1
|
Cuypers L, de Boer L, Wang R, Walboomers XF, Yang F, Zaat SA, Leeuwenburgh SC. Antibacterial Activity of Zinc-Doped Hydroxyapatite and Vancomycin-Loaded Gelatin Nanoparticles against Intracellular Staphylococcus aureus in Human THP-1 Derived Macrophages. ACS APPLIED NANO MATERIALS 2024; 7:21964-21974. [PMID: 39360166 PMCID: PMC11443495 DOI: 10.1021/acsanm.4c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Treating bone infections with common antibiotics is challenging, since pathogens like Staphylococcus aureus can reside inside macrophages. To target these intracellular bacteria, we have proposed nanoparticles (NPs) as drug carriers. This study aims to investigate the efficacy of hydroxyapatite and gelatin NPs, selected in view of their bone mimicry and potential for targeted delivery, as carriers for the antibacterial agents zinc and vancomycin. Therefore, two distinct NPs are fabricated: zinc-doped hydroxyapatite (ZnHA) and vancomycin-loaded gelatin (VGel) NPs. The NPs are characterized based on morphology, size, chemical composition, cellular internalization, and intracellular bactericidal efficacy. Specifically, the intracellular bactericidal efficacy is tested using a validated coculture model of human THP-1 derived macrophages and phagocytosed S. aureus bacteria. Scanning electron microscopy (SEM) and Fourier transform-infrared spectroscopy (FTIR) results show that the spherical NPs are synthesized successfully. These NPs are internalized by THP-1 cells and show >75% colocalization with lysosomes without compromising the viability of the THP-1 cells. Both ZnHA and VGel NPs substantially reduce the intracellular survival of S. aureus compared to the direct addition of dissolved zinc and vancomycin. Concluding, our NPs are highly effective drug delivery vehicles to kill intracellular S. aureus, which stress the potential of these NPs for future clinical translation.
Collapse
Affiliation(s)
- Lizzy
A.B. Cuypers
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - Leonie de Boer
- Department
of Medical Microbiology and Infection Prevention, Amsterdam Institute
for Immunology and Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Rong Wang
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - X. Frank Walboomers
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - Fang Yang
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| | - Sebastian A.J. Zaat
- Department
of Medical Microbiology and Infection Prevention, Amsterdam Institute
for Immunology and Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander C.G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Research Institute Medical
Innovations, Radboud University Medical
Center, Philips van Leydenlaan
25, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
2
|
Andrée L, Egberink RO, Heesakkers R, Suurmond CAE, Joziasse LS, Khalifeh M, Wang R, Yang F, Brock R, Leeuwenburgh SCG. Local mRNA Delivery from Nanocomposites Made of Gelatin and Hydroxyapatite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50497-50506. [PMID: 39284017 PMCID: PMC11440464 DOI: 10.1021/acsami.4c12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Local delivery of messenger ribonucleic acid (mRNA) is increasingly being advocated as a promising new strategy to enhance the performance of biomaterials. While extensive research has been dedicated to the complexation of these oligonucleotides into nanoparticles to facilitate systemic delivery, research on developing suitable biomaterial carriers for the local delivery of mRNA is still scarce. So far, mRNA-nanoparticles (mRNA-NPs) are mainly loaded into traditional polymeric hydrogels. Here, we show that calcium phosphate nanoparticles can be used for both reinforcement of nanoparticle-based hydrogels and the complexation of mRNA. mRNA was incorporated into lipid-coated calcium phosphate nanoparticles (LCPs) formulated with a fusogenic ionizable lipid in the outer layer of the lipid coat. Nanocomposites of gelatin and hydroxyapatite nanoparticles were prepared at various ratios. Higher hydroxyapatite nanoparticle content increased the viscoelastic properties of the nanocomposite but did not affect its self-healing ability. Combination of these nanocomposites with peptide, lipid, and the LCP mRNA formulations achieved local mRNA release as demonstrated by protein expression in cells in contact with the biomaterials. The LCP-based formulation was superior to the other formulations by showing less sensitivity to hydroxyapatite and the highest cytocompatibility.
Collapse
Affiliation(s)
- Lea Andrée
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Rik Oude Egberink
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Renée Heesakkers
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Ceri-Anne E Suurmond
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Lucas S Joziasse
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Masoomeh Khalifeh
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Rong Wang
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| | - Roland Brock
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain
| | - Sander C G Leeuwenburgh
- Department of Dentistry─Regenerative Biomaterials, Radboud University Medical Center, Philips van Leydenlaan 25, 6525 EX Nijmegen, The Netherlands
| |
Collapse
|
3
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Tan B, Wu Y, Wang R, Lee D, Li Y, Qian Z, Liao J. Biodegradable Nanoflowers with Abaloparatide Spatiotemporal Management of Functional Alveolar Bone Regeneration. NANO LETTERS 2024; 24:2619-2628. [PMID: 38350110 DOI: 10.1021/acs.nanolett.3c04977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Post-extraction alveolar bone atrophy greatly hinders the subsequent orthodontic tooth movement (OTM) or implant placement. In this study, we synthesized biodegradable bifunctional bioactive calcium phosphorus nanoflowers (NFs) loaded with abaloparatide (ABL), namely ABL@NFs, to achieve spatiotemporal management for alveolar bone regeneration. The NFs exhibited a porous hierarchical structure, high drug encapsulation efficacy, and desirable biocompatibility. ABL was initially released to recruit stem cells, followed by sustained release of Ca2+ and PO43- for in situ interface mineralization, establishing an osteogenic "biomineralized environment". ABL@NFs successfully restored morphologically and functionally active alveolar bone without affecting OTM. In conclusion, the ABL@NFs demonstrated promising outcomes for bone regeneration under orthodontic condition, which might provide a desirable reference of man-made "bone powder" in the hard tissue regeneration field.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruyi Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Rezvan G, Esmaeili M, Sadati M, Taheri-Qazvini N. Size-dependent viscoelasticity in hybrid colloidal gels based on spherical soft nanoparticles and two-dimensional nanosilicates of varying size. J Colloid Interface Sci 2023; 656:577-586. [PMID: 38035482 DOI: 10.1016/j.jcis.2023.11.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
HYPOTHESIS Hetero-aggregation of oppositely charged colloidal particles with controlled architectural and interactional asymmetry allows modifying gel nanostructure and properties. We hypothesize the relative size ratio between cationic nanospheres and varied-size anionic two-dimensional nanoclays will influence the gel formation mechanisms and resulting rheological performance. EXPERIMENTS Hybrid colloidal gels formed via hetero-aggregation of cationic gelatin nanospheres (∼400 nm diameter) and five types of nanoclays with similar 1 nm thickness but different lateral sizes ranging from ∼ 30 nm to ∼ 3000 nm. Structure-property relationships were elucidated using a suite of techniques. Microscopy and scattering probed gel nanostructure and particle configuration. Rheology quantified linear and non-linear viscoelastic properties and yielding behavior. Birefringence and polarized imaging assessed size-dependent nanoclay alignment during shear flow. FINDINGS Nanoclay size ratio relative to nanospheres affected the gelation process, network structure, elasticity, yielding, and shear response. Gels with comparably sized components showed maximum elasticity, while yield stress depended on nanoclay rotational mobility. Shear-induced nanoclay alignment was quantified by birefringence, which is more pronounced for larger nanoclay. Varying nanoclay size and interactions with nanospheres controlled dispersion, aggregation, and nematic ordering. These findings indicate that architectural and interactional asymmetry enables more control over gel properties through controlled assembly of anisotropic building blocks.
