1
|
Huang CL, Huang HY, Lu YC, Cheng CJ, Lee TM. Development of a flexible film made of polyvinyl alcohol with chitosan based thermosensitive hydrogel. J Dent Sci 2023; 18:822-832. [PMID: 37021246 PMCID: PMC10068578 DOI: 10.1016/j.jds.2023.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Indexed: 01/22/2023] Open
Abstract
Background/purpose A challenge that arises with periodontal regeneration surgery has been associated with the future development of periodontal regeneration membrane to prevent gingiva and fibroblasts invade the wound and allow alveolar bone successfully regenerated. Materials and methods Chitosan (CS) has the advantages of non-toxicity, biodegradation, biocompatibility, and has been widely used in wound dressings. A flexible film was made using polyvinyl alcohol (PVA) blending CS based thermosensitive hydrogel. Results The proposed 2% PVA/CS hydrogel has the highest swelling ratio about 720% after 60 min incubation and keeps its area after 10 min incubation for surgery suture. The elastic modulus of 0%, 1%, 2%, and 4% PVA/CS hydrogel were 7.75 ± 1.96, 0.91 ± 0.16, 0.75 ± 0.21, and 0.37 ± 0.06 MPa, respectively. The maximum strain of 2% PVA/CS hydrogel was 101.00 ± 28.03 (%). After 8 weeks biodegradation, the remain weight of 2% PVA/CS hydrogel was 71.36 ± 0.79 (%). Conclusion In vitro cytotoxicity tests were performed and demonstrated PVA/CS hydrogel significantly improving cell proliferation. This study realized a promising flexible film for periodontal regeneration membrane that can prevent the rapid growth of fibroblasts to invade the wound and be used for periodontal regeneration surgery.
Collapse
Affiliation(s)
- Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsun-Yu Huang
- Division of Periodontics, Department of Dentistry, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yu-Chen Lu
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Jung Cheng
- Division of Periodontics, Department of Dentistry, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Corresponding author. Division of Periodontics, Department of Dentistry, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Road, Chiayi 600, Taiwan.
| | - Tzer-Min Lee
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Dentistry, National Cheng Kung University, Tainan, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
- Corresponding author. Institute of Oral Medicine, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
2
|
Li J, Wang C, Gao G, Yin X, Pu X, Shi B, Liu Y, Huang Z, Wang J, Li J, Yin G. MBG/ PGA-PCL composite scaffolds provide highly tunable degradation and osteogenic features. Bioact Mater 2021; 15:53-67. [PMID: 35386352 PMCID: PMC8941175 DOI: 10.1016/j.bioactmat.2021.11.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/02/2022] Open
|
3
|
Huang C, Yu M, Li H, Wan X, Ding Z, Zeng W, Zhou Z. Research Progress of Bioactive Glass and Its Application in Orthopedics. ADVANCED MATERIALS INTERFACES 2021. [DOI: 10.1002/admi.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chao Huang
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Min Yu
- Department of Anesthesiology North‐Kuanren General Hospital No. 69 Xingguang Avenue, Yubei District Chongqing 401121 P. R. China
| | - Hao Li
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Xufeng Wan
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zichuan Ding
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Weinan Zeng
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| | - Zongke Zhou
- Department of Orthopaedics West China Hospital of Sichuan University No. 37 Guoxue Alley, Wuhou District Chengdu 610041 P. R. China
| |
Collapse
|
4
|
Oltramare R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Short- and Long-Term Dentin Bond Strength of Bioactive Glass-Modified Dental Adhesives. NANOMATERIALS 2021; 11:nano11081894. [PMID: 34443725 PMCID: PMC8398528 DOI: 10.3390/nano11081894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
This study investigated the short- and long-term effects of dental adhesives doped with nano-sized bioactive glass 45S5 (BAG) on the resin-dentin interfacial bond strength. Two etch-and-rinse adhesives (Adper Scotchbond Multi-Purpose (ASB) and Solobond Plus (SB)) and one self-etch adhesive (Clearfil SE Bond (CF)) were doped with different concentrations of BAG (5, 10, and 20 wt%). The unmodified (0 wt% BAG) commercial adhesives served as control groups. Dentin of 120 molars (n = 10 per group) was treated with the different adhesives, followed by buildups with a conventional composite restorative material. From each tooth, 14 sticks were prepared for micro-tensile bond strength (µTBS) testing. The sticks were stored in simulated body fluid at 37 °C and tested after 24 h or six months for µTBS and failure mode. Data were analyzed using Kruskal-Wallis tests in combination with post-hoc Conover-tests and Wilcoxon signed-rank tests at a level of significance of α = 0.05. After 24 h and six months, both etch-and-rinse adhesives with a low BAG content (up to 10 wt% for ASB and 5 wt% for SB) showed similar µTBSs as their respective control groups (0 wt% BAG). CF showed a significant decrease in µTBS even after addition of 5 wt% BAG. At a high concentration of added BAG (20 wt%), all three adhesives showed a significant decrease in µTBS compared to the unmodified controls. The CF control group showed significantly lower µTBS after 6 months of storage than after 24 h. In contrast, the µTBS of all CF groups modified with BAG was unaffected by aging. In conclusion, the tested etch-and-rinse adhesives can be modified with up to 5 wt% (SB), or 10 wt% (ASB) of BAG without reducing their short- and long-term dentin bond strength. Moreover, the addition of nano-sized BAG may prevent long-term bond strength deterioration of a self-etch adhesive.
