
Lumetti S, Manfredi E, Ferraris S, Spriano S, Passeri G, Ghiacci G, Macaluso G, Galli C. The response of osteoblastic MC3T3-E1 cells to micro- and nano-textured, hydrophilic and bioactive titanium surfaces. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:68. [PMID: 26886816 DOI: 10.1007/s10856-016-5678-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
The aim of the present work was to investigate the morphology and activity of the murine osteoblastic cell line MC3T3 on control smooth (Machined), commercially available rough (ZT) titanium discs, and on titanium samples obtained by modifying the ZT treatment protocol, and herein labelled as ZTF, ZTM and ZTFM. Cells were evaluated at SEM and immunofluorescence for morphology and cell-to-cell interactions and by MTT assay and real time PCR for cell growth and function. Microscopy showed that ZT modified protocols could differently affect cell shape and distribution. All the tested surfaces showed good biocompatibility by viability assay. However, cells on smoother surfaces appeared to express higher levels of transcript for Collagen 1a1, the main component of extracellular matrix, by real time PCR. Expression of the early differentiation marker Alkaline Phosphatase was higher on ZTF surfaces and ZTM enhanced the expression of later osteoblastic markers Osteoprotegerin and Osteocalcin. Noteworthy, the expression of Connexin 43, a component of cell-to-cell contacts and hemichannels, followed a similar pattern to differentiation marker genes and was higher in cells on ZTM surfaces, consistently with the microscopic observation of cell clusters. Taken together, this data showed that ZTF and ZTM treatment protocols appeared to improve the basal sand-blasting/acid-etching ZT procedure with ZTM surfaces promoting the most mature stage of differentiation.
Collapse
Affiliation(s)
- S Lumetti
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - E Manfredi
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - S Ferraris
- Dip. DISAT, Politecnico di Torino, University of Parma, Parma, Italy
| | - S Spriano
- Dip. DISAT, Politecnico di Torino, University of Parma, Parma, Italy
| | - G Passeri
- Dip. Medicina Clinica e Sperimentale, University of Parma, Parma, Italy
| | - G Ghiacci
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy
| | - G Macaluso
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Istituto per l'Elettronica e il Magnetismo IMEM-CNR, Parma, Italy.
| | - C Galli
- Dip. Sc. Biomediche, Biotecnologiche e Traslazionali, University of Parma, Via Gramsci 14, 43126, Parma, Italy.
- Istituto per l'Elettronica e il Magnetismo IMEM-CNR, Parma, Italy.
| |
Collapse
|
44
|
Ogino Y, Liang R, Mendonça DBS, Mendonça G, Nagasawa M, Koyano K, Cooper LF. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent. J Cell Physiol 2016. [PMID: 26205718 DOI: 10.1002/jcp.25100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S < M and N surfaces. RhoA inhibition increased adhesion on S and M surfaces, but not N surfaces. Cell migration in a wound healing assay was greater on S versus M versus N surfaces and RhoA inhibitor increased S adherent cell migration, but not N adherent cell migration. RhoA inhibitor enhanced osteogenic differentiation in S adherent cells, but not M or N adherent cells. RhoA activity was surface topography roughness dependent (S < M, N). RhoA activity and -mediated functions are influenced by surface topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity.
Collapse
Affiliation(s)
- Yoichiro Ogino
- Department of Prosthodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ruiwei Liang
- Department of Prosthodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Daniela B S Mendonça
- Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Gustavo Mendonça
- Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Masako Nagasawa
- Department of Prosthodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kiyoshi Koyano
- Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Lyndon F Cooper
- Department of Prosthodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells. Biomolecules 2016; 6:12. [PMID: 26784249 PMCID: PMC4808806 DOI: 10.3390/biom6010012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12) cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6) was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.