Collapse
Affiliation(s)
- Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
6
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
7
|
Bashir MH, Korany NS, Farag DBE, Abbass MMS, Ezzat BA, Hegazy RH, Dörfer CE, Fawzy El-Sayed KM. Polymeric Nanocomposite Hydrogel Scaffolds in Craniofacial Bone Regeneration: A Comprehensive Review. Biomolecules 2023; 13:biom13020205. [PMID: 36830575 PMCID: PMC9953024 DOI: 10.3390/biom13020205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Nanocomposite biomaterials combine a biopolymeric matrix structure with nanoscale fillers. These bioactive and easily resorbable nanocomposites have been broadly divided into three groups, namely natural, synthetic or composite, based on the polymeric origin. Preparing such nanocomposite structures in the form of hydrogels can create a three-dimensional natural hydrophilic atmosphere pivotal for cell survival and new tissue formation. Thus, hydrogel-based cell distribution and drug administration have evolved as possible options for bone tissue engineering and regeneration. In this context, nanogels or nanohydrogels, created by cross-linking three-dimensional polymer networks, either physically or chemically, with high biocompatibility and mechanical properties were introduced as promising drug delivery systems. The present review highlights the potential of hydrogels and nanopolymers in the field of craniofacial tissue engineering and bone regeneration.
Collapse
Affiliation(s)
- Maha H. Bashir
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Nahed S. Korany
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Dina B. E. Farag
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Bassant A. Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Radwa H. Hegazy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11553, Egypt
- Correspondence: ; Tel.: +49-431-500-26210
| |
Collapse
|
8
|
Dou Z, Tang H, Chen K, Li D, Ying Q, Mu Z, An C, Shao F, Zhang Y, Zhang Y, Bai H, Zheng G, Zhang L, Chen T, Wang H. Highly elastic and self-healing nanostructured gelatin/clay colloidal gels with osteogenic capacity for minimally invasive and customized bone regeneration. Biofabrication 2023; 15. [PMID: 36595285 DOI: 10.1088/1758-5090/acab36] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Extrusible biomaterials have recently attracted increasing attention due to the desirable injectability and printability to allow minimally invasive administration and precise construction of tissue mimics. Specifically, self-healing colloidal gels are a novel class of candidate materials as injectables or printable inks considering their fascinating viscoelastic behavior and high degree of freedom on tailoring their compositional and mechanical properties. Herein, we developed a novel class of adaptable and osteogenic composite colloidal gels via electrostatic assembly of gelatin nanoparticles and nanoclay particles. These composite gels exhibited excellent injectability and printability, and remarkable mechanical properties reflected by the maximal elastic modulus reaching ∼150 kPa combined with high self-healing efficiency, outperforming most previously reported self-healing hydrogels. Moreover, the cytocompatibility and the osteogenic capacity of the colloidal gels were demonstrated by inductive culture of MC3T3 cells seeded on the three-dimensional (3D)-printed colloidal scaffolds. Besides, the biocompatibility and biodegradability of the colloidal gels was provedin vivoby subcutaneous implantation of the 3D-printed scaffolds. Furthermore, we investigated the therapeutic capacity of the colloidal gels, either in form of injectable gels or 3D-printed bone substitutes, using rat sinus bone augmentation model or critical-sized cranial defect model. The results confirmed that the composite gels were able to adapt to the local complexity including irregular or customized defect shapes and continuous on-site mechanical stimuli, but also to realize osteointegrity with the surrounding bone tissues and eventually be replaced by newly formed bones.
Collapse
Affiliation(s)
- Zhenzhen Dou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Kaiwen Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Qiwei Ying
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Zhixiang Mu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Chuanfeng An
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China.,Central Laboratory, Longgang District People's Hospital of Shenzhen & The Third Affiliated Hospital (Provisional) of The Chinese University of Hong Kong, Shenzhen 518172, People's Republic of China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Fei Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yang Zhang
- Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, People's Republic of China
| | - Yonggang Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Haoliang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Guoshuang Zheng
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian 116001, People's Republic of China
| | - Lijun Zhang
- Liyun Zhang. Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, People's Republic of China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Huanan Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
9
|
Application and translation of nano calcium phosphates in biomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
10
|
Zahorán R, Kumar P, Juhász Á, Horváth D, Tóth Á. Flow-driven synthesis of calcium phosphate-calcium alginate hybrid chemical gardens. SOFT MATTER 2022; 18:8157-8164. [PMID: 36263702 DOI: 10.1039/d2sm01063a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Systems far-from-equilibrium self-assemble into spatiotemporal structures. Here, we report on the formation of calcium alginate gardens along with their inorganic hybrids when a sodium alginate solution containing sodium phosphate in various compositions is injected into a calcium chloride reservoir. The viscoelastic properties of the membranes developed are controlled by the injection rate, while their thickness by the amount of sodium phosphate besides diffusion. Inorganic hybrid membranes with constant thickness are synthesized in the presence of a sufficient amount of sodium phosphate. The electrochemical characterization of the membranes suggests that the driving force is the pH-gradient developing along the two sides; hence, the cell potential can be controlled by the addition of alkaline sodium phosphate into the sodium alginate solution.
Collapse
Affiliation(s)
- Réka Zahorán
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Pawan Kumar
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| | - Ádám Juhász
- MTA-SZTE Lendület "Momentum" Noble Metal Nanostructures Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged, H-6720, Hungary.
| |
Collapse
|
11
|
Chen S, Song Y, Yan X, Dong L, Xu Y, Xuan S, Shu Q, Cao B, Hu J, Xing H, Wu W, Zha Z, Lu Y. Injectable magnetic montmorillonite colloidal gel for the postoperative treatment of hepatocellular carcinoma. J Nanobiotechnology 2022; 20:381. [PMID: 35986283 PMCID: PMC9392261 DOI: 10.1186/s12951-022-01559-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Bioactive materials have been extensively developed for the adjuvant therapy of cancer. However, few materials can meet the requirements for the postoperative resection of hepatocellular carcinoma (HCC) due to massive bleeding and high recurrence. In particular, combination therapy for HCC has been highly recommended in clinical practice, including surgical resection, interventional therapy, ablation therapy and chemotherapy. Herein, an injectable magnetic colloidal gel (MCG) was developed by controllable electrostatic attraction between clinically available magnetic montmorillonites and amphoteric gelatin nanoparticles. The optimized MCG exhibited an effective magnetic heating effect, remarkable rheological properties, and high gel network stability, realizing the synergistic treatment of postoperative HCC by stimuli-responsive drug delivery, hemostasis and magnetic hyperthermia. Furthermore, a minimal invasive MCG-induced interventional magnetic hyperthermia therapy (MHT) under ultrasound guidance was realized on hepatic tumor rabbits, providing an alternative therapeutics to treat the postoperative recurrence. Overall, MCG is a clinically available injectable formulation for adjuvant therapy after HCC surgical resection.