Collapse
Affiliation(s)
- Ramona Oltramare
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Correspondence: ; Tel.: +41-44-634-33-63
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Dirk Mohn
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel B. Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland;
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| | - Tobias T. Tauböck
- Clinic of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (D.M.); (T.A.); (T.T.T.)
| |
Collapse
|
5
|
Chen IH, Lee TM, Huang CL. Biopolymers Hybrid Particles Used in Dentistry. Gels 2021; 7:gels7010031. [PMID: 33809903 PMCID: PMC8005972 DOI: 10.3390/gels7010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
This literature review provides an overview of the fabrication and application of biopolymer hybrid particles in dentistry. A total of 95 articles have been included in this review. In the review paper, the common inorganic particles and biopolymers used in dentistry are discussed in general, and detailed examples of inorganic particles (i.e., hydroxyapatite, calcium phosphate, and bioactive glass) and biopolymers such as collagen, gelatin, and chitosan have been drawn from the scientific literature and practical work. Among the included studies, calcium phosphate including hydroxyapatite is the most widely applied for inorganic particles used in dentistry, but bioactive glass is more applicable and multifunctional than hydroxyapatite and is currently used in clinical practice. Today, biopolymer hybrid particles are receiving more attention as novel materials for several applications in dentistry, such as drug delivery systems, bone repair, and periodontal regeneration surgery. The literature published on the biopolymer gel-assisted synthesis of inorganic particles for dentistry is somewhat limited, and therefore, this article focuses on reviewing and discussing the biopolymer hybrid particles used in dentistry.
Collapse
Affiliation(s)
- I-Hao Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tzer-Min Lee
- Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- School of Dentistry, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| | - Chih-Ling Huang
- Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (T.-M.L.); (C.-L.H.); Tel.: +886-6-275-7575 (ext. 5972) (T.-M.L.); +886-7-312-1101 (ext. 2245#12) (C.-L.H.)
| |
Collapse
|
6
|
Electrospun PCL/PGS Composite Fibers Incorporating Bioactive Glass Particles for Soft Tissue Engineering Applications. NANOMATERIALS 2020; 10:nano10050978. [PMID: 32438673 PMCID: PMC7279550 DOI: 10.3390/nano10050978] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 01/28/2023]
Abstract
Poly(glycerol-sebacate) (PGS) and poly(epsilon caprolactone) (PCL) have been widely investigated for biomedical applications in combination with the electrospinning process. Among others, one advantage of this blend is its suitability to be processed with benign solvents for electrospinning. In this work, the suitability of PGS/PCL polymers for the fabrication of composite fibers incorporating bioactive glass (BG) particles was investigated. Composite electrospun fibers containing silicate or borosilicate glass particles (13-93 and 13-93BS, respectively) were obtained and characterized. Neat PCL and PCL composite electrospun fibers were used as control to investigate the possible effect of the presence of PGS and the influence of the bioactive glass particles. In fact, with the addition of PGS an increase in the average fiber diameter was observed, while in all the composite fibers, the presence of BG particles induced an increase in the fiber diameter distribution, without changing significantly the average fiber diameter. Results confirmed that the blended fibers are hydrophilic, while the addition of BG particles does not affect fiber wettability. Degradation test and acellular bioactivity test highlight the release of the BG particles from all composite fibers, relevant for all applications related to therapeutic ion release, i.e., wound healing. Because of weak interface between the incorporated BG particles and the polymeric fibers, mechanical properties were not improved in the composite fibers. Promising results were obtained from preliminary biological tests for potential use of the developed mats for soft tissue engineering applications.
