1
|
Ying Y, Cai K, Cai X, Zhang K, Qiu R, Hu H, Jiang G, Luo K. Ex-vivo biomechanical evaluation of the application of a novel annulus closure device to closure of annulus fibrosus. Front Bioeng Biotechnol 2024; 12:1337269. [PMID: 38895557 PMCID: PMC11183503 DOI: 10.3389/fbioe.2024.1337269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Objective To investigate the technical feasibility of applying a simple suture guide device to close the annulus fibrosus (AF) of the intervertebral discs (IVD). Methods 30 sheep functional discal units (FDUs) were obtained and subjected to mock discectomy. Mock sutures were performed using 3-0 non-absorbable sutures under a novel AF suture device following a suture procedure. The FDUs were compressed under axial loading at 1.8 mm/min and evaluated for Failure load (N). Results The failure loads of the hand stitching group (Group H) and suture device stitching group (Group S) were significantly higher than those of the control group (Group C) (p = 0.033; p < 0.001). Conclusion This study provides reasonable reasons to believe that the simple suture guide device described here is technically feasible for AF defect closure. It thus constitutes an encouraging proof of concept for the proposed device; however, it does not constitute a complete demonstration of the device's feasibility in the clinical setting considering that the annulus closure operation is performed ex vivo on functional spinal units, as opposed to within an environment that mimics the clinical setting. To this end, confirmatory experiments will be conducted such as more multiaxial or dynamic mechanical testing, and notably performing the surgery on sheep models instead of on ex vivo functional spinal units.
Collapse
Affiliation(s)
- Yijian Ying
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaiwen Cai
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | | | - Kai Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Rongzhang Qiu
- Health Science Center, Ningbo University, Ningbo, China
| | - Hangtian Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Guoqiang Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kefeng Luo
- Department of Orthopaedics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Panebianco CJ, Constant C, Vernengo AJ, Nehrbass D, Gehweiler D, DiStefano TJ, Martin J, Alpert DJ, Chaudhary SB, Hecht AC, Seifert AC, Nicoll SB, Grad S, Zeiter S, Iatridis JC. Combining adhesive and nonadhesive injectable hydrogels for intervertebral disc repair in an ovine discectomy model. JOR Spine 2023; 6:e1293. [PMID: 38156055 PMCID: PMC10751969 DOI: 10.1002/jsp2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Andrea J. Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNJUSA
| | | | | | - Tyler J. DiStefano
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jesse Martin
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - David J. Alpert
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - Saad B. Chaudhary
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew C. Hecht
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Steven B. Nicoll
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | | | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
3
|
Yamada K, Iwasaki N, Sudo H. Biomaterials and Cell-Based Regenerative Therapies for Intervertebral Disc Degeneration with a Focus on Biological and Biomechanical Functional Repair: Targeting Treatments for Disc Herniation. Cells 2022; 11:602. [PMID: 35203253 PMCID: PMC8870062 DOI: 10.3390/cells11040602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a common cause of low back pain and most spinal disorders. As IVD degeneration is a major obstacle to the healthy life of so many individuals, it is a major issue that needs to be overcome. Currently, there is no clinical treatment for the regeneration of degenerated IVDs. However, recent advances in regenerative medicine and tissue engineering suggest the potential of cell-based and/or biomaterial-based IVD regeneration therapies. These treatments may be indicated for patients with IVDs in the intermediate degenerative stage, a point where the number of viable cells decreases, and the structural integrity of the disc begins to collapse. However, there are many biological, biomechanical, and clinical challenges that must be overcome before the clinical application of these IVD regeneration therapies can be realized. This review summarizes the basic research and clinical trials literature on cell-based and biomaterial-based IVD regenerative therapies and outlines the important role of these strategies in regenerative treatment for IVD degenerative diseases, especially disc herniation.
Collapse
Affiliation(s)
- Katsuhisa Yamada
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (K.Y.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
4
|
Lumbar Intervertebral Disc Herniation: Annular Closure Devices and Key Design Requirements. Bioengineering (Basel) 2022; 9:bioengineering9020047. [PMID: 35200401 PMCID: PMC8869316 DOI: 10.3390/bioengineering9020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lumbar disc herniation is one of the most common degenerative spinal conditions resulting in lower back pain and sciatica. Surgical treatment options include microdiscectomy, lumbar fusion, total disc replacement, and other minimally invasive approaches. At present, microdiscectomy procedures are the most used technique; however, the annulus fibrosus is left with a defect that without treatment may contribute to high reherniation rates and changes in the biomechanics of the lumbar spine. This paper aims to review current commercially available products that mechanically close the annulus including the AnchorKnot® suture-passing device and the Barricaid® annular closure device. Previous studies and reviews have focused mainly on a biomimetic biomaterials approach and have described some mechanical and biological requirements for an active annular repair/regeneration strategy but are still far away from clinical implementation. Therefore, in this paper we aim to create a design specification for a mechanical annular closure strategy by identifying the most important mechanical and biological design parameters, including consideration of material selection, preclinical testing requirements, and requirements for clinical implementation.