Collapse
|
12
|
Bertsch P, Diba M, Mooney DJ, Leeuwenburgh SCG. Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev 2022; 123:834-873. [PMID: 35930422 PMCID: PMC9881015 DOI: 10.1021/acs.chemrev.2c00179] [Citation(s) in RCA: 245] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
13
|
Rezvan G, Esmaeili M, Sadati M, Taheri-Qazvini N. Hybrid colloidal gels with tunable elasticity formed by charge-driven assembly between spherical soft nanoparticles and discotic nanosilicates. J Colloid Interface Sci 2022; 627:40-52. [PMID: 35841707 DOI: 10.1016/j.jcis.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Colloidal gels based on electrostatic interparticle attractions hold unexploited potential for tailoring their microstructure and properties. Here, we demonstrate that hetero-aggregation between oppositely charged particles with different geometries is a viable strategy for controlling their properties. Specifically, we studied hybrid colloidal gels prepared by the charge-driven assembly of oppositely charged spherical gelatin nanoparticles and two-dimensional (2D) nanosilicates. We show that the asymmetry between the building blocks and the resulting anisotropic interparticle interactions produces a variety of nanostructures and hybrid colloidal gels that exhibit high elasticity at low colloidal volume fractions. Tuning the competition between different attractive interactions in the system by varying the spatial charge heterogeneity on the 2D nanosheets, composition, and ionic strength was found to alter the mechanism of gel formation and their rheological properties. Remarkably, increasing the mass ratio of 2D nanosheets to spherical nanoparticles at a constant total mass fraction affords hybrid gels that exhibit an inverse relationship between elasticity and volume fraction. However, these hybrid gels are easily fluidized and exhibit rapid structural recovery once the stress is removed. These features allow for the engineering of versatile 3D-printable hybrid colloidal gels, whose structure and viscoelastic response are governed by parameters that have not been explored before.
Collapse
Affiliation(s)
- Gelareh Rezvan
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Mohsen Esmaeili
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Monirosadat Sadati
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States.
| | - Nader Taheri-Qazvini
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, United States; Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, United States.
| |
Collapse
|
14
|
Xie J, Yu P, Wang Z, Li J. Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications. Biomacromolecules 2022; 23:641-660. [PMID: 35199999 DOI: 10.1021/acs.biomac.1c01647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noncovalent interactions can maintain the three-dimensional structures of biomacromolecules (e.g., polysaccharides and proteins) and control specific recognition in biological systems. Supramolecular chemistry was gradually developed as a result, and this led to design and application of self-healing materials. Self-healing materials have attracted attention in many fields, such as coatings, bionic materials, elastomers, and flexible electronic devices. Nevertheless, self-healing materials for biomedical applications have not been comprehensively summarized, even though many reports have been focused on specific areas. In this Review, we first introduce the different categories of supramolecular forces used in preparing self-healing materials and then describe biological applications developed in the last 5 years, including antibiofouling, smart drug/protein delivery, wound healing, electronic skin, cartilage lubrication protection, and tissue engineering scaffolds. Finally, the limitations of current biomedical applications are indicated, key design points are offered for new biological self-healing materials, and potential directions for biological applications are highlighted.
Collapse
Affiliation(s)
- Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
15
|
Petretta M, Gambardella A, Desando G, Cavallo C, Bartolotti I, Shelyakova T, Goranov V, Brucale M, Dediu VA, Fini M, Grigolo B. Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2021; 13:3825. [PMID: 34771382 PMCID: PMC8588077 DOI: 10.3390/polym13213825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Multifunctional and resistant 3D structures represent a great promise and a great challenge in bone tissue engineering. This study addresses this problem by employing polycaprolactone (PCL)-based scaffolds added with hydroxyapatite (HAp) and superparamagnetic iron oxide nanoparticles (SPION), able to drive on demand the necessary cells and other bioagents for a high healing efficiency. PCL-HAp-SPION scaffolds with different concentrations of the superparamagnetic component were developed through the 3D-printing technology and the specific topographical features were detected by Atomic Force and Magnetic Force Microscopy (AFM-MFM). AFM-MFM measurements confirmed a homogenous distribution of HAp and SPION throughout the surface. The magnetically assisted seeding of cells in the scaffold resulted most efficient for the 1% SPION concentration, providing good cell entrapment and adhesion rates. Mesenchymal Stromal Cells (MSCs) seeded onto PCL-HAp-1% SPION showed a good cell proliferation and intrinsic osteogenic potential, indicating no toxic effects of the employed scaffold materials. The performed characterizations and the collected set of data point on the inherent osteogenic potential of the newly developed PCL-HAp-1% SPION scaffolds, endorsing them towards next steps of in vitro and in vivo studies and validations.
Collapse
Affiliation(s)
- Mauro Petretta
- REGENHU Ltd., Z.I. Le Vivier 22, 1690 Villaz-St-Pierre, Switzerland;
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Alessandro Gambardella
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Giovanna Desando
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Carola Cavallo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Isabella Bartolotti
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| | - Tatiana Shelyakova
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Vitaly Goranov
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
- BioDevice Systems, Bulharská, 10-Vršovice, 996/20, 10100 Praha, Czech Republic
| | - Marco Brucale
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Valentin Alek Dediu
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; (V.G.); (M.B.); (V.A.D.)
| | - Milena Fini
- SC Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.G.); (M.F.)
| | - Brunella Grigolo
- SSD Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (I.B.); (B.G.)
| |
Collapse
|
16
|
Zhao Z, Wang M, Shao F, Liu G, Li J, Wei X, Zhang X, Yang J, Cao F, Wang Q, Wang H, Zhao D. Porous tantalum-composited gelatin nanoparticles hydrogel integrated with mesenchymal stem cell-derived endothelial cells to construct vascularized tissue in vivo. Regen Biomater 2021; 8:rbab051. [PMID: 34603743 PMCID: PMC8481010 DOI: 10.1093/rb/rbab051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
The ideal scaffold material of angiogenesis should have mechanical strength and provide appropriate physiological microporous structures to mimic the extracellular matrix environment. In this study, we constructed an integrated three-dimensional scaffold material using porous tantalum (pTa), gelatin nanoparticles (GNPs) hydrogel, and seeded with bone marrow mesenchymal stem cells (BMSCs)-derived endothelial cells (ECs) for vascular tissue engineering. The characteristics and biocompatibility of pTa and GNPs hydrogel were evaluated by mechanical testing, scanning electron microscopy, cell counting kit, and live-cell assay. The BMSCs-derived ECs were identified by flow cytometry and angiogenesis assay. BMSCs-derived ECs were seeded on the pTa-GNPs hydrogel scaffold and implanted subcutaneously in nude mice. Four weeks after the operation, the scaffold material was evaluated by histomorphology. The superior biocompatible ability of pTa-GNPs hydrogel scaffold was observed. Our in vivo results suggested that 28 days after implantation, the formation of the stable capillary-like network in scaffold material could be promoted significantly. The novel, integrated pTa-GNPs hydrogel scaffold is biocompatible with the host, and exhibits biomechanical and angiogenic properties. Moreover, combined with BMSCs-derived ECs, it could construct vascular engineered tissue in vivo. This study may provide a basis for applying pTa in bone regeneration and autologous BMSCs in tissue-engineered vascular grafts.
Collapse
Affiliation(s)
- Zhenhua Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Mang Wang
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Fei Shao
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, High-Tech District, Dalian 116024, P. R. China
| | - Ge Liu
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China
| | - Junlei Li
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Xiaowei Wei
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Xiuzhi Zhang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- Reproductive Medicine Centre, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Jiahui Yang
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Fang Cao
- Department of Biomedical Engineering, Faculty of Electronic Information and Electronical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qiushi Wang
- Laboratory Animal Center, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No. 2, Linggong Road, High-Tech District, Dalian 116024, P. R. China
| | - Dewei Zhao
- Orthopaedic Department, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Affiliated ZhongShan Hospital of Dalian University, No. 6 Jiefang Street, Zhongshan District, Dalian, Liaoning 116001, P. R. China
| |
Collapse
|
17
|
Diba M, Koons GL, Bedell ML, Mikos AG. 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials 2021; 274:120871. [PMID: 34029914 PMCID: PMC8196631 DOI: 10.1016/j.biomaterials.2021.120871] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022]
Abstract
Biomaterials-based strategies have shown great promise for tissue regeneration. 3D printing technologies can deliver unprecedented control over architecture and properties of biomaterial constructs when combined with innovative material design strategies. Colloidal gels made of polymeric nanoparticles are attractive injectable and self-healing systems, but their use as bio-inks for extrusion-based printing is largely unexplored. Here, we report 3D printing of novel biomaterial constructs with shape memory behavior using photo-reactive gelatin nanoparticles as colloidal building blocks. These nanoparticles are stabilized with intraparticle covalent crosslinks, and also contain pendant methacryloyl groups as photo-reactive moieties. While non-covalent interactions between nanoparticles enable formation of colloidal gel inks that are printable at room temperature, UV-induced covalent interparticle crosslinks based on methacryloyl moieties significantly enhance mechanical properties of printed constructs. Additionally, the UV crosslinking modality enables remarkable control over swelling, degradation, and biomolecule release behavior of 3D constructs. Finally, by exploiting the mechanical properties of colloidal biomaterials after UV crosslinking, 3D constructs can be designed with shape memory properties, returning to their original programmed geometry upon re-hydration. Accordingly, these novel colloidal inks exhibit great potential to serve as bio-inks for 3D printing of biomaterials with shape-morphing features for a wide range of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Mani Diba
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Gerry L Koons
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Matthew L Bedell
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA.