Collapse
|
7
|
Canales D, Saavedra M, Flores MT, Bejarano J, Ortiz JA, Orihuela P, Alfaro A, Pabón E, Palza H, Zapata PA. Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films. J Biomed Mater Res A 2020; 108:2032-2043. [PMID: 32333463 DOI: 10.1002/jbm.a.36963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 01/25/2023]
Abstract
Bioglass nanoparticles (n-BGs, 54SiO2 :40CaO:6P2 O5 mol %) with about 27 nm diameter were synthesized by the sol-gel method and incorporated into a poly(lactic acid) (PLA) matrix by the melting process in order to obtain nanocomposites with filler contents of 5, 10, and 25 wt %. Our results showed that during the cooling scan, the crystallization temperature (Tc ) of the PLA/n-BG nanocomposites decreased 13°C as compared to neat PLA. The presence of nanoparticles also decreased the thermal stability of the PLA matrix, as nanocomposites presented up to about 20°C lower degradation temperatures in a nitrogen atmosphere. The presence of n-BG increased the stiffness of the polymer matrix, and for instance the composite with 25 wt % of filler presented about 52.6% higher Young's modulus than neat PLA. n-BG incorporation into PLA increased also the hydrolytic degradation of the polymer over time. When the PLA composites were immersed in simulated body fluid, an apatite layer was formed on their surface, as verified by Fourier transform infrared, X-Ray Diffraction (XRD), and scanning electron microscopy-EDS, showing that the presence of n-BG induced bioactivity on the PLA matrix. Moreover, the viability of cervical uterine adenocarcinoma cells was higher on PLA/n-BG nanocomposite with 25 wt % of filler. The presence of n-BG barely gave an antibacterial effect on the polymer matrix, despite the well-known biocidal properties of these nanoparticles. Our results show that the presence of n-BGs is a proper route for improving the bioactivity of PLA with potential application in tissue engineering.
Collapse
Affiliation(s)
- Daniel Canales
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marcela Saavedra
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Maria T Flores
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Julián Bejarano
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - J Andrés Ortiz
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Aline Alfaro
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro para el Desarrollo de la Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Elizabeth Pabón
- Grupo de Investigación Ciencias de Materiales Avanzados. Escuela de Química Facultad de Ciencias, Universidad Nacional de Colombia-Sede Medellín, Medellín, Colombia
| | - Humberto Palza
- Departamento de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Paula A Zapata
- Grupo Polímeros, Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Chitosan based polymer/bioglass composites for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:955-967. [DOI: 10.1016/j.msec.2018.12.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 11/09/2018] [Accepted: 12/09/2018] [Indexed: 01/12/2023]
|
9
|
Gritsch L, Lovell C, Goldmann WH, Boccaccini AR. Do bioresorbable polyesters have antimicrobial properties? JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:18. [PMID: 29340853 PMCID: PMC5770478 DOI: 10.1007/s10856-017-6021-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
Biodegradable and bioresorbable polyesters (BBPEs) are a widespread class of aliphatic polymers with a plethora of applications in the medical field. Some reports speculate that these polymers have intrinsic antibacterial activity as a consequence of their acidic degradation by-products. The release of organic acids as a result of the hydrolytic degradation of BBPEs in vivo and the resulting pH drop could be an effective inhibitor of the growth of pathogens in the local environment adjacent to BBPE-based devices. However, there is no clear and conclusive evidence in the literature concerning the antibacterial activity of BBPE to support or refute this hypothesis. In this communication we address this point through an assessment of the antibacterial properties of six well-established commercially available BBPEs. Agar diffusion assays and optical density measurements at 600 nm were performed on all the polymer samples to characterize the growth of bacteria and any potential inhibition over an incubation period of 24 h. The results indicated that BBPEs do not possess an intrinsic and immediate antibacterial activity, which is consistent with the clear mismatch between the time-scales for bacterial growth and the rate of degradation of the polyesters.