Collapse
|
5
|
Marshall SL, Jacobsen TD, Emsbo E, Murali A, Anton K, Liu JZ, Lu HH, Chahine NO. Three-Dimensional-Printed Flexible Scaffolds Have Tunable Biomimetic Mechanical Properties for Intervertebral Disc Tissue Engineering. ACS Biomater Sci Eng 2021; 7:5836-5849. [PMID: 34843224 DOI: 10.1021/acsbiomaterials.1c01326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) exhibits complex structure and biomechanical function, which supports the weight of the body and permits motion. Surgical treatments for IVD degeneration (e.g., lumbar fusion, disc replacement) often disrupt the mechanical environment of the spine which lead to adjacent segment disease. Alternatively, disc tissue engineering strategies, where cell-seeded hydrogels or fibrous biomaterials are cultured in vitro to promote matrix deposition, do not recapitulate the complex IVD mechanical properties. In this study, we use 3D printing of flexible polylactic acid (FPLA) to fabricate a viscoelastic scaffold with tunable biomimetic mechanics for whole spine motion segment applications. We optimized the mechanical properties of the scaffolds for equilibrium and dynamic moduli in compression and tension by varying fiber spacing or porosity, generating scaffolds with de novo mechanical properties within the physiological range of spine motion segments. The biodegradation analysis of the 3D printed scaffolds showed that FPLA exhibits lower degradation rate and thus has longer mechanical stability than standard PLA. FPLA scaffolds were biocompatible, supporting viability of nucleus pulposus (NP) cells in 2D and in FPLA+hydrogel composites. Composite scaffolds cultured with NP cells maintained baseline physiological mechanical properties and promoted matrix deposition up to 8 weeks in culture. Mesenchymal stromal cells (MSCs) cultured on FPLA adhered to the scaffold and exhibited fibrocartilaginous differentiation. These results demonstrate for the first time that 3D printed FPLA scaffolds have de novo viscoelastic mechanical properties that match the native IVD motion segment in both tension and compression and have the potential to be used as a mechanically stable and biocompatible biomaterial for engineered disc replacement.
Collapse
Affiliation(s)
- Samantha L Marshall
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Timothy D Jacobsen
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States.,Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Erik Emsbo
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Archana Murali
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Kevin Anton
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Jessica Z Liu
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Helen H Lu
- Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| | - Nadeen O Chahine
- Department of Orthopedic Surgery, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States.,Department of Biomedical Engineering, Columbia University, 650 West 168th Street, 1410, New York, New York 10031, United States
| |
Collapse
|
6
|
Liu J, Wang D, Li Y, Zhou Z, Zhang D, Li J, Chu H. Overall Structure Construction of an Intervertebral Disk Based on Highly Anisotropic Wood Hydrogel Composite Materials with Mechanical Matching and Buckling Buffering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15709-15719. [PMID: 33755430 DOI: 10.1021/acsami.1c02487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural intervertebral disks (IVDs) exhibit distinctive anisotropic mechanical support and dissipation performances due to their well-developed special microstructures. As the intact IVD structure degrades, the absence of function will lead to severe backache. However, the complete simulation for the characteristic structure and function of native IVD is unattainable using current methods. In this work, by overall construction of the two-phase structure of native IVD (extraction of the naturally aligned cellulose framework and in situ polymerization of the nanocomposite hydrogel), a complete wood framework IVD (WF-IVD) is manufactured containing elastic nanocomposite hydrogel-based nucleus pulposus (NP) and anisotropic wood cellulose hydrogel-based annulus fibrosus (AF). In addition to the imitation and construction of the natural structure, WF-IVD also achieves favorable mechanical matching and good biocompatibility and possesses unique mechanical buckling buffer characteristics owing to the aligned fiber bundles. This study offers a promising strategy for the mimicking and construction of complex native tissues.