| |
Collapse
|
18
|
Yuan W, Li Z, Xie X, Zhang ZY, Bian L. Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioact Mater 2020; 5:819-831. [PMID: 32637746 PMCID: PMC7321771 DOI: 10.1016/j.bioactmat.2020.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nanocomposite hydrogels consist of polymeric network embedded with functional nanoparticles or nanostructures, which not only contribute to the enhanced mechanical properties but also exhibit the bioactivities for regulating cell behavior. Bisphosphonates (BPs) are capable of coordinating with various metal ions and modulating bone homeostasis. Thanks to the inherent dynamic properties of metal-ligand coordination bonds, BP-based nanocomposite hydrogels possess tunable mechanical properties, highly dynamic structures, and the capability to mediate controlled release of encapsulated therapeutic agents, thereby making them highly versatile for various biomedical applications. This review presents the comprehensive overview of recent developments in BP-based nanocomposite hydrogels with an emphasis on the properties of embedded nanoparticles (NPs) and interactions between hydrogel network and NPs. Furthermore, various challenges in the biomedical applications of these hydrogels are discussed to provide an outlook of potential clinical translation.
Collapse
Affiliation(s)
- Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, PR China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058, PR China
| |
Collapse
|
19
|
Mu Z, Chen K, Yuan S, Li Y, Huang Y, Wang C, Zhang Y, Liu W, Luo W, Liang P, Li X, Song J, Ji P, Cheng F, Wang H, Chen T. Gelatin Nanoparticle-Injectable Platelet-Rich Fibrin Double Network Hydrogels with Local Adaptability and Bioactivity for Enhanced Osteogenesis. Adv Healthc Mater 2020; 9:e1901469. [PMID: 31994326 DOI: 10.1002/adhm.201901469] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Bone healing is a dynamic process regulated by biochemical signals such as chemokines and growth factors, and biophysical signals such as topographical and mechanical features of extracellular matrix or mechanical stimuli. Hereby, a mechanically tough and bioactive hydrogel based on autologous injectable platelet-rich fibrin (iPRF) modified with gelatin nanoparticles (GNPs) is developed. This composite hydrogel demonstrates a double network (DN) mechanism, wherein covalent network of fibrin serves to maintain material integrity, and self-assembled colloidal network of GNPs dissipates force upon loading. A rabbit sinus augmentation model is used to investigate the bioactivity and osteogenesis capacity of the DN hydrogels. The DN hydrogels adapt to the local environmental complexity of bone defects, i.e., accommodate the irregular shape of the defects and withstand the pressure formed in the maxillary sinus during animal's respiration process. The DN hydrogel is also demonstrated to absorb and prolong the release of the bioactive growth factors stemming from iPRF, which could have contributed to the early angiogenesis and osteogenesis observed inside the sinus. This adaptable and bioactive DN hydrogel can achieve enhanced bone regeneration in treating complex bone defects by maintaining long-term bone mass and withstanding the functional mechanical stimuli.
Collapse
Affiliation(s)
- Zhixiang Mu
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Kaiwen Chen
- Key State Laboratory of Fine ChemicalsSchool of BioengineeringDalian University of Technology No. 2 Linggong Road, High‐tech District Dalian 116024 P. R. China
| | - Shuai Yuan
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Yihan Li
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Yuanding Huang
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Chao Wang
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Yang Zhang
- Laboratory of Regenerative BiomaterialsDepartment of Biomedical EngineeringHealth Science CenterShenzhen University Shenzhen Guangdong Province 518037 P. R. China
| | - Wenzhao Liu
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Wenping Luo
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Panpan Liang
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Xiaodong Li
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Jinlin Song
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Ping Ji
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| | - Fang Cheng
- Key State Laboratory of Fine ChemicalsSchool of Chemical EngineeringDalian University of Technology No. 2 Linggong Road, High‐tech District Dalian 116024 P. R. China
| | - Huanan Wang
- Key State Laboratory of Fine ChemicalsSchool of BioengineeringDalian University of Technology No. 2 Linggong Road, High‐tech District Dalian 116024 P. R. China
| | - Tao Chen
- Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing Medical University Chongqing 401147 P. R. China
| |
Collapse
|
20
|
Chen Y, Xiong X, Liu X, Cui R, Wang C, Zhao G, Zhi W, Lu M, Duan K, Weng J, Qu S, Ge J. 3D Bioprinting of shear-thinning hybrid bioinks with excellent bioactivity derived from gellan/alginate and thixotropic magnesium phosphate-based gels. J Mater Chem B 2020; 8:5500-5514. [DOI: 10.1039/d0tb00060d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel shear-thinning hybrid bioink with good printability, mechanical support, biocompatibility, and bioactivity was developed by combining gellan gum, sodium alginate, and thixotropic magnesium phosphate-based gel (GG–SA/TMP-BG).
Collapse
|
21
|
Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci Rep 2019; 9:6365. [PMID: 31019215 PMCID: PMC6482193 DOI: 10.1038/s41598-019-42909-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Flavonoids (FLAs) possess anti-cancer, anti-viral, anti-bacterial, and anti-oxidant properties. In this study, gelatin nanoparticles (GNPs) with controllable surface potential and diameter was prepared through a modified two-step desolvation. Two well-known flavonoids, namely, low-molecular weight Genistein (GEN) and high-molecular weight Icariin (ICA), were adsorbed onto the surface of GNPs (FLA@GNPs). The characteristics of GNPs and the main parameters affecting flavonoid adsorption were studied to evaluate the adsorption capacity and structural stability of FLA@GNPs. Furthermore, co-adsorption of GEN and ICA was detected. The adsorption mechanism of GNPs with FLA was further discussed. Results showed that the low-molecular weight GEN could be effectively adsorbed by GNPs, and their entrapment efficiencies were over 90% under optimized conditions. The total drug loading of the co-adsorbed FLA@GNPs was significantly higher than that of the single drug loaded (GEN or ICA). GEN@GNPs could maintain its structural stability under acidic conditions (pH = 2) at room temperature (25 °C). This protective function enables both ICA and GEN to be bioactive at room temperature for at least 180 days. The characteristics of GNPs adsorption indicate that the hydrogen bonding theory of the combination of gelatin molecules with polyphenols cannot sufficiently explain the binding of GNPs with polyphenols. FLA@GNPs is a promising general-purpose gelatin-based co-loading preload structure with simplified operation and storage condition.