Collapse
Affiliation(s)
- Lukas Gritsch
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
- Lucideon Ltd., Queens Road, Penkhull, Stoke-on-Trent, Staffordshire, ST4 7LQ, UK
| | - Christopher Lovell
- Lucideon Ltd., Queens Road, Penkhull, Stoke-on-Trent, Staffordshire, ST4 7LQ, UK
| | - Wolfgang H Goldmann
- Department of Biophysics, University of Erlangen-Nuremberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany.
| |
Collapse
|
10
|
Keevend K, Panzarasa G, Starsich FHL, Zeltner M, Spyrogianni A, Tsolaki E, Fortunato G, Pratsinis SE, Bertazzo S, Herrmann IK. Facile meltPEGylation of flame-made luminescent Tb3+-doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica. Chem Commun (Camb) 2018; 54:2914-2917. [DOI: 10.1039/c7cc09402g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MeltPEGylation constitutes an elegant one-pot route for the efficient PEGylation of metal oxide nanoparticles with improved hemo- and cytocompatibility.
Collapse
Affiliation(s)
- Kerda Keevend
- Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)
- St. Gallen
- Switzerland
| | - Guido Panzarasa
- Biomimetic Membranes and Textiles, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)
- St. Gallen
- Switzerland
| | - Fabian H. L. Starsich
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Martin Zeltner
- Functional Materials Laboratory, Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich
- CH-8093 Zurich
- Switzerland
| | - Anastasia Spyrogianni
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich
- CH-8092 Zurich
- Switzerland
- Currently at Institute of Pharmaceutical Sciences
- ETH Zurich
| | - Elena Tsolaki
- Departments of Medical Physics and Biomedical Engineering, University College London (UCL), Malet Place Engineering Building
- London
- UK
| | - Giuseppino Fortunato
- Biomimetic Membranes and Textiles, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)
- St. Gallen
- Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich
- CH-8092 Zurich
- Switzerland
| | - Sergio Bertazzo
- Departments of Medical Physics and Biomedical Engineering, University College London (UCL), Malet Place Engineering Building
- London
- UK
| | - Inge K. Herrmann
- Particles Biology Interactions, Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa)
- St. Gallen
- Switzerland
| |
Collapse
|
11
|
Kung ML, Tai MH, Lin PY, Wu DC, Wu WJ, Yeh BW, Hung HS, Kuo CH, Chen YW, Hsieh SL, Hsieh S. Silver decorated copper oxide (Ag@CuO) nanocomposite enhances ROS-mediated bacterial architecture collapse. Colloids Surf B Biointerfaces 2017; 155:399-407. [DOI: 10.1016/j.colsurfb.2017.04.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/08/2017] [Accepted: 04/19/2017] [Indexed: 11/29/2022]
|
12
|
Preparation, physicochemical properties and biocompatibility of PBLG/PLGA/bioglass composite scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:118-124. [DOI: 10.1016/j.msec.2016.09.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
|
13
|
Leite ÁJ, Mano JF. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J Mater Chem B 2017; 5:4555-4568. [DOI: 10.1039/c7tb00404d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of natural polymers with nanoparticles allowed the development of functional bioinspired constructs. This review discusses the composition, design, and applications of bioinspired nanocomposite constructs based on bioactive glass nanoparticles (BGNPs).
Collapse
Affiliation(s)
- Á. J. Leite
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| | - J. F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
14
|
Medeiros ELG, Braz AL, Porto IJ, Menner A, Bismarck A, Boccaccini AR, Lepry WC, Nazhat SN, Medeiros ES, Blaker JJ. Porous Bioactive Nanofibers via Cryogenic Solution Blow Spinning and Their Formation into 3D Macroporous Scaffolds. ACS Biomater Sci Eng 2016; 2:1442-1449. [DOI: 10.1021/acsbiomaterials.6b00072] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eudes Leonnan G. Medeiros
- Materials
and Biosystems Laboratory (LAMAB), Department of Materials Engineering
(DEMat), Federal University of Paraíba (UFPB), CEP58051-900 João Pessoa-PB, Brazil
| | - Ana Letícia Braz
- Materials
and Biosystems Laboratory (LAMAB), Department of Materials Engineering
(DEMat), Federal University of Paraíba (UFPB), CEP58051-900 João Pessoa-PB, Brazil
| | - Isaque Jerônimo Porto
- Materials
and Biosystems Laboratory (LAMAB), Department of Materials Engineering
(DEMat), Federal University of Paraíba (UFPB), CEP58051-900 João Pessoa-PB, Brazil
| | - Angelika Menner
- Polymer
and Composite Engineering (PaCE) Group, Institute of Materials Chemistry
and Research, Faculty of Chemistry, University of Vienna, Währingerstr.