Collapse
Affiliation(s)
- Jinming Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ziqi Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
7
|
DiStefano TJ, Shmukler JO, Danias G, Iatridis JC. The Functional Role of Interface Tissue Engineering in Annulus Fibrosus Repair: Bridging Mechanisms of Hydrogel Integration with Regenerative Outcomes. ACS Biomater Sci Eng 2020; 6:6556-6586. [PMID: 33320618 PMCID: PMC7809646 DOI: 10.1021/acsbiomaterials.0c01320] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are extraordinarily versatile by design and can enhance repair in diseased and injured musculoskeletal tissues. Biological fixation of these constructs is a significant determinant factor that is critical to the clinical success and functionality of regenerative technologies for musculoskeletal repair. In the context of an intervertebral disc (IVD) herniation, nucleus pulposus tissue protrudes through the ruptured annulus fibrosus (AF), consequentially impinging on spinal nerve roots and causing debilitating pain. Discectomy is the surgical standard of care to treat symptomatic herniation; however these procedures do not repair AF defects, and these lesions are a significant risk factor for recurrent herniation. Advances in tissue engineering utilize adhesive hydrogels as AF sealants; however these repair strategies have yet to progress beyond preclinical animal models because these biomaterials are often plagued by poor integration with AF tissue and lead to large variability in repair outcomes. These critical barriers to translation motivate this article to review the material composition of hydrogels that have been evaluated in situ for AF repair, proposed mechanisms of how these biomaterials interface with AF tissue, and their functional outcomes after treatment in order to inform the development of new hydrogels for AF repair. In this systematic review, we identify 18 hydrogel formulations evaluated for AF repair, all of which demonstrate large heterogeneity in their interfacing mechanisms and reported outcome measures to assess the effectiveness of repair. Hydrogels that covalently bond to AF tissue were found to be the most successful in improving IVD biomechanical properties from the injured state, but none were able to restore properties to the intact state suggesting that new repair strategies with innovative surface chemistries are an important future direction. We additionally review biomechanical evaluation methods and recommend standardization in the field of AF tissue engineering to establish mechanical benchmarks for translation and ensure clinical feasibility.
Collapse
Affiliation(s)
- Tyler J DiStefano
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jennifer O Shmukler
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - George Danias
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
8
|
Eckes S, Braun J, Wack JS, Ritz U, Nickel D, Schmitz K. Rose Bengal Crosslinking to Stabilize Collagen Sheets and Generate Modulated Collagen Laminates. Int J Mol Sci 2020; 21:E7408. [PMID: 33049938 PMCID: PMC7582313 DOI: 10.3390/ijms21197408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023] Open
Abstract
For medical application, easily accessible biomaterials with tailored properties are desirable. Collagen type I represents a biomaterial of choice for regenerative medicine and tissue engineering. Here, we present a simple method to modify the properties of collagen and to generate collagen laminates. We selected three commercially available collagen sheets with different thicknesses and densities and examined the effect of rose bengal and green light collagen crosslinking (RGX) on properties such as microstructure, swelling degree, mechanical stability, cell compatibility and drug release. The highest impact of RGX was measured for Atelocollagen, for which the swelling degree was reduced from 630% (w/w) to 520% (w/w) and thickness measured under force application increased from 0.014 mm to 0.455 mm, indicating a significant increase in mechanical stability. Microstructural analysis revealed that the sponge-like structure was replaced by a fibrous structure. While the initial burst effect during vancomycin release was not influenced by crosslinking, RGX increased cell proliferation on sheets of Atelocollagen and on Collagen Solutions. We furthermore demonstrate that RGX can be used to covalently attach different sheets to create materials with combined properties, making the modification and combination of readily available sheets with RGX an attractive approach for clinical application.