Collapse
|
22
|
Selective Atomic-Level Etching on Short S-Glass Fibres to Control Interfacial Properties for Restorative Dental Composites. Sci Rep 2019; 9:3851. [PMID: 30846858 PMCID: PMC6405923 DOI: 10.1038/s41598-019-40524-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/13/2019] [Indexed: 11/22/2022] Open
Abstract
Interfacial bonding between fibre and matrix is most critical to obtain enhanced mechanical properties of the resulting composites. Here we present a new surface tailoring method of selective wet etching and organosilicon monomers (3-(Trimethoxysilyl) propyl methacrylate, TMSPMA) deposition process on the short S-Glass fibre as a reinforcing material, resulting in increased mechanical retention and strong chemical bonding between glass fibres and polymer resin (a mixture of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers). The effect of surface modification on fibre matrix interfacial strength was investigated through microdroplet tests. An S-Glass fibre treated with piranha solution (a mixture of H2O2 and H2SO4) for 24 hours followed by TMSPMA surface silanization shows highest increase up to 39.6% in interfacial shear strength (IFSS), and critical fibre length could be reduced from 916.0 µm to 432.5 µm. We find the optimal surface treatment condition in that the flexural strength of dental composites reinforced by the S-Glass fibres enhanced up to 22.3% compared to the composites without fibre surface treatments. The significant elevation in strength is attributed to changes in the surface roughness of glass fibres at atomic scale, specifically by providing the multiplied spots of the chemical bridge and nano-mechanical interlocking. The findings offer a new strategy for advanced tailoring of short S-Glass fibres to maximise the mechanical properties of biomedical and dental composites.
Collapse
|
23
|
Li D, Chen K, Duan L, Fu T, Li J, Mu Z, Wang S, Zou Q, Chen L, Feng Y, Li Y, Zhang H, Wang H, Chen T, Ji P. Strontium Ranelate Incorporated Enzyme-Cross-Linked Gelatin Nanoparticle/Silk Fibroin Aerogel for Osteogenesis in OVX-Induced Osteoporosis. ACS Biomater Sci Eng 2019; 5:1440-1451. [DOI: 10.1021/acsbiomaterials.8b01298] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Kaiwen Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Lian Duan
- College of Textiles and Garments, Southwest University, Chongqing 400715, P. R. China
| | - Tiwei Fu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Jiao Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Zhixiang Mu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Si Wang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Li Chen
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yangyingfan Feng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Yihan Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Huanan Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing 401147, P. R. China
| |
Collapse
|
24
|
Iordachescu A, Williams RL, Hulley PA, Grover LM. Organotypic Culture of Bone-Like Structures Using Composite Ceramic-Fibrin Scaffolds. ACTA ACUST UNITED AC 2019; 48:e79. [DOI: 10.1002/cpsc.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexandra Iordachescu
- School of Chemical Engineering, University of Birmingham; Edgbaston Birmingham United Kingdom
- Botnar Research Centre, University of Oxford; Old Road, Headington Oxford United Kingdom
| | - Richard L. Williams
- School of Chemical Engineering, University of Birmingham; Edgbaston Birmingham United Kingdom
| | - Philippa A. Hulley
- Botnar Research Centre, University of Oxford; Old Road, Headington Oxford United Kingdom
| | - Liam M. Grover
- School of Chemical Engineering, University of Birmingham; Edgbaston Birmingham United Kingdom
| |
Collapse
|
25
|
Diba M, Polini A, Petre DG, Zhang Y, Leeuwenburgh SC. Fiber-reinforced colloidal gels as injectable and moldable biomaterials for regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:143-150. [DOI: 10.1016/j.msec.2018.06.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 04/09/2018] [Accepted: 06/16/2018] [Indexed: 12/20/2022]
|
26
|
Qi H, Chen Q, Ren H, Wu X, Liu X, Lu T. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis. Colloids Surf B Biointerfaces 2018; 169:249-256. [PMID: 29783150 DOI: 10.1016/j.colsurfb.2018.05.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 12/16/2022]
Abstract
Surface modification of metallic implants with bioactive and biodegradable coatings could be a promising approach for bone regeneration. The objective of this study was to prepare chitosan/gelatin nanospheres (GNs) composite coating for the delivery of dexamethasone (DEX). GNs with narrow size distribution and negative surface charge were firstly prepared by a two-step desolvation method. Homogeneous and stable gelatin nanospheres/chitosan (GNs/CTS) composite coatings were formed by electrophoretic deposition (EPD). Drug loading, encapsulation efficiency and in vitro release of DEX were estimated using high performance liquid chromatography (HPLC). The anti-inflammatory effect of DEX-loaded coatings on macrophage RAW 264.7 cells was assessed by the secretion of tumour necrosis factor (TNF) and inducible nitric oxide synthase (iNOS). Osteogenic differentiation of MC3T3-E1 osteoblasts on DEX-loaded coatings was investigated by osteogenic gene expression and mineralization. The DEX in GNs/CTS composite coating showed a two-stage release pattern could not only suppress inflammation during the burst release period, but also promote osteogenic differentiation in the sustained release period. This study might offer a feasible method for modifying the surface of metallic implants in bone regeneration.
Collapse
Affiliation(s)
- Hongfei Qi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Qiang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Hailong Ren
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xianglong Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, Henan 450002, China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
27
|
Zhang K, Zhang J, Chen K, Hu X, Wang Y, Yang X, Zhang X, Fan Y. In vitro and in vivo assessment of nanostructured porous biphasic calcium phosphate ceramics for promoting osteogenesis in an osteoporotic environment. RSC Adv 2018; 8:14646-14653. [PMID: 35540770 PMCID: PMC9079917 DOI: 10.1039/c8ra00768c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/02/2018] [Indexed: 11/21/2022] Open
Abstract
Treatment of bone defects in osteoporotic patients with bone substitutes is difficult, due to insufficient osseointegration. The development of appropriate biomaterials to solve the problem requires the assessment of the material performance in an osteoporotic environment, which is rarely investigated. Herein, nanostructured biphasic calcium phosphate (nBCP) ceramics were prepared via the incorporation of hydroxyapatite nanoparticles (HANPs) into porous biphasic CaP (BCP) substrates, leading to an increase of over 500% in the specific surface area. Primary osteoblasts harvested from osteoporotic rats were cultured on the nBCP ceramics, and it was found that the osteoblast functions, including proliferation, alkaline phosphatase activity, osteocalcin secretion and expression of osteogenic genes, were significantly enhanced compared with osteoblasts grown on non-nanostructured BCP ceramics. To further assess the osteoinduction ability, the ceramics were implanted in the femur of osteoporotic rats. Compared to the rats implanted with non-nanostructured BCP ceramics, a higher amount of mechanically matured bone was newly formed in the rats with nBCP ceramics after 6 weeks of implantation. Such enhanced osteoinduction ability of the nBCP ceramics may be due to the incorporated HANPs, as well as the nanostructured topography induced by the HANPs. These results indicate good in vitro and in vivo osteoinductivity of the nBCP ceramics in an osteoporotic environment and offer potential benefits for treating bone defects in osteoporotic patients.