42, A-1090 Vienna, Austria
| | - Alexander Bismarck
- Polymer
and Composite Engineering (PaCE) Group, Institute of Materials Chemistry
and Research, Faculty of Chemistry, University of Vienna, Währingerstr.
42, A-1090 Vienna, Austria
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - William C. Lepry
- Department
of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0E8, Canada
| | - Showan N. Nazhat
- Department
of Mining and Materials Engineering, McGill University, Montreal, Quebec H3A 0E8, Canada
| | - Eliton S. Medeiros
- Materials
and Biosystems Laboratory (LAMAB), Department of Materials Engineering
(DEMat), Federal University of Paraíba (UFPB), CEP58051-900 João Pessoa-PB, Brazil
| | - Jonny J. Blaker
- Bio-/Active
Materials Group, School of Materials, MSS Tower, Manchester University, Manchester M13 9PL, U.K
| |
Collapse
|
15
|
Xia Y, Zhou P, Wang F, Qiu C, Wang P, Zhang Y, Zhao L, Xu S. Degradability, biocompatibility, and osteogenesis of biocomposite scaffolds containing nano magnesium phosphate and wheat protein both in vitro and in vivo for bone regeneration. Int J Nanomedicine 2016; 11:3435-49. [PMID: 27555766 PMCID: PMC4968986 DOI: 10.2147/ijn.s105645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this study, bioactive scaffold of nano magnesium phosphate (nMP)/wheat protein (WP) composite (MWC) was fabricated. The results revealed that the MWC scaffolds had interconnected not only macropores (sized 400–600 μm) but also micropores (sized 10–20 μm) on the walls of macropores. The MWC scaffolds containing 40 w% nMP had an appropriate degradability in phosphate-buffered saline and produced a weak alkaline microenvironment. In cell culture experiments, the results revealed that the MWC scaffolds significantly promoted the MC3T3-E1 cell proliferation, differentiation, and growth into the scaffolds. The results of synchrotron radiation microcomputed tomography and analysis of the histological sections of the in vivo implantation revealed that the MWC scaffolds evidently improved the new bone formation and bone defects repair as compared with WP scaffolds. Moreover, it was found that newly formed bone tissue continued to increase with the gradual reduction of materials residual in the MWC scaffolds. Furthermore, the immunohistochemical analysis further offered the evidence of the stimulatory effects of MWC scaffolds on osteogenic-related cell differentiation and new bone regeneration. The results indicated that MWC scaffolds with good biocompability and degradability could promote osteogenesis in vivo, which would have potential for bone tissue repair.
Collapse
Affiliation(s)
| | | | - Fei Wang
- Department of Orthopedics, Changhai Hospital, Second Military Medical University
| | - Chao Qiu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University
| | | | | | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuogui Xu
- Department of Emergency; Department of Orthopedics, Changhai Hospital, Second Military Medical University
| |
Collapse
|
16
|
Popa AC, Stan GE, Besleaga C, Ion L, Maraloiu VA, Tulyaganov DU, Ferreira JMF. Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4357-4367. [PMID: 26836256 DOI: 10.1021/acsami.6b00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This work reports on the unprecedented magnetron sputtering deposition of submicrometric hollow cones of bioactive glass at low temperature in the absence of any template or catalyst. The influence of sputtering conditions on the formation and development of bioglass cones was studied. It was shown that larger populations of well-developed cones could be achieved by increasing the argon sputtering pressure. A mechanism describing the growth of bioglass hollow cones is presented, offering the links for process control and reproducibility of the cone features. The composition, structure, and morphology of the as-synthesized hollow cones were investigated by energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), grazing incidence geometry X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM)-selected area electron diffraction (SAED). The in vitro biological performance, assessed by degradation tests (ISO 10993-14) and cytocompatibility assays (ISO 10993-5) in endothelial cell cultures, was excellent. This allied with resorbability and the unique morphological features make the submicrometer hollow cones interesting candidate material devices for focal transitory permeabilization of the blood-brain barrier in the treatment of carcinoma and neurodegenerative disorders.