Collapse
Affiliation(s)
- Stefanie Eckes
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Joy Braun
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Julia S Wack
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, BiomaTiCS, University Medical Center, Johannes Gutenberg University, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Daniela Nickel
- Berufsakademie Sachsen-Staatliche Studienakademie Glauchau, University of Cooperative Education, Kopernikusstraße 51, 08371 Glauchau, Germany
| | - Katja Schmitz
- Clemens-Schöpf-Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|
9
|
Zhang J, Zhang J, Zhang Y, Liu W, Ni W, Huang X, Yuan J, Zhao B, Xiao H, Xue F. Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. J Cell Mol Med 2020; 24:11742-11754. [PMID: 32860495 PMCID: PMC7579702 DOI: 10.1111/jcmm.15784] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/03/2020] [Accepted: 07/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSCs)‐based therapies have shown a promised result for intervertebral disc degeneration (IVDD) treatment. However, its molecular mechanisms remain unclear. Exosomes involve cell‐cell communication via transference of its contents among different cells, and the present potential effect on cell death regulation. This study aimed to investigate the role of MSCs‐derived exosomes on IVDD formation. Here, we first found the NLRP3‐mediated nucleus pulposus cell (NP cell) pyroptosis was activated in the IVDD mice model and lipopolysaccharide (LPS)‐induced model. However, MSCs treatment could inhibit NP cell pyroptosis in vitro. We then isolated MSCs‐derived exosomes by differential centrifugation and identified the characteristics. Secondly, we investigated the function of MSCs‐derived exosomes on LPS‐induced NP cell pyroptosis. Finally, we presented evidence that MSCs‐derived exosomal miR‐410 was a crucial regulator of pyroptosis. Results showed that MSCs‐derived exosomes play an anti‐pyroptosis role by suppressing the NLRP3 pathway. Moreover, it suggested that this effect was attributed to miR‐410, which was derived from MSCs‐exosomes and could directly bind to NLRP3mRNA. In conclusion, for the first time, we demonstrated that MSCs‐exosome treatment may inhibit pyroptosis and could be a promising therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jieyuan Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China
| | - Yunlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China
| | - Wenjun Liu
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Weifeng Ni
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiaoyan Huang
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Junjie Yuan
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Bizeng Zhao
- Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Feng Xue
- Department of Orthopedics, Shanghai Fengxian District Central Hospital/Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| |
Collapse
|
10
|
Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus. Int J Mol Sci 2020; 21:ijms21144889. [PMID: 32664453 PMCID: PMC7402314 DOI: 10.3390/ijms21144889] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed.
Collapse
|
11
|
Abstract
STUDY DESIGN Review article. OBJECTIVE A review of the literature on current strategies utilized in intervertebral regeneration and repair efforts. METHODS A review of the literature and analysis of the data to provide an updated review on current concepts of intervertebral disc repair and regeneration efforts. RESULTS Multiple regenerative strategies for intervertebral disc regeneration are being employed to reduce pain and improve quality of life. Current promising strategies include molecular therapy, gene therapy, cell-based therapy, and augmentation with biomaterials. Multiple clinical trials studying biologic, cell-based, and scaffold-based injectable therapies are currently being investigated. CONCLUSION Low back pain due to intervertebral disc disease represents a significant health and societal burden. Current promising strategies include molecular therapy, gene therapy, cell-based therapy, and augmentation with biomaterials. To date, there are no Food and Drug Administration-approved intradiscal therapies for discogenic back pain, and there are no large randomized trials that have shown clinically significant improvement with any investigational regenerative treatment. Multiple clinical trials studying biologic, cell-based, or scaffold-based injectable therapies are being currently investigated.
Collapse
Affiliation(s)
- Derek G. Ju
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Hyun W. Bae
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
12
|
Zhou P, Chu G, Yuan Z, Wang H, Zhang W, Mao Y, Zhu X, Chen W, Yang H, Li B. Regulation of differentiation of annulus fibrosus-derived stem cells using heterogeneous electrospun fibrous scaffolds. J Orthop Translat 2020; 26:171-180. [PMID: 33437636 PMCID: PMC7773966 DOI: 10.1016/j.jot.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
Background Tissue engineering of the annulus fibrosus (AF) shows promise as a treatment for patients with degenerative disc disease (DDD). However, it remains challenging due to the intrinsic heterogeneity of AF tissue. Fabrication of scaffolds recapitulating the specific cellular, componential, and microstructural features of AF, therefore, is critical to successful AF tissue regeneration. Methods Poly-L-lactic acid (PLLA) fibrous scaffolds with various fiber diameters and orientation were prepared to mimic the microstructural characteristics of AF tissue using electrospinning technique. AF-derived stem cells (AFSCs) were cultured on the PLLA fibrous scaffolds for 7 days. Results The morphology of AFSCs significantly varied when cultured on the scaffolds with various fiber diameters and orientation. AFSCs were nearly round on scaffolds with small fibers. However, they became spindle-shaped on scaffolds with large fibers. Meanwhile, upregulated expression of collagen-I gene happened in cells cultured on scaffolds with large fibers, while enhanced expression of collagen-II and aggrecan genes was seen on scaffolds with small fibers. The production of related proteins also showed similar trends. Further, culturing AFSCs on a heterogeneous scaffold by overlaying membranes with different fiber sizes led to the formation of a hierarchical structure approximating native AF tissue. Conclusion Findings from this study demonstrate that fibrous scaffolds with different fiber sizes effectively promoted the differentiation of AFSCs into specific cells similar to the types of cells at various AF zones. It also provides a valuable reference for regulation of cell differentiation and fabrication of engineered tissues with complex hierarchical structures using the physical cues of scaffolds. The translational potential of this article Effective AF repair is an essential need for treating degenerative disc disease. Tissue engineering is a promising approach to achieving tissue regeneration and restoring normal functions of tissues. By mimicking the key structural features of native AF tissue, including fiber size and alignment, this study deciphered the effect of scaffold materials on the cell differentiation and extracellular matrix deposition, which provides a solid basis for designing new strategies toward more effective AF repair and regeneration.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.,Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Genglei Chu
