1
|
Zhang B, Gou H, Shen H, Zhang C, Liu Z, Wuri N, Nie J, Qu Y, Zhang J, Geri L. Display of porcine epidemic diarrhea virus spike protein B-cell linear epitope on Lactobacillus mucosae G01 S-layer surface induce a robust immunogenicity in mice. Microb Cell Fact 2024; 23:142. [PMID: 38773481 PMCID: PMC11110301 DOI: 10.1186/s12934-024-02409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/26/2024] [Indexed: 05/23/2024] Open
Abstract
The Porcine epidemic diarrhea virus (PEDV) presents a substantial risk to the domestic pig industry, resulting in extensive and fatal viral diarrhea among piglets. Recognizing the mucosal stimulation triggered by PEDV and harnessing the regulatory impact of lactobacilli on intestinal function, we have developed a lactobacillus-based vaccine that is carefully designed to elicit a strong mucosal immune response. Through bioinformatics analysis, we examined PEDV S proteins to identify B-cell linear epitopes that meet the criteria of being non-toxic, soluble, antigenic, and capable of neutralizing the virus. In this study, a genetically modified strain of Lactobacillus mucosae G01 (L.mucosae G01) was created by utilizing the S layer protein (SLP) as a scaffold for surface presentation. Chimeric immunodominant epitopes with neutralizing activity were incorporated at various sites on SLP. The successful expression of SLP chimeric immunodominant epitope 1 on the surface of L.mucosae G01 was confirmed through indirect immunofluorescence and transmission electron microscopy, revealing the formation of a transparent membrane. The findings demonstrate that the oral administration of L.mucosae G01, which expresses the SLP chimeric immunodominant gene epitope1, induces the production of secreted IgA in the intestine and feces of mice. Additionally, there is an elevation in IgG levels in the serum. Moreover, the levels of cytokines IL-2, IL-4, IFN-γ, and IL-17 are significantly increased compared to the negative control group. These results suggest that L. mucosae G01 has the ability to deliver exogenous antigens and elicit a specific mucosal immune response against PEDV. This investigation presents new possibilities for immunoprophylaxis against PEDV-induced diarrhea.
Collapse
Affiliation(s)
- Bin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hongchao Gou
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haiyan Shen
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chunhong Zhang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zhicheng Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Nile Wuri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingjing Nie
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yunzhi Qu
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianfeng Zhang
- Key Laboratory of Livestock Disease Prevention and Treatment of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Letu Geri
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010010, China.
| |
Collapse
|
2
|
Dönmez Güngüneş Ç, Başçeken S, Elçin AE, Elçin YM. Fabrication and Molecular Modeling of Navette-Shaped Fullerene Nanorods Using Tobacco Mosaic Virus as a Nanotemplate. Mol Biotechnol 2022; 64:681-692. [PMID: 35067850 DOI: 10.1007/s12033-021-00440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 10/19/2022]
Abstract
To date, metallization studies have been performed with the nanometer-scale template, Tobacco Mosaic Virus (TMV). Here we show that fullerenes as well can be deposited on TMV coat protein in a controlled manner. Two methods were followed for the coating process. First, underivatized fullerene was dispersed in different solvents to bring the underivatized fullerene and wild-type TMV together. Improved depositions were obtained with the fullerene dicarboxylic derivative synthesized via the Bingel method. The form of the coating was analyzed by transmission electron microscopy. Our results demonstrate that the coating efficiency with the carboxy derivative was much better compared to the underivatized fullerene. The goal of coupling a carbon nanoparticle to a biological molecule, the viral coat of TMV, was achieved with the carboxy derivative of fullerene, resulting in the production of navette-shaped nanorods. The interactions between carboxyfullerenes and TMV were investigated through modeling with computational simulations and Gaussian-based density functional theory (DFT) calculations using the Gaussian09 program package. The theoretical calculations supported the experimental findings. This inexpensive and untroublesome method promises new fullerene hybrid nanomaterials in particular shapes and structures.
Collapse
Affiliation(s)
- Çiğdem Dönmez Güngüneş
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, and Stem Cell Institute, Ankara University, Ankara, Turkey
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hitit University, Corum, Turkey
| | - Sinan Başçeken
- Chemistry Department, Faculty of Arts and Sciences, Hitit University, Corum, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, and Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, and Stem Cell Institute, Ankara University, Ankara, Turkey.
- Biovalda Health Technologies, Inc, Ankara, Turkey.
- Faculty of Science, Biochemistry Division, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
3
|
A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins. NANOMATERIALS 2021; 11:nano11051346. [PMID: 34065322 PMCID: PMC8161383 DOI: 10.3390/nano11051346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.