Collapse
Affiliation(s)
- Kun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Kelei Chen
- Zenmindes Biotech Co. Ltd B2, CAS, No 9 4th Section of South Renmin Road Chengdu China +86-28-85410246 +86-28-85417654
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University 29 Wangjiang Road Chengdu 610064 China
| |
Collapse
|
28
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
29
|
Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E929. [PMID: 28796191 PMCID: PMC5578295 DOI: 10.3390/ma10080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Ankit K Rochani
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| |
Collapse
|
30
|
Ramírez-Rodríguez GB, Montesi M, Panseri S, Sprio S, Tampieri A, Sandri M. * Biomineralized Recombinant Collagen-Based Scaffold Mimicking Native Bone Enhances Mesenchymal Stem Cell Interaction and Differentiation. Tissue Eng Part A 2017. [PMID: 28637399 DOI: 10.1089/ten.tea.2017.0028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The need of synthetic bone grafts that recreate from macro- to nanoscale level the biochemical and biophysical cues of bone extracellular matrix has been a major driving force for the development of new generation of biomaterials. In this study, synthetic bone substitutes have been synthesized via biomimetic mineralization of a recombinant collagen type I-derived peptide (RCP), enriched in tri-amino acid sequence arginine-glycine-aspartate (RGD). Three-dimensional (3D) isotropic porous scaffolds of three different compositions are developed by freeze-drying: non-mineralized (RCP, as a control), mineralized (Ap/RCP), and mineralized scaffolds in the presence of magnesium (MgAp/RCP) that closely imitate bone composition. The effect of mineral phase on scaffold pore size, porosity, and permeability, as well as on their in vitro kinetic degradation, is evaluated. The ultimate goal is to investigate how chemical (i.e., surface chemistry and ion release from scaffold) together with physical signals (i.e., surface nanotopography) conferred via biomimetic mineralization can persuade and guide mesenchymal stem cell (MSC) interaction and fate. The three scaffold compositions showed optimum pore size and porosity for osteoconduction, without significant differences between them. The degradation tests confirmed that MgAp/RCP scaffolds presented higher reactivity under physiological condition compared to Ap/RCP ones. The in vitro study revealed an enhanced cell growth and proliferation on MgAp/RCP scaffolds at day 7, 14, and 21. Furthermore, MgAp/RCP scaffolds potentially promoted cell migration through the inner areas reaching the bottom of the scaffold after 14 days. MSCs cultured on MgAp/RCP scaffolds displayed higher gene and protein expressions of osteogenic markers when comparing them with the results of those MSCs grown on RCP or Ap/RCP scaffolds. This work highlights that mineralization of recombinant collagen mimicking bone mineral composition and morphology is a versatile approach to design smart scaffold interface in a 3D model guiding MSC fate.
Collapse
Affiliation(s)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza, Italy
| | - Monica Sandri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza, Italy
| |
Collapse
|
31
|
Fayyazbakhsh F, Solati-Hashjin M, Keshtkar A, Shokrgozar MA, Dehghan MM, Larijani B. Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:701-714. [PMID: 28482581 DOI: 10.1016/j.msec.2017.02.172] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/21/2016] [Accepted: 02/28/2017] [Indexed: 10/19/2022]
Abstract
Developing porous biodegradable scaffolds through simple methods is one of the main approaches of bone tissue engineering (BTE). In this work, a novel BTE composite containing layered double hydroxides (LDH), hydroxyapatite (HA) and gelatin (GEL) was fabricated using co-precipitation and solvent-casting methods. Physiochemical characterizations showed that the chemical composition and microstructure of the scaffolds were similar to the natural spongy bone. Interconnected macropores ranging over 100 to 600μm were observed for both scaffolds while the porosity of 90±0.12% and 92.11±0.15%, as well as, Young's modulus of 19.8±0.41 and 12.5±0.35GPa were reported for LDH/GEL and LDH-HA/GEL scaffolds, respectively. The scaffolds were degraded in deionized water after a month. The SEM images revealed that between two scaffolds, the LDH-HA/GEL with needle-like secondary HA crystals showed better bioactivity. According to the alkaline phosphatase activity and Alizarin red staining results, LDH-HA/GEL scaffolds demonstrated better bone-specific activities comparing to LDH/Gel scaffold as well as control sample (P<0.05). The rabbit adipose stem cells (ASCs) were extracted and cultured, then seeded on the LDH-HA/GEL scaffolds after confluence. Three groups of six adult rabbits were prepared: the scaffold+ASCs group, the empty scaffold group and the control group. The critical defects were made on the left radius and the scaffolds with or without ASCs were implanted there while the control group was left without any treatment. All animals were sacrificed after 12weeks. Histomorphometric results showed that the regeneration of defects was accelerated by scaffold implantation but ASC-seeding significantly improved the quality of new bone formation (P<0.05). The results confirmed the good performance of LDH-HA/GEL scaffold to induce bone regeneration.
Collapse
Affiliation(s)
- Fateme Fayyazbakhsh
- Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Mehran Solati-Hashjin
- Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran; Biomaterials Center of Excellence, Amirkabir University of Technology, Tehran, Iran.
| | - Abbas Keshtkar
- Department of Health Sciences Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Diba M, Wang H, Kodger TE, Parsa S, Leeuwenburgh SCG. Highly Elastic and Self-Healing Composite Colloidal Gels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604672. [PMID: 28067959 DOI: 10.1002/adma.201604672] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new, critical insight into the structural and mechanical properties of composite colloidal gels and opens up new avenues for practical application of colloidal gels.
Collapse
Affiliation(s)
- Mani Diba
- Department of Biomaterials, Radboud University Medical Center, 6525 EX, Nijmegen, The Netherlands
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Huanan Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, 116023, P. R. China
| | - Thomas E Kodger
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Shima Parsa
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Sander C G Leeuwenburgh
- Department of Biomaterials, Radboud University Medical Center, 6525 EX, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Jeon OH, Elisseeff J. Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 2016; 6:105-20. [PMID: 26625850 DOI: 10.1007/s13346-015-0266-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Orthopedic tissue regeneration would benefit the aging population or patients with degenerative bone and cartilage diseases, especially osteoporosis and osteoarthritis. Despite progress in surgical and pharmacological interventions, new regenerative approaches are needed to meet the challenge of creating bone and articular cartilage tissues that are not only structurally sound but also functional, primarily to maintain mechanical integrity in their high load-bearing environments. In this review, we discuss new advances made in exploiting the three classes of materials in bone and cartilage regenerative medicine--cells, biomaterial-based scaffolds, and small molecules--and their successes and challenges reported in the clinic. In particular, the focus will be on the development of tissue-engineered bone and cartilage ex vivo by combining stem cells with biomaterials, providing appropriate structural, compositional, and mechanical cues to restore damaged tissue function. In addition, using small molecules to locally promote regeneration will be discussed, with potential approaches that combine bone and cartilage targeted therapeutics for the orthopedic-related disease, especially osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Ok Hee Jeon
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, 5031 Smith Building, 400N. Broadway, Baltimore, MD, 21231, USA.
| |
Collapse
|
34
|
Angelopoulou A, Efthimiadou EΚ, Kordas G. Synthesis of novel quaternary silica hybrid bioactive microspheres. J Biomed Mater Res B Appl Biomater 2016; 106:112-120. [PMID: 27886447 DOI: 10.1002/jbm.b.33817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE To survey the preparation of novel hybrid microspheres of quaternary silicate glassy composition (SiO2 P2 O5 CaONa2 O) and the prospect of using them as an osteogenic system with enhanced bioactive properties for the development of hydroxyapatite. METHOD In line with our previous synthetic procedure a two-step process was followed, wherein polystyrene (PS) microspheres were prepared by the emulsifier free-emulsion polymerization method and constituted the core for the sol-gel coating of the silicate inorganic shell. The development of the hybrid microspheres was based on silane and phosphate precursors and was assesses at different ratio of ethanol/water (of 9/1, 4/1, and 2/1, in mL) and at varied ammonia concentration of 4.8-1.0 mL. RESULTS The hybrid microspheres had an average size ranged between 350 and 550 nm according to SEM, depending on the ethanol/water solution rate and ammonia content. The final microspheres probably exhibited a porous-like structure through the formation of diffused voids along with the low carbon content of the EDX analysis, which could be regulated by the catalyst content. The hybrid microspheres exhibited effective in vitro bioactivity assessed in simulated body fluids (SBF). CONCLUSION Quaternary hybrid silica microspheres were effectively synthesized. The bioassay evaluation of the final microspheres revealed the rapid in vitro formation of a bone-like apatite layer. The results verify the bioactivity of the microspheres and promote further research of their suitability on regenerative treatment of bone abnormalities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 112-120, 2018.