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yingji Mao
- Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Xuesong Zhu
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weiguo Chen
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Zhao R, Liu W, Xia T, Yang L. Disordered Mechanical Stress and Tissue Engineering Therapies in Intervertebral Disc Degeneration. Polymers (Basel) 2019; 11:polym11071151. [PMID: 31284436 PMCID: PMC6680713 DOI: 10.3390/polym11071151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Low back pain (LBP), commonly induced by intervertebral disc degeneration, is a lumbar disease with worldwide prevalence. However, the mechanism of degeneration remains unclear. The intervertebral disc is a nonvascular organ consisting of three components: Nucleus pulposus, annulus fibrosus, and endplate cartilages. The disc is structured to support our body motion and endure persistent external mechanical pressure. Thus, there is a close connection between force and intervertebral discs in LBP. It is well established that with aging, disordered mechanical stress profoundly influences the fate of nucleus pulposus and the alignment of collagen fibers in the annulus fibrosus. These support a new understanding that disordered mechanical stress plays an important role in the degeneration of the intervertebral discs. Tissue-engineered regenerative and reparative therapies are being developed for relieving disc degeneration and symptoms of lower back pain. In this paper, we will review the current literature available on the role of disordered mechanical stress in intervertebral disc degeneration, and evaluate the existing tissue engineering treatment strategies of the current therapies.
Collapse
Affiliation(s)
- Runze Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tingting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
14
|
Ying JW, Wen TY, Pei SS, Su LH, Ruan DK. Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells. World J Stem Cells 2019; 11:196-211. [PMID: 30949297 PMCID: PMC6441939 DOI: 10.4252/wjsc.v11.i3.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/19/2018] [Accepted: 01/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intervertebral disc (IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus (NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.
AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells (NPSCs).
METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups. Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.
RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Real-time RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1α not only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement. Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.
CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration.
Collapse
Affiliation(s)
- Jin-Wei Ying
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Tian-Yong Wen
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Shi-Shen Pei
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Ling-Hao Su
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| | - Di-Ke Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong Province, China
- Department of Orthopedic Surgery, Navy General Hospital, Beijing 100048, China
| |
Collapse
|
15
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
16
|
Cruz MA, McAnany S, Gupta N, Long RG, Nasser P, Eglin D, Hecht AC, Illien-Junger S, Iatridis JC. Structural and Chemical Modification to Improve Adhesive and Material Properties of Fibrin-Genipin for Repair of Annulus Fibrosus Defects in Intervertebral Disks. J Biomech Eng 2018; 139:2625781. [PMID: 28464119 DOI: 10.1115/1.4036623] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 01/07/2023]
Abstract
Annulus fibrosus (AF) defects from intervertebral disk (IVD) herniation and degeneration are commonly associated with back pain. Genipin-crosslinked fibrin hydrogel (FibGen) is an injectable, space-filling AF sealant that was optimized to match AF shear properties and partially restored IVD biomechanics. This study aimed to enhance mechanical behaviors of FibGen to more closely match AF compressive, tensile, and shear properties by adjusting genipin crosslink density and by creating a composite formulation by adding Poly(D,L-lactide-co-glycolide) (PDLGA). This study also evaluated effects of thrombin concentration and injection technique on gelation kinetics and adhesive strength. Increasing FibGen genipin concentration from 1 to 36 mg/mL significantly increased adhesive strength (∼5 to 35 kPa), shear moduli (∼10 to 110 kPa), and compressive moduli (∼25 to 150 kPa) with concentration-dependent effects, and spanning native AF properties. Adding PDLGA to FibGen altered the material microstructure on electron microscopy and nearly tripled adhesive strength, but did not increase tensile moduli, which remained nearly 5× below native AF, and had a small increase in shear moduli and significantly decreased compressive moduli. Increased thrombin concentration decreased gelation rate to < 5 min and injection methods providing a structural FibGen cap increased pushout strength by ∼40%. We conclude that FibGen is highly modifiable with tunable mechanical properties that can be formulated to be compatible with human AF compressive and shear properties and gelation kinetics and injection techniques compatible with clinical discectomy procedures. However, further innovations, perhaps with more efficient fiber reinforcement, will be required to enable FibGen to match AF tensile properties.