Collapse
|
4
|
Zafiu C, Hussain Z, Küpcü S, Masutani A, Kilickiran P, Sinner EK. Liquid crystals as optical amplifiers for bacterial detection. Biosens Bioelectron 2016; 80:161-170. [PMID: 26827146 DOI: 10.1016/j.bios.2016.01.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
Interactions of bacteria with target molecules (e.g. antibiotics) or other microorganisms are of growing interest. The first barrier for targeting gram-negative bacteria is layer of a Lipopolysaccharides (LPS). Liquid crystal (LC) based sensors covered with LPS monolayers, as presented in this study, offer a simple model to study and make use of this type of interface for detection and screening. This work describes in detail the production and application of such sensors based on three different LPS that have been investigated regarding their potential to serve as sensing layer to detect bacteria. The LPS O127:B8 in combination with a LC based sensor was identified to be most useful as biomimetic sensing surface. This LPS/LC combination interacts with three different bacteria species, one gram-positive and two gram-negative species, allowing the detection of bacterial presence regardless from their viability. It could be shown that even very low bacterial cell numbers (minimum 500 cell ml(-1)) could be detected within minutes (maximum 15 min). The readout mechanism is the adsorption of bacterial entities on surface bond LPS molecules with the LC serving as an optical amplifier.
Collapse
Affiliation(s)
- C Zafiu
- Laboratory for Synthetic Bio-architectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria; Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Z Hussain
- School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan
| | - S Küpcü
- Laboratory for Synthetic Bio-architectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | - A Masutani
- Johnson Matthey Advanced Glass Technologies, Stuttgart, Germany
| | - P Kilickiran
- CAST Gründungszentrum GmbH, Wilhelm-Greil-Straße 15, 6020 Innsbruck, Austria
| | - E-K Sinner
- Laboratory for Synthetic Bio-architectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
5
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
6
|
Abstract
Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | |
Collapse
|
7
|
Kontro I, Wiedmer SK, Hynönen U, Penttilä PA, Palva A, Serimaa R. The structure of Lactobacillus brevis surface layer reassembled on liposomes differs from native structure as revealed by SAXS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2099-104. [DOI: 10.1016/j.bbamem.2014.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/03/2014] [Accepted: 04/23/2014] [Indexed: 11/29/2022]
|
8
|
Schmoock C, Börnick H, Vogel M, Lehmann F, Kutschke S, Raff J, Dittmar T, Worch E. S-layer proteins as possible immobilization matrix for photocatalysts – OH radical scavenging capacity and protein stability. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Selvakumar R, Seethalakshmi N, Thavamani P, Naidu R, Megharaj M. Recent advances in the synthesis of inorganic nano/microstructures using microbial biotemplates and their applications. RSC Adv 2014. [DOI: 10.1039/c4ra07903e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Microbial biotemplates for synthesizing inorganic nanostructures of defined morphology and size.
Collapse
Affiliation(s)
- R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004, India
| | - N. Seethalakshmi
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore 641004, India
| | - P. Thavamani
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| | - Ravi Naidu
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR)
- University of South Australia
- Adelaide 5095, Australia
| |
Collapse
|
10
|
Shin SH, Comolli LR, Tscheliessnig R, Wang C, Nam KT, Hexemer A, Siegerist CE, De Yoreo JJ, Bertozzi CR. Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. ACS NANO 2013; 7:4946-4953. [PMID: 23705800 DOI: 10.1021/nn400263j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture.
Collapse
Affiliation(s)
- Seong-Ho Shin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Small-angle X-ray scattering for imaging of surface layers on intact bacteria in the native environment. J Bacteriol 2013; 195:2408-14. [PMID: 23504021 DOI: 10.1128/jb.02164-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Crystalline cell surface layers (S-layers) represent a natural two-dimensional (2D) protein self-assembly system with nanometer-scale periodicity that decorate many prokaryotic cells. Here, we analyze the S-layer on intact bacterial cells of the Gram-positive organism Geobacillus stearothermophilus ATCC 12980 and the Gram-negative organism Aquaspirillum serpens MW5 by small-angle X-ray scattering (SAXS) and relate it to the structure obtained by transmission electron microscopy (TEM) after platinum/carbon shadowing. By measuring the scattering pattern of X rays obtained from a suspension of bacterial cells, integral information on structural elements such as the thickness and lattice parameters of the S-layers on intact, hydrated cells can be obtained nondestructively. In contrast, TEM of whole mounts is used to analyze the S-layer lattice type and parameters as well as the physical structure in a nonaqueous environment and local information on the structure is delivered. Application of SAXS to S-layer research on intact bacteria is a challenging task, as the scattering volume of the generally thin (3- to 30-nm) bacterial S-layers is low in comparison to the scattering volume of the bacterium itself. For enhancement of the scattering contrast of the S-layer in SAXS measurement, either silicification (treatment with tetraethyl orthosilicate) is used, or the difference between SAXS signals from an S-layer-deficient mutant and the corresponding S-layer-carrying bacterium is used for determination of the scattering signal. The good agreement of the SAXS and TEM data shows that S-layers on the bacterial cell surface are remarkably stable.
Collapse
|