Collapse
Affiliation(s)
- A Angelopoulou
- Laboratory for Sol-Gel, Institute of Nanoscience and Nanotechnology, NCSR, "Demokritos, 153 10 Ag. Paraskevi Attikis, Athens, Greece.,Department of Materials Science, School of Natural Sciences, University of Patras, 26 500, Patras, Greece
| | - E Κ Efthimiadou
- Laboratory for Sol-Gel, Institute of Nanoscience and Nanotechnology, NCSR, "Demokritos, 153 10 Ag. Paraskevi Attikis, Athens, Greece
| | - G Kordas
- Laboratory for Sol-Gel, Institute of Nanoscience and Nanotechnology, NCSR, "Demokritos, 153 10 Ag. Paraskevi Attikis, Athens, Greece
| |
Collapse
|
35
|
Zhang Z. Injectable biomaterials for stem cell delivery and tissue regeneration. Expert Opin Biol Ther 2016; 17:49-62. [DOI: 10.1080/14712598.2017.1256389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Diba M, An J, Schmidt S, Hembury M, Ossipov D, Boccaccini AR, Leeuwenburgh SCG. Exploiting Bisphosphonate-Bioactive-Glass Interactions for the Development of Self-Healing and Bioactive Composite Hydrogels. Macromol Rapid Commun 2016; 37:1952-1959. [DOI: 10.1002/marc.201600353] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Mani Diba
- Department of Biomaterials; Radboud University Medical Center; 6525 EX Nijmegen The Netherlands
| | - Jie An
- Department of Biomaterials; Radboud University Medical Center; 6525 EX Nijmegen The Netherlands
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; 40225 Düsseldorf Germany
| | - Mathew Hembury
- Department of Pharmaceutics; Utrecht Institute for Pharmaceutical Sciences (UIPS); Faculty of Science; Utrecht University; 3508 TB Utrecht The Netherlands
| | - Dmitri Ossipov
- Department of Materials Chemistry; Angstrom Laboratory; A Science for Life Laboratory; Uppsala University; SE 75121 Uppsala Sweden
| | - Aldo R. Boccaccini
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; 91058 Erlangen Germany
| | | |
Collapse
|
37
|
Chou SF, Luo LJ, Lai JY, Ma DHK. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery. Int J Pharm 2016; 511:30-43. [PMID: 27374201 DOI: 10.1016/j.ijpharm.2016.06.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/14/2016] [Accepted: 06/29/2016] [Indexed: 01/27/2023]
Abstract
To overcome the drawbacks associated with conventional antiglaucoma eye drops, this work demonstrated the feasibility of an effective alternative strategy to administer pilocarpine directly via intracameral injections of drug-containing biodegradable in situ gelling GN copolymers composed of gelatin and poly(N-isopropylacrylamide). Specifically, this study aims to understand the importance of Bloom number of gelatin, a physicochemical parameter, to the development of GN carriers for intracameral drug delivery in glaucoma therapy. Our results showed that both imino acid and triple-helix contents increased with increasing Bloom index from 75-100 to 300. The drug encapsulation efficiency in response to temperature-triggered phase transition in GN copolymers was affected by the Bloom index of gelatin. In addition, the differences in protein secondary structure significantly influenced the degradation rates of GN carriers, which were highly correlated with drug release profiles. The increase in released pilocarpine concentration led to a high intracellular calcium level in rabbit ciliary smooth muscle cell cultures, indicating a beneficial pharmacological response to a drug. Irrespective of Bloom number of gelatin, all carrier materials exhibited excellent in vitro and in vivo biocompatibility with corneal endothelium. In a glaucomatous rabbit model, intracameral injections of pilocarpine-containing GN synthesized from gelatins with various Bloom numbers had different abilities to improve ocular hypertension and induce pupillary constriction, indicating distinct antiglaucoma efficacies due to in vivo drug release. It is concluded that the effects on pharmacological treatment using GN carriers for intracameral pilocarpine administration demonstrate a strong dependence on the Bloom number of gelatin.
Collapse
Affiliation(s)
- Shih-Feng Chou
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, ROC; Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA
| | - Li-Jyuan Luo
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| | - Jui-Yang Lai
- Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302, Taiwan, ROC; Biomedical Engineering Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan, ROC; Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.
| | - David Hui-Kang Ma
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Ophthalmology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC; Department of Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|
38
|
Serra-Gómez R, Dreiss CA, González-Benito J, González-Gaitano G. Structure and Rheology of Poloxamine T1107 and Its Nanocomposite Hydrogels with Cyclodextrin-Modified Barium Titanate Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6398-6408. [PMID: 27245639 DOI: 10.1021/acs.langmuir.6b01544] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the preparation of a nanocomposite hydrogel based on a poloxamine gel matrix (Tetronic T1107) and cyclodextrin (CD)-modified barium titanate (BT) nanoparticles. The micellization and sol-gel behavior of pH-responsive block copolymer T1107 were fully characterized by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy as a function of concentration, pH and temperature. SANS results reveal that spherical micelles in the low concentration regime present a dehydrated core and highly hydrated shell, with a small aggregation number and size, highly dependent on the degree of protonation of the central amine spacer. At high concentration, T1107 undergoes a sol-gel transition, which is inhibited at acidic pH. Nanocomposites were prepared by incorporating CD-modified BT of two different sizes (50 and 200 nm) in concentrated polymer solutions. Rheological measurements show a broadening of the gel region, as well as an improvement of the mechanical properties, as assessed by the shear elastic modulus, G' (up to 200% increase). Initial cytocompatibility studies of the nanocomposites show that the materials are nontoxic with viabilities over 70% for NIH3T3 fibroblast cell lines. Overall, the combination of Tetronics and modified BaTiO3 provides easily customizable systems with promising applications as soft piezoelectric materials.
Collapse
Affiliation(s)
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Javier González-Benito
- Department of Materials Science and Engineering, IQMAAB, Universidad Carlos III de Madrid , 28911 Leganés, Spain
| | | |
Collapse
|
39
|
Bongio M, Lopa S, Gilardi M, Bersini S, Moretti M. A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine (Lond) 2016; 11:1073-91. [PMID: 27078586 DOI: 10.2217/nnm-2015-0021] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIM We aimed to establish a 3D vascularized in vitro bone remodeling model. MATERIALS & METHODS Human umbilical endothelial cells (HUVECs), bone marrow mesenchymal stem cells (BMSCs), and osteoblast (OBs) and osteoclast (OCs) precursors were embedded in collagen/fibrin hydrogels enriched with calcium phosphate nanoparticles (CaPn). We assessed vasculogenesis in HUVEC-BMSC coculture, osteogenesis with OBs, osteoclastogenesis with OCs, and, ultimately, cell interplay in tetraculture. RESULTS HUVECs developed a robust microvascular network and BMSCs differentiated into mural cells. Noteworthy, OB and OC differentiation was increased by their reciprocal coculture and by CaPn, and even more by the combination of the tetraculture and CaPn. CONCLUSION We successfully developed a vascularized 3D bone remodeling model, whereby cells interacted and exerted their specific function.