Collapse
Affiliation(s)
- Michelle A Cruz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Steven McAnany
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Nikita Gupta
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1189, New York, NY 10029
| | - Rose G Long
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Philip Nasser
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - David Eglin
- Biomaterials and Tissue Engineering, AO Research Institute Davos, Davos CH-7270, Switzerland
| | - Andrew C Hecht
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - Svenja Illien-Junger
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1188, New York, NY 10029 e-mail:
| |
Collapse
|
17
|
Wang W, Deng G, Qiu Y, Huang X, Xi Y, Yu J, Yang X, Ye X. Transplantation of allogenic nucleus pulposus cells attenuates intervertebral disc degeneration by inhibiting apoptosis and increasing migration. Int J Mol Med 2018; 41:2553-2564. [PMID: 29436582 PMCID: PMC5846671 DOI: 10.3892/ijmm.2018.3454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Transplantation of nucleus pulposus cells (NPCs) into the intervertebral disc (IVD) has been demonstrated to be an effective treatment of degenerative disc disease (DDD). However, the underlying mechanisms have remained to be sufficiently elucidated. The aim of the present study was to explore the potential cell migration and anti-apoptosis efficacy of NPCs in the treatment of DDD. NPCs cultured from rats expressing green fluorescent protein (GFP-NPCs) were transplanted into the degenerated IVD, and the migration of GFP-NPCs, as well as the degeneration and apoptosis of the IVD were detected to evaluate the therapeutic effect in vivo. In vitro, disc chondrocytes (DCs) and annulus fibrosus cells (AFCs) were co-cultured to explore the underlying mechanism. The results demonstrated that injection of NPCs suppressed DDD by inhibiting apoptosis and increasing extracellular matrix in vivo and in vitro. NPCs migrated into the inner AF in vivo, and NPC migration was observed to be promoted by AFCs and DCs in vitro, particularly by damaged AFCs. These results demonstrated the anti-apoptotic effects and migratory capacity of allogenic NPCs transplanted into the IVD, which evidences the contribution of NPCs to disc regeneration and provide a novel strategy for treating DDD.
Collapse
Affiliation(s)
- Weiheng Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 201620, P.R. China
| | - Yuanyuan Qiu
- Department of Respiratory Medicine, The Electric Power Hospital, Shanghai 200050, P.R. China
| | - Xiaodong Huang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| | - Xiangqun Yang
- Department of Anatomy, Institute of Biomedical Engineering, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P.R. China
| |
Collapse
|
18
|
Tavakoli J. Tissue Engineering of the Intervertebral Disc's Annulus Fibrosus: A Scaffold-Based Review Study. Tissue Eng Regen Med 2017; 14:81-91. [PMID: 30603465 PMCID: PMC6171584 DOI: 10.1007/s13770-017-0024-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/10/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering as a high technology solution for treating disc's problem has been the focus of some researches recently; however, the upcoming successful results in this area depends on understanding the complexities of biology and engineering interface. Whereas the major responsibility of the nucleus pulposus is to provide a sustainable hydrated environment within the disc, the function of the annulus fibrosus (AF) is more mechanical, facilitating joint mobility and preventing radial bulging by confining of the central part, which makes the AF reconstruction important. Although the body of knowledge regarding the AF tissue engineering has grown rapidly, the opportunities to improve current understanding of how artificial scaffolds are able to mimic the AF concentric structure-including inter-lamellar matrix and cross-bridges-addressed unresolved research questions. The aim of this literature review was to collect and discuss, from the international scientific literature, information about tissue engineering of the AF based on scaffold fabrication and material properties, useful for developing new strategies in disc tissue engineering. The key parameter of this research was understanding if role of cross-bridges and inter-lamellar matrix has been considered on tissue engineering of the AF.
Collapse
Affiliation(s)
- Javad Tavakoli
- Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
19
|
Bowles RD, Setton LA. Biomaterials for intervertebral disc regeneration and repair. Biomaterials 2017; 129:54-67. [PMID: 28324865 DOI: 10.1016/j.biomaterials.2017.03.013] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
The intervertebral disc contributes to motion, weight bearing, and flexibility of the spine, but is susceptible to damage and morphological changes that contribute to pathology with age and injury. Engineering strategies that rely upon synthetic materials or composite implants that do not interface with the biological components of the disc have not met with widespread use or desirable outcomes in the treatment of intervertebral disc pathology. Here we review bioengineering advances to treat disc disorders, using cell-supplemented materials, or acellular, biologically based materials, that provide opportunity for cell-material interactions and remodeling in the treatment of intervertebral disc disorders. While a field still in early development, bioengineering-based strategies employing novel biomaterials are emerging as promising alternatives for clinical treatment of intervertebral disc disorders.