Collapse
Affiliation(s)
- A C Popa
- National Institute of Materials Physics , 077125 Magurele, Ilfov, Romania
- Army Centre for Medical Research , 010195 Bucharest, Romania
| | - G E Stan
- National Institute of Materials Physics , 077125 Magurele, Ilfov, Romania
| | - C Besleaga
- National Institute of Materials Physics , 077125 Magurele, Ilfov, Romania
| | - L Ion
- University of Bucharest , Faculty of Physics, 077125 Magurele, Ilfov, Romania
| | - V A Maraloiu
- National Institute of Materials Physics , 077125 Magurele, Ilfov, Romania
| | - D U Tulyaganov
- Turin Polytechnic University in Tashkent , 100095 Tashkent, Uzbekistan
| | - J M F Ferreira
- Department of Materials and Ceramic Engineering, CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
|
18
|
Yassen GH, Huang R, Al-Zain A, Yoshida T, Gregory RL, Platt JA. Evaluation of selected properties of a new root repair cement containing surface pre-reacted glass ionomer fillers. Clin Oral Investig 2016; 20:2139-2148. [DOI: 10.1007/s00784-016-1715-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/10/2016] [Indexed: 11/27/2022]
|
19
|
Tian T, Wu C, Chang J. Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi4O10, Cup) bioceramics. RSC Adv 2016. [DOI: 10.1039/c6ra08145b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cuprorivaite firstly synthesized by sol–gel method with angiogenic and antibacterial activities for wound healing application.
Collapse
Affiliation(s)
- Tian Tian
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Chengtie Wu
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiang Chang
- Biomaterials and Tissue Engineering Research Center
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
20
|
Chen J, Du Y, Que W, Xing Y, Chen X, Lei B. Crack-free polydimethylsiloxane-bioactive glass-poly(ethylene glycol) hybrid monoliths with controlled biomineralization activity and mechanical property for bone tissue regeneration. Colloids Surf B Biointerfaces 2015; 136:126-33. [PMID: 26381696 DOI: 10.1016/j.colsurfb.2015.08.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/05/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Crack-free organic-inorganic hybrid monoliths with controlled biomineralization activity and mechanical property have an important role for highly efficient bone tissue regeneration. Here, biomimetic and crack-free polydimethylsiloxane (PDMS)-modified bioactive glass (BG)-poly(ethylene glycol) (PEG) (PDMS-BG-PEG) hybrids monoliths were prepared by a facile sol-gel technique. Results indicate that under the assist of co-solvents, BG sol and PDMS and PEG could be hybridized at a molecular level, and effects of the PEG molecular weight on the structure, biomineralization activity, and mechanical property of the as-prepared hybrid monoliths were also investigated in detail. It is found that an addition of low molecular weight PEG can significantly prevent the formation of cracks and speed up the gelation of the hybrid monoliths, and the surface microstructure of the hybrid monoliths can be changed from the porous to the smooth as the PEG molecular weight increases. Additionally, the hybrid monoliths with low molecular weight PEG show the high formation of the biological apatite layer, while the hybrids with high molecular weight PEG exhibit negligible biomineralization ability in simulated body fluid (SBF). Furthermore, the PDMS-BG-PEG 600 hybrid monolith has significantly high compressive strength (32 ± 3 MPa) and modulus (153 ± 11 MPa), as well as good cell biocompatibility by supporting osteoblast (MC3T3-E1) attachment and proliferation. These results indicate that the as-prepared PDMS-BG-PEG hybrid monoliths may have promising applications for bone tissue regeneration.
Collapse
Affiliation(s)
- Jing Chen
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuzhang Du
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenxiu Que
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yonglei Xing
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaofeng Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Bo Lei
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China.