Collapse
Affiliation(s)
- Matilde Bongio
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy
| | - Silvia Lopa
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy
| | - Mara Gilardi
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy.,PhD School in Life Sciences, Department of Biotechnology & Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Simone Bersini
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Laboratory, IRCCS Galeazzi Orthopaedic Institute, 20161 Milan, Italy.,Regenerative Medicine Technologies Lab, Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland.,Swiss Institute of Regenerative Medicine (SIRM), 6900 Lugano, Switzerland.,Fondazione Cardiocentro Ticino, 6900 Lugano, Switzerland
| |
Collapse
|
40
|
Farbod K, Diba M, Zinkevich T, Schmidt S, Harrington MJ, Kentgens APM, Leeuwenburgh SCG. Gelatin Nanoparticles with Enhanced Affinity for Calcium Phosphate. Macromol Biosci 2016; 16:717-29. [DOI: 10.1002/mabi.201500414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/09/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Mani Diba
- Department of Biomaterials; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| | - Tatiana Zinkevich
- Department of Solid State NMR; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Stephan Schmidt
- Biophysical Chemistry Group; Institute of Biochemistry; Faculty of Biosciences; Pharmacy and Psychology; Universität Leipzig; D-04103 Leipzig Germany
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstrasse 1 D-40225 Düsseldorf Germany
| | - Matthew J. Harrington
- Department of Biomaterials; Max Planck Institute for Colloids and Interfaces; D-14424 Potsdam Germany
| | - Arno P. M. Kentgens
- Department of Solid State NMR; Institute for Molecules and Materials; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Philips van Leydenlaan 25 6525 EX Nijmegen The Netherlands
| |
Collapse
|
41
|
Peng H, Zhang D, Sun B, Luo Y, Lv S, Wang J, Chen J. Synthesis of protein/hydroxyapatite nano-composites by a high-gravity co-precipitation method. RSC Adv 2016. [DOI: 10.1039/c5ra27018a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A high-gravity co-precipitation strategy was introduced to the fabrication of protein/hydroxyapatite nano-composites with improved protein adsorption efficiencies and enhanced biocompatibilities.
Collapse
Affiliation(s)
- H. Peng
- State Key Laboratory of Organic-inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
| | - D. Zhang
- State Key Laboratory of Organic-inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
- Research Center of the Ministry of Education for High Gravity Engineering & Technology
| | - B. Sun
- State Key Laboratory of Organic-inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
- Research Center of the Ministry of Education for High Gravity Engineering & Technology
| | - Y. Luo
- Research Center of the Ministry of Education for High Gravity Engineering & Technology
- Beijing University of Chemical Technology
- Beijing
- China
| | - S. Lv
- State Key Laboratory of Organic-inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
| | - J. Wang
- State Key Laboratory of Organic-inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
- Research Center of the Ministry of Education for High Gravity Engineering & Technology
| | - J. Chen
- State Key Laboratory of Organic-inorganic Composites
- Beijing University of Chemical Technology
- Beijing
- China
- Research Center of the Ministry of Education for High Gravity Engineering & Technology
| |
Collapse
|
42
|
Farbod K, Curci A, Diba M, Zinkevich T, Kentgens APM, Iafisco M, Margiotta N, Leeuwenburgh SCG. Dual-functionalisation of gelatine nanoparticles with an anticancer platinum(ii)–bisphosphonate complex and mineral-binding alendronate. RSC Adv 2016. [DOI: 10.1039/c6ra19915a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mineral-binding gelatine nanoparticles can be loaded with tailored amounts of anticancer molecules, which may benefit the development of bone-seeking carriers for targeted delivery of drugs to treat bone tumours.
Collapse
Affiliation(s)
- Kambiz Farbod
- Department of Biomaterials
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 EX Nijmegen
- The Netherlands
| | - Alessandra Curci
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| | - Mani Diba
- Department of Biomaterials
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 EX Nijmegen
- The Netherlands
| | - Tatiana Zinkevich
- Department of Solid State NMR
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Arno P. M. Kentgens
- Department of Solid State NMR
- Institute for Molecules and Materials
- Radboud University
- 6525 AJ Nijmegen
- The Netherlands
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC)
- National Research Council (CNR)
- 48018 Faenza
- Italy
| | - Nicola Margiotta
- Dipartimento di Chimica
- Università degli Studi di Bari Aldo Moro
- 70125 Bari
- Italy
| | - Sander C. G. Leeuwenburgh
- Department of Biomaterials
- Radboud Institute for Molecular Life Sciences
- Radboud University Medical Center
- 6525 EX Nijmegen
- The Netherlands
| |
Collapse
|
43
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
44
|
Sharma S, Verma A, Teja BV, Pandey G, Mittapelly N, Trivedi R, Mishra PR. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids Surf B Biointerfaces 2015; 133:120-39. [PMID: 26094145 DOI: 10.1016/j.colsurfb.2015.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/28/2022]
Abstract
Over the recent years the use of biocompatible and biodegradable nanoparticles in biomedicine has become a significant priority. Calcium based ceramic nanoparticles like calcium phosphate (CaP) and calcium carbonate (CaCO3) are therefore considered as attractive carriers as they are naturally present in human body with nanosize range. Their application in tissue engineering and localized controlled delivery of bioactives for bones and teeth is well established now, but recently their use has increased significantly as carrier of bioactives through other routes also. These delivery systems have become most potential alternatives to other commonly used delivery system because of their cost effectiveness, biodegradability, chemical stability, controlled and stimuli responsive behaviour. This review comprehensively covers their characteristic features, method of preparation and applications but the thrust is to focus their recent development, functionalization and use in systemic delivery. On the same platform mineralization of other nanoparticulate delivery system which has widened their application drug delivery will be discussed. The emphasis has been given on their pH dependent properties which make them excellent carriers for tumour targeting and intracellular delivery. Finally this review also attempts to discuss their drawback which limits their clinical utility.
Collapse
Affiliation(s)
- Shweta Sharma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Ashwni Verma
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - B Venkatesh Teja
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Gitu Pandey
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Naresh Mittapelly
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - Ritu Trivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India
| | - P R Mishra
- Division of Pharmaceutics, CSIR-Central Drug Research Institute, B 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, U.P., India.
| |
Collapse
|
45
|
Glassman MJ, Olsen BD. End Block Design Modulates the Assembly and Mechanics of Thermoresponsive, Dual-Associative Protein Hydrogels. Macromolecules 2015. [DOI: 10.1021/ma502494s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Matthew J. Glassman
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Ave, Room 66-153, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Ave, Room 66-153, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
46
|
Varaprasad K, Vimala K, Raghavendra GM, Jayaramudu T, Sadiku E, Ramam K. Cell Encapsulation in Polymeric Self-Assembled Hydrogels. NANOTECHNOLOGY APPLICATIONS FOR TISSUE ENGINEERING 2015:149-171. [DOI: 10.1016/b978-0-323-32889-0.00010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Shahlori R, Waterhouse GIN, Nelson ARJ, McGillivray DJ. Morphological, chemical and kinetic characterisation of zein protein-induced biomimetic calcium phosphate films. J Mater Chem B 2015; 3:6213-6223. [DOI: 10.1039/c5tb00702j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A zein protein layer was used to mineralize thin films of calcium phosphate at the air–solution interface producing an iridescent mineral film with novel nano-morphology.
Collapse
Affiliation(s)
- Rayomand Shahlori
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Geoffrey I. N. Waterhouse
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| | - Andrew R. J. Nelson
- Bragg Institute
- Australian Nuclear Science and Technology Organisation
- Australia
| | - Duncan J. McGillivray
- School of Chemical Sciences
- University of Auckland
- Auckland 1142
- New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology
| |
Collapse
|
48
|
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2014; 2:14017. [PMID: 26273526 PMCID: PMC4472121 DOI: 10.1038/boneres.2014.17] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CaP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
Collapse
|