Collapse
Affiliation(s)
- Robert D Bowles
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA.
| | - Lori A Setton
- Department of Biomedical Engineering & Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
20
|
Wei JN, Cai F, Wang F, Wu XT, Liu L, Hong X, Tang WH. Transplantation of CXCR4 Overexpressed Mesenchymal Stem Cells Augments Regeneration in Degenerated Intervertebral Discs. DNA Cell Biol 2016; 35:241-8. [DOI: 10.1089/dna.2015.3118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ji-Nan Wei
- Department of Orthopedics, Southeast University, Nanjing, China
| | - Feng Cai
- Department of Spine Surgery, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Spine Surgery, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Southeast University, Nanjing, China
| | - Lei Liu
- Department of Spine Surgery, Southeast University, Nanjing, China
| | - Xin Hong
- Department of Spine Surgery, Southeast University, Nanjing, China
| | - Wen-Hao Tang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
21
|
Zhu C, Li J, Liu C, Zhou P, Yang H, Li B. Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity. Acta Biomater 2016; 29:228-238. [PMID: 26432437 DOI: 10.1016/j.actbio.2015.09.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 08/18/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023]
Abstract
Annulus fibrosus (AF) injuries commonly lead to substantial deterioration of the intervertebral disc (IVD). While tissue engineering has recently evolved into a promising approach for AF regeneration, it remains challenging due to the cellular, biochemical, and mechanical heterogeneity of AF tissue. In this study, we explored the use of AF-derived stem cells (AFSCs) to achieve diversified differentiation of cells for AF tissue engineering. Since the differentiation of stem cells relies significantly on the elasticity of the substrate, we synthesized a series of biodegradable poly(ether carbonate urethane)urea (PECUU) materials whose elasticity approximated that of native AF tissue. When AFSCs were cultured on electrospun PECUU fibrous scaffolds, the gene expression of collagen-I in the cells increased with the elasticity of scaffold material, whereas the expression of collagen-II and aggrecan genes showed an opposite trend. At the protein level, the content of collagen-I gradually increased with substrate elasticity, while collagen-II and GAG contents decreased. In addition, the cell traction forces (CTFs) of AFSCs gradually decreased with scaffold elasticity. Such substrate elasticity-dependent changes of AFSCs were similar to the gradual transition in the genetic, biochemical, and biomechanical characteristics of cells from inner to outer regions of native AF tissue. Together, findings from this study indicate that AFSCs, depending on the substrate elasticity, have strong tendencies to differentiate into various types of AF-like cells, thereby providing a solid foundation for the tissue engineering applications of AFSCs. STATEMENT OF SIGNIFICANCE Repairing the annulus fibrosus (AF) of intervertebral disc (IVD) is critical for the treatment of disc degeneration disease, but remains challenging due to the significant heterogeneity of AF tissue. Previously, we have identified rabbit AF-derived stem cells (AFSCs), which are AF tissue-specific and hold promise for AF regeneration. In this study, we synthesized a series of poly(ether carbonate urethane)ureas of various elasticity (or stiffness) and explored the potential of induced differentiation of AFSCs using electrospun PECUU scaffolds. This work has, for the first time, found that AFSCs are able to present different gene expression patterns simply as a result of the elasticity of scaffold material. Therefore, our findings will help supplement current knowledge of AF tissue regeneration and may benefit a diversified readership from scientific, engineering, and clinical settings whose work involves the biology and tissue engineering of IVD.
Collapse
Affiliation(s)
- Caihong Zhu
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, China
| | - Jun Li
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, China
| | - Chen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, China
| | - Pinghui Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, China.
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital, Orthopaedic Institute, Soochow University, 188 Shizi St, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
22
|
Effect of perfluorotributylamine-enriched alginate on nucleus pulposus cell: Implications for intervertebral disc regeneration. Biomaterials 2015; 82:34-47. [PMID: 26741882 DOI: 10.1016/j.biomaterials.2015.12.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 12/30/2022]
Abstract
Various scaffolds have been attempted for intervertebral disc regeneration, but their effectiveness was limited by loss of nutrients within the scaffolds. It has been suggested that the disc is not severely hypoxic and limited availability of oxygen results in disc degeneration. Therefore, a certain oxygen level might be beneficial for disc regeneration, which has not been given enough attention in previous studies. Here, we used perfluorotributylamine (PFTBA) for the first time as an oxygen regulator in alginate scaffold for disc regeneration in vitro and in vivo. We found that the characteristics of alginate were not affected by PFTBA and the oxygen level of the scaffold was regulated. Then, human nucleus pulposus (NP) cells were cultured in the PFTBA-enriched alginates. It was found that PFTBA could promote NP cell survival and proliferation. In addition, 2.5% PFTBA was capable of regulating extracellular matrix (ECM) to a disc-like tissue graft with little effect on the expression of NP cell markers. Finally, 2.5% PFTBA-enriched alginate was found to restore the disc height and the ECM in a mouse disc degeneration model, indicating its beneficial effect on alleviating disc degeneration. These findings highlight the promising application of PFTBA in further intervertebral disc regeneration.