| |
Collapse
|
21
|
Chen S, Jian Z, Huang L, Xu W, Liu S, Song D, Wan Z, Vaughn A, Zhan R, Zhang C, Wu S, Hu M, Li J. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration. Int J Nanomedicine 2015; 10:3815-27. [PMID: 26082632 PMCID: PMC4459617 DOI: 10.2147/ijn.s82543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A mesoporous bioactive glass (MBG) surface modified with poly(lactic-co-glycolic acid) (PLGA) electrospun fibrous scaffold for bone regeneration was prepared by dip-coating a PLGA electrospun fibrous scaffold into MBG precursor solution. Different surface structures and properties were acquired by different coating times. Surface morphology, chemical composition, microstructure, pore size distribution, and hydrophilicity of the PLGA-MBG scaffold were characterized. Results of scanning electron microscopy indicated that MBG surface coating made the scaffold rougher with the increase of MBG content. Scaffolds after MBG modification possessed mesoporous architecture on the surface. The measurements of the water contact angles suggested that the incorporation of MBG into the PLGA scaffold improved the surface hydrophilicity. An energy dispersive spectrometer evidenced that calcium-deficient carbonated hydroxyapatite formed on the PLGA-MBG scaffolds after a 7-day immersion in simulated body fluid. In vitro studies showed that the incorporation of MBG favored cell proliferation and osteogenic differentiation of human mesenchymal stem cells on the PLGA scaffolds. Moreover, the MBG surface-modified PLGA (PLGA-MBG) scaffolds were shown to be capable of providing the improved adsorption/release behaviors of bone morphogenetic protein-2 (BMP-2). It is very significant that PLGA-MBG scaffolds could be effective for BMP-2 delivery and bone regeneration.
Collapse
Affiliation(s)
- Shijie Chen
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Zhiyuan Jian
- The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Linsheng Huang
- The First General Surgery Department of Shiyan Taihe Hospital Affiliated to Hubei University of Medicine, Shiyan, People's Republic of China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Shaohua Liu
- Department of Spine Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Dajiang Song
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Zongmiao Wan
- Department of Orthopedic Oncology, Changzheng Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| | - Amanda Vaughn
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Ruisen Zhan
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chaoyue Zhang
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Minghua Hu
- Department of Anthropotomy, Changsha Medical College, Changsha, Hunan, People's Republic of China
| | - Jinsong Li
- Department of Orthopaedics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
22
|
Wang X, Shan H, Wang J, Hou Y, Ding J, Chen Q, Guan J, Wang C, Chen X. Characterization of nanostructured ureteral stent with gradient degradation in a porcine model. Int J Nanomedicine 2015; 10:3055-64. [PMID: 25945051 PMCID: PMC4408953 DOI: 10.2147/ijn.s80810] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A tubular poly(ε-caprolactone) (PCL)/poly(lactide-co-glycolide) (PLGA) ureteral stent composed of nanofibers with micropores was fabricated by double-needle electrospinning. The stent was ureteroscopically inserted into six Changbai pigs, and the commercial polyurethane Shagong® stent was inserted into four pigs as control. Intravenous pyelography revealed that the PCL/PLGA stent gradually degraded from the distal end to proximal terminal, and all stents were completely degraded at 10 weeks post-insertion. No significant difference was observed in hydronephrosis severity between the two groups. The levels of serum creatinine and urine pH remained similar throughout the study in the two groups, but the number of white blood cells in the urine was significantly higher in the Shagong® stent group. On Day 70, histological evaluation indicated equivalent histological severity scores in the middle and distal ureter sections and bladder in the two groups. However, the PCL/PLGA stent-implanted pigs had significantly lower mean severity scores in the kidney and proximal ureter sites. These data revealed that the PCL/PLGA stent degraded in a controlled manner, did not induce obstruction, and had a lower urothelial impact in comparison to the Shagong® stent, indicating that the stent exhibited great potential for clinical application.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongli Shan
- Department of Clinical Laboratory, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jixue Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Yuchuan Hou
- Department of Urology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People's Republic of China
| | - Qihui Chen
- Department of Urology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Jingjing Guan
- Department of Urology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunxi Wang
- Department of Urology, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People's Republic of China
| |
Collapse
|
23
|
Antibacterial properties of magnesium in vitro and in an in vivo model of implant-associated methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 2014; 58:7586-91. [PMID: 25288077 DOI: 10.1128/aac.03936-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periprosthetic infection remains a challenging clinical complication. We investigated the antibacterial properties of pure (99.9%) magnesium (Mg) in vitro and in an in vivo rat model of implant-related infection. Mg was highly effective against methicillin-resistant Staphylococcus aureus-induced osteomyelitis and improved new peri-implant bone formation. Bacterial icaA and agr RNAIII transcription levels were also assessed to characterize the mechanism underlying the antibacterial properties of the Mg implant.
Collapse
|