Collapse
|
46
|
Effect of Fluoride-Modified Titanium Surface on Early Adhesion of Irradiated Osteoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:219752. [PMID: 26266253 PMCID: PMC4525467 DOI: 10.1155/2015/219752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 01/22/2023]
Abstract
Objective. The present study aimed to investigate the effect of fluoride-modified titanium surface on adhesion of irradiated osteoblasts. Materials and Methods. Fluoride-modified surface was obtained and the morphology, roughness, and chemical composition of the surface were evaluated by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The adhesion of irradiated osteoblast-like cells, in terms of number, area, and fluorescence intensity on the titanium surface, was evaluated using immunofluorescence staining. Results. Numerous nanosize pits were seen only in the F-TiO surface. The pits were more remarkable and uniform on F-TiO surface than on TiO surface; however, the amplitude of peaks and bottoms on F-TiO surface appeared to be smaller than on TiO surface. The Sa value and Sdr percentage of TiO surfaces were significantly higher than those of F-TiO surface. The concentrations of main elements such as titanium, oxygen, and carbon were similar on both surfaces. The number of irradiated osteoblasts adhered on the control surface was larger than on fluoride-modified surface. Meanwhile, the cells on the fluoride-modified surface formed more actin filaments. Conclusions. The fluoride-modified titanium surface alters the adhesion of irradiated osteoblasts. Further studies are needed to investigate the proliferation, differentiation, maturation, gene expression, and cytokine production of irradiated osteoblasts on fluoride-modified titanium surface.
Collapse
|
47
|
Schmitt M, Metzger M, Gradl D, Davidson G, Orian-Rousseau V. CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death Differ 2015; 22:677-89. [PMID: 25301071 PMCID: PMC4356338 DOI: 10.1038/cdd.2014.156] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 11/09/2022] Open
Abstract
Wnt reception at the membrane is complex and not fully understood. CD44 is a major Wnt target gene in the intestine and is essential for Wnt-induced tumor progression in colorectal cancer. Here we show that CD44 acts as a positive regulator of the Wnt receptor complex. Downregulation of CD44 expression decreases, whereas CD44 overexpression increases Wnt activity in a concentration-dependent manner. Epistasis experiments place CD44 function at the level of the Wnt receptor LRP6. Mechanistically, CD44 physically associates with LRP6 upon Wnt treatment and modulates LRP6 membrane localization. Moreover, CD44 regulates Wnt signaling in the developing brain of Xenopus laevis embryos as shown by a decreased expression of Wnt targets tcf-4 and en-2 in CD44 morphants.
Collapse
Affiliation(s)
- M Schmitt
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Postfach 3640, Karlsruhe 76021, Germany
| | - M Metzger
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Postfach 3640, Karlsruhe 76021, Germany
| | - D Gradl
- Zoological Institute II, Karlsruhe Institute of Technology, Campus South, Postfach 6980, Karlsruhe 76128, Germany
| | - G Davidson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Postfach 3640, Karlsruhe 76021, Germany
| | - V Orian-Rousseau
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus North, Postfach 3640, Karlsruhe 76021, Germany
| |
Collapse
|
48
|
Ankam S, Lim CK, Yim EK. Actomyosin contractility plays a role in MAP2 expression during nanotopography-directed neuronal differentiation of human embryonic stem cells. Biomaterials 2015; 47:20-8. [DOI: 10.1016/j.biomaterials.2015.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/31/2014] [Accepted: 01/12/2015] [Indexed: 01/10/2023]
|
49
|
Gong T, Lu L, Liu D, Liu X, Zhao K, Chen Y, Zhou S. Dynamically tunable polymer microwells for directing mesenchymal stem cell differentiation into osteogenesis. J Mater Chem B 2015; 3:9011-9022. [DOI: 10.1039/c5tb01682g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dynamically tunable geometric microwells have great capacity to regulate the cytoskeletal structure and differentiation of mesenchymal stem cells along adipogenesis and osteogenesis pathways.
Collapse
Affiliation(s)
- Tao Gong
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Liuxuan Lu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xian Liu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Kun Zhao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuping Chen
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
50
|
Ma XY, Feng YF, Ma ZS, Li X, Wang J, Wang L, Lei W. The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces. Biomaterials 2014; 35:7259-70. [DOI: 10.1016/j.biomaterials.2014.05.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 12/13/2022]
|