Collapse
|
23
|
Wang F, Shi R, Cai F, Wang YT, Wu XT. Stem Cell Approaches to Intervertebral Disc Regeneration: Obstacles from the Disc Microenvironment. Stem Cells Dev 2015; 24:2479-95. [PMID: 26228642 DOI: 10.1089/scd.2015.0158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc (IVD) degeneration results in segmental instability and irritates neural compressive symptoms, such as low back pain and motor deficiency. The transplanting of stem cell into degenerative discs has attracted increasing clinical attention, as a new and proven approach to alleviating disc degeneration and to relieving discogenic pains. Aside from supplementation with stem cells, the IVD itself already contains a pool of stem and progenitor cells. Since the resident disc stem cells are incapable of reversing the pathologic changes that occur during aging and disc degeneration, it has been debated as to whether transplanted stem cells are capable of providing an efficient and durable therapeutic effect, even though there have been positive outcomes in both animal models and in clinical trials. This review aims to decipher the interactions between the stem cell and the disc microenvironment. Within their new niches in the IVD, the exogenous stem cell shows metabolic adaptation to the low-glucose supply, hypoxia, and compressive loadings, but demonstrates little tolerance to the disc-like acidity and hypertonicity. Similarly, the survival of endogenous stem cells is threatened as well by the harsh disc microenvironment, which may exhaust the stem cell resources and restrict the self-repair capacity of a degenerating IVD. To eliminate the intrinsic obstacles within the stressful disc niches, stem cells should be delivered with an injectable scaffold that provides both survival and mechanical support. Quick healing or concretion of the injection injuries, which minimizes stem cell leakage and disturbance to disc homeostasis, is of equal importance toward achieving efficient stem cell-based disc regeneration.
Collapse
Affiliation(s)
- Feng Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Rui Shi
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Feng Cai
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Yun-Tao Wang
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| | - Xiao-Tao Wu
- 1 Department of Spine Surgery, Zhongda Hospital, Southeast University , Nanjing, China .,2 Surgery Research Center, Medical School of Southeast University , Nanjing, China
| |
Collapse
|
24
|
Tian S, Liu Q, Gnatovskiy L, Ma PX, Wang Z. Heart Regeneration with Embryonic Cardiac Progenitor Cells and Cardiac Tissue Engineering. ACTA ACUST UNITED AC 2015; 1. [PMID: 26744736 DOI: 10.19104/jstb.2015.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide. Recent advances in stem cell research hold great potential for heart tissue regeneration through stem cell-based therapy. While multiple cell types have been transplanted into MI heart in preclinical studies or clinical trials, reduction of scar tissue and restoration of cardiac function have been modest. Several challenges hamper the development and application of stem cell-based therapy for heart regeneration. Application of cardiac progenitor cells (CPCs) and cardiac tissue engineering for cell therapy has shown great promise to repair damaged heart tissue. This review presents an overview of the current applications of embryonic CPCs and the development of cardiac tissue engineering in regeneration of functional cardiac tissue and reduction of side effects for heart regeneration. We aim to highlight the benefits of the cell therapy by application of CPCs and cardiac tissue engineering during heart regeneration.
Collapse
Affiliation(s)
- Shuo Tian
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Qihai Liu
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Leonid Gnatovskiy
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Center, The University of Michigan, Ann Arbor, MI 48109, USA; Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Hunt JA, Chen R, van Veen T, Bryan N. Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2014; 2:5319-5338. [DOI: 10.1039/c4tb00775a] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injectable hydrogels have become an incredibly prolific area of research in the field of tissue engineering and regenerative medicine, because of their high water content, mechanical similarity to natural tissues, and ease of surgical implantation, hydrogels are at the forefront of biomedical scaffold and drug carrier design.
Collapse
Affiliation(s)
- John A. Hunt
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| | - Rui Chen
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| | - Theun van Veen
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| | - Nicholas Bryan
- Clinical Engineering
- Institute of Ageing and Chronic Disease
- University of Liverpool
- Liverpool, UK
| |
Collapse
|